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Analytical and numerical results from recently developed strongly nonlinear
asymptotic models are compared and validated with experimental observations of
internal gravity waves and results from the numerical integrations of Euler equations
for solitary waves at the interface of two-fluid systems. The focus of this investigation is
on regimes where large amplitudes are attained, where the classical weakly nonlinear
theories prove inadequate. Two asymptotically different regimes are examined in
detail: shallow fluids, in which the typical wavelengths of the interface displacement
are long with respect to the depths of both fluids, and deep fluids, where the
wavelengths are comparable to, or less than, the depth of one of the two fluids. With
the aim of illustrating the breakdown of the asymptotic assumptions, the transition
from a shallow to a deep regime is examined through numerical computation of Euler
system’s solutions and by comparisons with solution to models.

1. Introduction
The problem of internal gravity wave dynamics in stratified fluids is experiencing

increased attention, spurred on in part by improvements in detection technology and
by heightened appreciation of the role played by these waves in environmental issues,
e.g. in near-coastal dynamics. Recent observations show that large-amplitude internal
waves frequently occur, see for instance Stanton & Ostrovsky (1998), Liu et al. (1998),
Orr & Mignerey (2003), and Zeng & Alpers (2004). A collection of synthetic aperture
radar (SAR) images in different ocean basins is available in Jackson (2004) and shows
that large-amplitude internal waves are a common phenomenon in the oceans.

Mathematically, the large-amplitude regimes which are easily attained by internal
waves, both experimentally and in the field, make this class of wave phenomena
especially challenging. In particular, the strong nonlinearity causes the failure of
models based on the quasi-linear approximation of the fundamental equations of
motion. These equations, be they the Euler system, or the full Navier–Stokes equations
when viscous effects must be included, are hardly amenable to analytic methods of
solution and can be very costly to simulate in even relatively simple situations. Thus,
there is a need for models that are sufficiently accurate to capture the dynamics
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Figure 1. The two-fluid system set-up and relevant notation.

occurring in physically realistic situations, yet that are simple enough to be efficiently
simulated numerically.

The simplest physical situation capable of supporting internal wave motion is that
of a two-layer fluid under gravity, where the density is a different constant on each
side of an interface, see figure 1. Though very crude, this set-up is routinely used as
a building block for more refined descriptions, e.g. for approximating near constant
density variations by piecewise constant steps (see, e.g. Baines 1995; Pedlosky 1979)
and so this idealization deserves some attention. Even by restricting the upper (free)
surface with a rigid lid, and considering the fluid as incompressible and inviscid, the
added complexity of fluid motion with respect to that of a single homogeneous layer
is substantial. At least two more parameters enter the problem, the density ratio and
the ratio of undisturbed layer thicknesses. A variety of situations can be envisaged;
however, for geophysical applications, the density ratio ρ1/ρ2 between the first (upper)
layer and the second (lower) layer is always close to unity (with ρ1 <ρ2 for stability),
and the ratio h1/h2 between (undisturbed) layer thicknesses plays the most important
role. Thus, throughout this work we will consider the density ratio ρ1/ρ2 as fixed and
independent of the other parameters.

Starting from the Euler system governing the motion of each fluid layer, the classical
weakly nonlinear theories of long-wave motion assume that the typical amplitude a

of the waves is small compared with both layer thicknesses, or α ≡ |a|/hi � 1, i = 1, 2,
and distinguish between a shallow configuration, where the horizontal length scale λ
of the motion is large with respect to both h1 and h2, i.e. ε ≡ hi/λ� 1, and a deep
configuration, where λ is large with respect to just one layer, i.e. hi/λ� 1, i =1 or
i = 2 (but not both). Based on the rate of steepening by nonlinearity and flattening
by dispersion that the two parameters α and ε represent, a balance is postulated,
which leads to quite different asymptotic models for the shallow and deep cases, when
α = O(ε2) and α = O(ε), respectively. The typical representative of the first (shallow)
case is the well-known Korteweg–de Vries (KdV) equation, while for the second (deep)
case the so-called Benjamin–Ono (BO) or intermediate long wave (ILW) equations
can be derived.

As usual in formal asymptotics, there is no way of assessing a priori whether the
range of validity of these approximations is large enough to include realistic fixed
values of the parameters. Koop & Butler (1981) were probably the first to attempt
to check whether the weakly nonlinear theories were robust enough to capture
practical experiments. Their conclusions, based on observations of solitary waves
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with two immiscible fluids in a wave tank, were that the KdV model would perform
fairly well over a wide range of amplitudes for the shallow configuration. Better
agreement with data could be achieved, however, by including higher-order terms
from the asymptotic expansion as the amplitude parameter α increased. The weakly
nonlinear theory would perform poorly for just about all their observations in the deep
configuration. Segur & Hammack (1982) confirmed this using salt stratified water.
Kao, Pan & Renouard (1985) repeated the experiments in the shallow configuration,
again using salt to stratify water in two nearly homogeneous layers, and found
the KdV theory in ‘superb’ agreement with their experimental observations. Even
within the shallow configuration, however, it has been known at least since the 1980s
(Miles 1981; Amick & Turner 1986; Funakoshi & Oikawa 1986) that, in analogy
with the free-surface case, waves in the shallow configuration have a maximum
theoretical amplitude, a selection criterion that is missed by the KdV theory. This
provides perhaps the clearest evidence of how weakly nonlinear theories fail to apply
to large-amplitude regimes, in general. (The particular case of critical depth ratio
h1/h2 = (ρ1/ρ2)

1/2 provides an exception. For densities and thicknesses close to this
ratio, the so-called KdV-modified KdV (KdV-mKdV) equation can be derived, and
for near critical layer thickness, experimental observations (Michallet & Barthélemy
1998) have shown that wave characteristics are reproduced by solutions to the KdV-
mKdV model. Although it supports a maximum-amplitude wave solution, for the
non-critical case, the KdV-mKdV model is not valid for other wave amplitudes.)

With this in mind, the present paper constitutes an attempt at examining these
issues of model validity by direct comparisons of analytical and numerical results
from classical and recently derived strongly nonlinear asymptotic theories by Choi &
Camassa (1999) with numerical simulations of the Euler equations and experimental
data presented in Michallet & Barthélemy (1998) and in Grue et al. (1999).
Throughout our study, we use solitary waves as a testbed for the practical applicability
of the various theories. Although a rather special class of solutions, these waves do
embody the balance between nonlinearity Although and dispersion that is an essential
feature of large-amplitude wave dynamics in nature, and often offer the additional
advantage of closed-form solutions. Moreover, from an experimental viewpoint, these
waves are ideally suitable for accurate measurements of their main defining features,
such as amplitude, wavelength and speed.

The paper is organized as follows. We review the general theory for internal waves
at the interface of two immiscible and inviscid fluids under gravity and sketch the
derivation of models that take into account the possibility of large displacements of
the interface from its equilibrium position. In particular, in § 2 we look at a numerical
model to determine solutions of the coupled Euler equations, which apply to all
physical set-ups in this class of problems. We stress here that simplifications of the
original Euler system require additional assumptions, and these are possible with the
two configurations of most practical interest, shallow and deep. Section 3 focuses on
results and observations pertaining to the shallow configuration. In particular, we
examine a sequence of tests for solitary-wave profiles, amplitude, effective wavelength
wave and fluid velocities. Section 4 does the same within the deep configuration,
whereas § 5 examines how the transition between shallow and deep theories occurs
from the modelling viewpoint.

Throughout the paper, we consider exclusively two-dimensional (one horizontal
and one vertical) situations. However, we stress that the strongly nonlinear models we
consider can be readily written for fully three-dimensional set-ups (see, e.g. Choi &
Camassa 1996).
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2. Background on fundamental theory and models
2.1. Theory: Euler equations

For an inviscid and incompressible fluid of density ρi , the velocity components in
Cartesian coordinates (ui, wi) and the pressure pi satisfy the continuity equation and
the Euler equations,

uix + wiz = 0, (2.1)

ui t + uiuix + wiuiz = −pix/ρi, (2.2)

wit + uiwix + wiwiz = −piz/ρi − g, (2.3)

where g is the acceleration due to gravity and subscripts with respect to space and
time represent partial differentiation. In a two-fluid system, i =1 (i =2) stands for the
upper (lower) fluid (see figure 1) and ρ1 <ρ2 is assumed for a stable stratification.

The boundary conditions at the interface are the continuity of normal velocity and
pressure:

ζt + u1ζx = w1, ζt + u2ζx = w2, p1 = p2 at z = ζ (x, t), (2.4)

where ζ is a displacement of the interface. At the upper and lower rigid surfaces, the
kinematic boundary conditions are given by

w1(x, h1, t) = 0 , w2(x, −h2, t) = 0, (2.5)

where h1 (h2) is the undisturbed thickness of the upper (lower) fluid layer.

2.2. Full Euler equations algorithm

In order to find stationary solutions of the full Euler equations (2.1)–(2.3), we apply the
numerical method described in Grue et al. (1999). To make the paper as self-contained
as possible, we briefly review the method here.

The wave is modelled in a frame of reference moving with its wave speed c. In this
frame of reference the interface is stationary. The velocities (ul, wl) in each layer can
be represented by analytic functions ql = ul − iwl , in the upper (l = 1) and lower (l = 2)
layer relative to the moving frame of reference. Cauchy’s integral theorem applies on
each layer, and yields a system of integral equations,

PV

∫
I

ql(z) + c

z′ − z
dz −

∫
I

ql
∗(z) + c

z′ − z∗ + (−1)l2ihl

dz∗ =

{
(−1)l2πi(ql(z

′) + c), z′ ∈ Ωl

(−1)lπi(ql(z
′) + c), z′ ∈ I,

(2.6)

where I is the interface and Ωl are the interior of the upper (l =1) and lower (l = 2)
layer, respectively. The integrals preceded by PV are principal value integrals, but
only for z′ ∈ I .

Previous examples of computationally determined very large internal travelling
waves have been either broad (Turner & Vanden-Broeck 1988) or steep and even
overhanging (Pullin & Grimshaw 1988). To allow for the latter type of solutions,
the elevation of the interface is not represented as a function of the horizontal
coordinate. The interface is instead parameterized and modelled by z = χ(ξ ), where
χ(ξ ) is a complex function of the real parameter ξ which is either monotonically
increasing or decreasing along the interface. The kinematic condition at the interface
now reads

−u1Im{χξ } + w1Re{χξ } = −u2Im{χξ } + w2Re{χξ }, (2.7)

where the subscript denotes differentiation with respect to ξ .
The algorithm for solving the coupled system (2.6) relies on a suitably discretized

approximation to the integrals. Depending on the nature of the solution, we may
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choose different ways of distributing the computational points along the interface.
By distributing these points evenly along the interface, e.g. by setting the distance
between adjacent points equal, we can obtain good accuracy even for very steep and
overhanging interfaces. A computationally less expensive choice is to distribute the
points evenly in the horizontal direction, which is appropriate for broad interface
profiles.

In addition to equations (2.6), the pressure derived from the complex velocities q1

and q2 must be continuous at the interface. As a last equation, any physical quantity
describing the solitary wave must be set first as a parameter from the outset, e.g.
the wave amplitude, the wave speed or the volume. The latter parameter is the most
convenient when searching for very broad solutions, as these necessarily carry large
volumes (Rus̊as & Grue 2002).

The form of the discretized equations can be found in Grue et al. (1999). An
extension of the method to three-layer fluids is described in Rus̊as & Grue (2002) for
solitary waves and in Rus̊as (2000) for periodic waves.

2.3. Strongly nonlinear models

From the assumption that the thickness of at least one fluid layer is much smaller
than the characteristic wavelength, models can be derived from the fundamental Euler
equations without additional assumptions on the amplitude of the wave motion. For
simplicity, we impose the condition that the top fluid surface be confined by a rigid
lid. A free surface can be included without any conceptual difficulty. However, scaling
considerations and the experiments show that free-surface activity is quite small with
respect to that of the interface, and hence we will neglect the upper free-surface
displacement consistently with our level of approximation.

2.3.1. The strongly nonlinear model for shallow configuration

When the wavelength is long compared to the total fluid depth, an asymptotic
expansion in the small parameter ε = λ/h1 can be carried out, resulting in a (local)
set of equations that couple interface location to the depth-averaged velocities in
the layers (Choi & Camassa 1999). This system in dimensional form for the four
unknowns (ζ , u1, u2, P ) is

η1t + (η1u1)x = 0, η1 = h1 − ζ, (2.8)

η2t + (η2u2)x = 0, η2 = h2 + ζ, (2.9)

u1t + u1u1x + gζx = −Px

ρ1

+
1

η1

(
1
3
η1

3 G1

)
x
, (2.10)

u2t + u2u2x + gζx = −Px

ρ2

+
1

η2

(
1
3
η2

3 G2

)
x
, (2.11)

with Gi , i =1, 2, given by

ui(x, t) =
1

ηi

∫
[ηi ]

ui(x, z, t) dz, Gi(x, t) = uixt + uiuixx − (uix)
2 = −

(
Di

2ζ
)

ηi

. (2.12)

Here Di ≡ ∂t + ui∂x , and
∫

[ηi ]
denotes

∫ h1

ζ
or

∫ ζ

−h2
according to whether i =1 or 2,

respectively. The two kinematic equations, (2.8) and (2.9), are exact while the dynamic
equations, (2.10) and (2.11), have an error of O(ε4). These four equations can be
reduced to just two for two unknowns, ζ and (say) u1, by eliminating u2 and P via
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the exact relation

u2 = −η1

η2

u1;

however, the resulting expression is somewhat less compact than that of system (2.10)
and (2.11).

System (2.10) and (2.11) can be viewed as the extension to multiple layers of the
equations introduced by Green & Naghdi (1976) for one homogeneous fluid layer
with a constant-pressure free surface, and hence the set of equations (2.9) and (2.11)
is often referred to as the Green–Naghdi (GN) system in the literature. In fact, the
same system for a single-fluid layer with one horizontal dimension was derived earlier
by Su & Gardner (1969) following a long-wave asymptotic approach similar to ours,
while the original GN system was the outcome of an a priori ansatz on the structure
of the velocity field, which is only approximately satisfied. Solitary wave solutions
of system (2.8)–(2.11) can be determined in closed form by the nonlinear ordinary
differential equation for travelling waves, ζ (x − ct) ≡ ζ (X) (Miyata 1985).

Depending on the parameters of the set-up, solitary waves can be either of elevation
or depression, moving with speed c related to its (signed) amplitude a by

c2

c0
2

=
(h1 − a)(h2 + a)

h1h2 −
(
c0

2/g
)
a
, (2.13)

where c0 is the linear long wave speed defined by

c0
2 =

gh1h2(ρ2 − ρ1)

ρ1h2 + ρ2h1

The amplitude is limited by a maximum interface displacement given by, respectively,

am =
h1 − h2

√
ρ1/ρ2

1 +
√

ρ1/ρ2

, cm
2 = g(h1 + h2)

1 −
√

ρ1/ρ2

1 +
√

ρ1/ρ2

. (2.14)

This maximum amplitude wave is, in fact, a degenerate form of a solitary wave, which
actually assumes the form of a front.

2.3.2. Leading-order horizontal velocity shear dependence on z

An approximate relation between layer-averaged velocities u1 and u2 and local
velocities u1(x, z, t) and u2(x, z, t) can also be provided from the strongly nonlinear
model for every height z in layers 1 and 2, respectively. These expressions for local
velocities are useful for comparisons with the experimental results, which are obtained
through particle imaging velocimetry (PIV) in the shallow-water configuration. We
have

u2(x, z, t) = u2(x, t) +

(
(η2(x, t))2

6
− (z + h2)

2

2

)
∂2

x u2(x, t), (2.15)

with −h2 < z < ζ for the lower fluid. This expression is approximate, with the
correction being of order O(ε4) in non-dimensional notation. For travelling-wave
solutions of the strongly nonlinear system with speed c, the averaged velocity and
layer thickness are related by the exact expression

u2(X) = c

(
1 − h2

η2(X)

)
,

with X = x − ct , so that equation (2.15) becomes in this case

u2(X, z) = c

[
1 − h2

η2

+

(
η2

2

6
− (z + h2)

2

2

)(
h2η2

′′

η2
2

− 2h2(η2
′)2

η2
3

)]
, (2.16)
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where η′
2 ≡ η2X and η′′

2 ≡ η2XX . By using this expression, it follows, for example, that
for a solitary wave of depression moving to the right (c > 0) the lower fluid velocity
varies from, say, a minimum for waves of depression

u2|z=ζ = c

(
1 − h2

η2

− 1
3
h2η

′′
2

)

attained at the interface, to a maximum of

u2|z=−h2
= c

(
1 − h2

η2

+ 1
6
h2η

′′
2

)

near the location X =Xm of maximum displacement of the wave, where η′′
2 ≡ η2XX > 0

and η′
2 ≡ η2X = 0. Notice that in approaching the maximum amplitude wave as a → am,

η′′
2 → 0 at the location of maximum displacement, since the solitary waves become

progressively ‘flatter’ in this limit. Hence, the z-correction to the fluid velocity
becomes more and more negligible as a → am and the velocity profile tends to
become progressively ‘straighter’ to coincide with its layer-averaged expression at the
maximum.

The expression analogous to (2.16) for the upper fluid layer is

u1(X, z) = c

[
1 − h1

η1

+

(
η1

2

6
− (h1 − z)2

2

)(
h1η1

′′

η1
2

− 2h1(η1
′)2

η1
3

)]
, (2.17)

with the velocity being largest at the interface near the maximum displacement
location X = Xm,

u1|z=ζ = c

(
1 − h1

η1

− 1
3
h1η

′′
1

)
.

2.3.3. The strongly nonlinear model for the deep configuration

Our strongly nonlinear model in a two-layer system with the upper layer being thin
and the lower layer being deep is (Choi & Camassa 1999)

ζt − [(h1 − ζ )u1]x = 0, (2.18)

u1t + u1u1x + g

(
ρ2

ρ1

− 1

)
ζx =

(
ρ2

ρ1

)
T[ζtt ] (2.19)

= T[(h1 − ζ )ū1]xt ,

where the non-local operator T is defined as

T[f ] =
1

2h2

−
∫ ∞

−∞
f (x ′) coth

[
π

2h2

(x ′ − x)

]
dx ′. (2.20)

The first equation is exact and expresses the conservation of mass for the upper layer,
while the second momentum equation for the upper layer has an error of O(ε2). The
interface is mainly excited by the fluid motion of the upper layer and the effect of
the less active deep lower layer appears only as the dispersive term in the right-hand
side of (2.19) through the continuity of pressure. When compared with the theory of
shallow configuration, it can be seen that the leading-order dispersive effects from the
upper layer appear at the next order O(ε2). Since the upper layer is assumed to be
dynamically important for the model given by (2.18)–(2.19), the model should not be
used for the case of ρ1/ρ2 → 0, for which the model simply yields the linear evolution
of surface waves in a single layer of finite depth h2.

In the limit of infinitely deep lower fluid (h2 → ∞), the operator T becomes the
Hilbert transform. The case of the thin lower layer and deep upper layer is easily
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accommodated by relabelling of the dependent variables and appropriate sign changes
of gravity and polarity. In order to find solitary-wave solutions for ζ (x − ct) ≡ ζ (X),
the system of equations (2.18)–(2.19) can be reduced to an integro-differential equation
which can be solved iteratively by using Newton–Raphson iteration combined with a
pseudo-spectral method based on the fast Fourier transform (FFT). The number of
modes (N) is typically chosen as N = 27 for the computations in this work.

3. Shallow configuration
Next, we concentrate on the shallow configuration. In order to minimize clutter in

the various plots, we carry out separate comparisons of similar data from models
and experiments. Thus, because the Euler system is expected to be the model closest
to reality (if viscous effects can be assumed to be small), and the strongly nonlinear
model derives directly from Euler’s with the single assumption of long-wave dynamics,
we compare results from the Euler and the strongly nonlinear systems first.

We then compare several results from the strongly nonlinear model directly with
experimental data by Grue et al. (1999). These experiments were carried out with
miscible fluids, fresh water and brine. In contrast with the experiments for the
deep configuration, where stratification is achieved with immiscible fluids (cf. § 4),
the density difference between the fluids is thus limited by salt saturation and
hence it is relatively small for the shallow configuration, with the sharpness of the
interface limited by diffusivity. On the other hand, by achieving stratification with salt
concentration, un-modelled effects from surface tension and viscosity differences are
avoided for shallow-configuration data. Moreover, as illustrated below, the shallow-
and deep-configuration experiments differ in their relative scales, with the deep
configuration tank being about a quarter of the length and more than an order of
magnitude smaller in cross-section. All of these differences conspire to test further the
robustness of the various theoretical models.

3.1. Strongly nonlinear model vs. Euler

Throughout the tests in this section we use the following parameters: h1 = 15 cm,
h2 = 62 cm, ρ1 = 0.999 g cm−3 and ρ2 = 1.022 g cm−3, or, by defining H = h1 +h2,
equivalently h2/H = 0.8 (h1/h2 = 15/62 = 0.24), and ρ1/ρ2 = 0.977. These correspond
to that of the miscible fluids in the experiments by Grue et al. (1999).

We begin with the most direct comparison, that of wave profiles from the numerical
computation of Euler vs. the analytic expression from the strongly nonlinear model.
As the amplitude is varied progressively from small values, where weakly nonlinear
theories such as KdV can be expected to be valid, the model is tested more as the
amplitude values approach the maximum for the given configuration. As can be seen
from figure 2, solitary-wave solutions of the strongly nonlinear model are quite close
to Euler’s throughout the range of amplitudes shown. The solid curves are obtained
via the numerical integration of the Euler system while the (long) dashed curves are
provided by the analytical solution of the strongly nonlinear system. Not unexpectedly
perhaps, the largest discrepancies occur for waves in the mid-amplitude range, here
between |a|/h1 
 0.3 and |a|/h1 
 0.7, where the effective wavelength is shortest and
so a long-wave theory such as the strongly nonlinear model can be expected to fare
the worst.

Next, we look at the variation of effective wavelength λI /h1 and wave velocity
c/c0 with amplitude a/h1, where λI is the integral wavelength introduced by Koop &
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Figure 2. Solitary-wave profiles at increasing maximum displacement, for the case of
miscible fluids with ρ1/ρ2 = 0.999/1.022 = 0.977, h2/H =0.8 (h1/h2 = 15/62 =0.24). Waves
of depression are moving from left to right in this configuration and plot. Solid line:
Euler computation. Dashed line: strongly nonlinear model solution. (a) |a|/h1 = 0.22,
(b) |a|/h1 = 0.36, (c) |a|/h1 = 0.65, (d) |a|/h1 = 0.91 (e) |a|/h1 = 1.23, (f ) |a|/h1 = 1.51. The
maximum-amplitude wave for these parameters is |am|/h1 = 1.55.

Butler (1981),

λI =
1

a

∫ ∞

Xm

ζ (X) dX. (3.1)

Once again, as demonstrated by figure 3, the agreement between Euler and the
strongly nonlinear model is remarkable, with the largest discrepancy occurring in the
mid-amplitude range. Notice that both wavelength and velocity plots terminate at the
maximum amplitude am, whose value (2.14) is shared by both the Euler system and
its strongly nonlinear model.

As our final comparison, we look at the variation of fluid velocity with depth.
Expressions (2.16) and (2.17) allow reconstruction of the fluid velocity at height
z from the knowledge of averaged velocity in each fluid layer. Figure 4 shows a
comparison between the horizontal velocity profiles resulting from the numerical
integration of the Euler equations and those from the strongly nonlinear theory (2.16)
and (2.17) evaluated at X = Xm. Once again, the figure shows that, to the accuracy
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Figure 3. (a) Effective wavelength vs. amplitude. (b) Solitary wave speed vs. amplitude.
Solid: Euler. Dashed: strongly nonlinear model. Parameters for this comparison: h1 = 15 cm,
h2 = 62 cm, ρ1 = 0.999 g cm−3 and ρ2 = 1.022 g cm−3.
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Figure 4. Velocity profiles um(z)/c0 at the maximum interface displacement, for three solitary
waves of amplitude |a|/h1 = 0.36, |a|/h1 = 0.65, and |a|/h1 = 1.23, respectively, with miscible
experiment parameters ρ1/ρ2 = 0.999/1.022, h2/H = 0.8 (h1/h2 = 15/62 = 0.24). The horizontal
lines are located at the maximum interface displacement, and profiles above (below) correspond
to horizontal fluid velocity u1(Xm, z) (u2(Xm, z)) of the upper (lower) fluid. The solid curves are
produced by numerical integration of the Euler equations, the dashed curves (barely discernible
being so close to the Euler theory) are the strongly nonlinear expressions (2.16) and (2.17).

of the graphics, the Euler solutions and the strongly nonlinear model are equivalent.
Again, the trend for better agreement as the largest-amplitude wave is approached
can be noticed in the figure.

3.2. Strongly nonlinear model vs. experiments

We now focus on testing the performance of the strongly nonlinear model with
respect to experimental data pertaining to the shallow-water configuration. All of the
data reported in this section had been collected in the experimental investigations by
Grue et al. (1999), and Sveen et al. (2002), although some of the data have been
re-processed here for the present comparison. Notice that the wave profiles are
reconstructed by converting the time record of interface displacement at fixed location
along the wave tank into spatial coordinates via the measured wave speed, x = ct .
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Figure 5. Similar to figure 2, but with experimental data collected by Grue et al. (1999), instead
of Euler computations. Miscible fluid case, with ρ1/ρ2 = 0.999/1.022 =0.977, h2/H = 0.8
(h1/h2 = 15/62 = 0.24). Measured interface displacement from experiment (symbols) and
strongly nonlinear model solution (dashes lines), for (a) |a|/h1 = 0.22, (b) |a|/h1 = 0.36,
(c) |a|/h1 = 0.62, (d) |a|/h1 = 0.91 (e) |a|/h1 = 1.23, (f ) |a|/h1 = 1.51. Notice the data in
the back of the wave in (f ), indicating instability setting in near the maximum displacement
of interface for waves close to the maximum amplitude |a|/h1 = 1.55.

Figure 5 presents experimental data for wave profiles together with those from
the strongly nonlinear theory. The wave profiles are computed from the solution
of the travelling-wave equation at several different amplitudes using the measured
parameters of the experiment. These amplitudes and parameters correspond to those
used in figure 2 for the Euler and strongly nonlinear model wave profiles, and
comparing with this figure it can be seen that, from the viewpoint of these experimental
data, the Euler and strongly nonlinear model solutions are indistinguishable.

The data in figure 5(f ) show the effects of breaking in the back of the wave,
whose measured amplitude (|a|/h1 = 1.51) is close to the maximum amplitude
(|am|/h1 = 1.55) for this set-up. As can be expected from instabilities of shear flows,
the breaking occurs near the wave crest, where the velocity jump across the interface
is the largest. The instabilities then destroy the smoothness of the interface in the
wave’s wake. Notice, however, that the front of the wave remains smooth and in good
agreement with the theory.
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Figure 6. Strongly nonlinear model vs. experimental data: speed and effective wavelength as
in figure 3. Miscible fluid case, with ρ1/ρ2 = 0.999/1.022 =0.977, h2/H = 0.8 (h1/h2 = 15/62).
Experimental data (symbols) collected by Grue et al. (1999), and strongly nonlinear model
solution (dashed lines).

Next, the experimental data for variation of effective wavelength and wave speed
with amplitude are compared with the corresponding strongly nonlinear model curves.
Measurements of effective wavelength are performed using the measured waveforms
shown in figure 5. We note that because the recording techniques applied, the interface
measurements are truncated at the wings of the waves. This is because several
video cameras were used to record images to one video recorder, one at a time.
Because of this truncation, the measured effective wavelengths should be expected
to be smaller than the theoretically predicted wavelengths. The difference between
the experimentally obtained and the theoretically predicted wavelengths varies from
about 24 % in figure 5(a) to about 4 % in figure 5(f ). As we can see in figure 6,
the agreement between the data and the model is reasonable. Discrepancies seem
to occur mostly at the lower and largest amplitudes. Although we do not have a
clear explanation for this discrepancy, it seems natural to think that wave breaking
near the maximum amplitude should play a role in affecting the wave speed, whereas
viscosity could be playing a more prominent role for low amplitudes, thereby making
any Euler-based model less accurate.

Figure 7 provides a comparison between the wave-induced horizontal velocity shear
profiles computed from the model (2.16) and (2.17) and the data collected via PIV
measurements. The agreement is again satisfactory, even for a wave displacement as
large as |a|/h1 = 1.23. Small discrepancies are not easily attributed to any specific
effect, although a departure from the idealization of two layers can be expected to
play a role. Certainly, the good agreement between Euler’s and the model’s results
displayed in figure 4 points to effects other than the approximations used in the
derivation of the model from the parent Euler system.

4. Deep configuration
In this section, we consider internal waves for the deep configuration, for which the

thickness of one fluid layer is much larger than that of the other, while being
comparable to or greater than the characteristic wavelength. We first compare
numerical solutions of the model (2.18)–(2.19) with those obtained from the Euler
equations. We then compare experimental results by Michallet & Barthélemy (1998)
with those from the strongly nonlinear model. The wave flume used in these
experiments is approximately 3 m long and has a 15 cm × 10 cm cross-section. Thus,
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Figure 7. Analogue of figure 4, model vs. experiment: velocity profiles um(z)/c0 at the
maximum interface displacement, for two solitary waves of amplitude |a|/h1 = 0.36, and
|a|/h1 = 1.23, respectively, vs. PIV measurements with the shallow configuration miscible set-up,
ρ1/ρ2 = 0.999/1.022, h2/H = 0.8 (h1/h2 = 15/62 =0.24). The horizontal lines are located at the
maximum interface displacement, and profiles above (below) correspond to horizontal fluid
velocity u1(Xm, z) (u2(Xm, z)) of the upper (lower) fluid. The dashed curves are the strongly
nonlinear expressions (2.16) and (2.17), the symbols are the horizontal velocity measurements
from the experiment by Grue et al. (1999).

the scale of the deep-configuration experiment is much smaller than that of the shallow
regime, where the channel had dimensions 12.3 m with cross-section 0.5 m × 1 m. The
two fluids chosen are immiscible liquids having different specific gravities, respectively,
petrol product ‘Exxsol D60’ (density ρ0 = 0.78 kg l−1, viscosity ν = 1.64 m2 s−1) and
water (ρ = 1 kg l−1). Immiscible fluid systems are convenient to use: no mixing occurs
at the interface, which is thus always well defined. On the other hand, unlike the
case of brine and fresh water, physical properties other than density variations, such
as viscosity mismatch and surface tension, may play a role. Also, we remark that
fluid velocity measurements are much more delicate in this situation than in the
shallow-onfiguration case above. This is due in part to the difficulty of seeding both
fluids with particles that are locally neutrally buoyant. This is one of the reason why
PIV data are not reported for the experiments in the deep-configuration case.

4.1. Strongly nonlinear model vs. Euler

For the comparison between model and Euler solutions, we choose two depth ratios,
h1/h2 = 1/24, or equivalently h2/H = 0.96 and h1/h2 = 1/99 (or h2/H = 0.99). The
first ratio is the one actually achieved in the experimental results which we use later.
The extent to which the lower layer can be considered deep in these two cases depends
on the typical wavelength and is not clear a priori; the comparison will provide an
indication of which regime can be considered as falling within the asymptotic theory
for the strongly nonlinear model.

As shown in figure 8, the deep analogue of figure 2 for the shallow configuration,
the solitary-wave solutions of the model are very close to the Euler solutions for
small values of wave amplitude, but, as the wave amplitude increases, the comparison
becomes quickly less favourable. A similar observation can also be made for the wave
speed and the effective wavelength from figure 9. Notice that the effective wavelength
of the Euler solutions increases with wave amplitude much more rapidly than that
of our solutions of the asymptotic model. This shows that, for this depth ratio, the
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Figure 8. Solitary-wave profiles at increasing maximum displacement, for the case of
immiscible fluids with ρ1/ρ2 = 0.78, h2/H = 0.96 (h1/h2 = 0.54/12.94 
 1/24). Solid line: Euler
computation. Dashed line: strongly nonlinear model. (a) |a|/h1 = 0.4834, (b) |a|/h1 = 0.8143,
(c) |a|/h1 = 1.1797, (d) |a|/h1 = 1.7955, (e) |a|/h1 = 2.1353, (f ) |a|/h1 = 2.681.
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Figure 10. Same as figure 9 but for ‘deeper’ aspect ratio h2/H = 0.99 (h1/h2 = 1/99).
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Figure 11. Velocity profiles um(z)/c0 at the maximum interface displacement for the deep con-
figuration of h2/H = 0.96 with immiscible fluids ρ1/ρ2 = 0.78. The horizontal lines are located
at the maximum interface displacement, and profiles above (below) correspond to horizontal
fluid velocity u1(Xm, z) (u2(Xm, z)) of the upper (lower) fluid. The solid curves are produced by
numerical integration of the Euler equations, while the dashed curves are u1(Xm, z) = u1(Xm)
for the upper layer and u2(Xm, z) = φ2X(Xm, z) for the lower layer, where φ2 is the velocity
potential satisfying the Laplace equation with φ2z(X, z) = −cζX(X). Velocity profiles for three
solitary waves of amplitude |a|/h1 = 0.48, |a|/h1 = 0.81, and |a|/h1 = 1.17, respectively.

effective wavelength is larger than the thickness of the (deep) lower layer for large-
amplitude solitary waves, so that these waves are too wide for the deep-configuration
asymptotic assumptions to be valid.

In figure 11, we consider the variation of fluid velocity with depth. Notice that
the derivation of the model for the deep configuration uses the leading-order
approximation to the velocity field, by which the depth variation of velocity for the
shallow upper layer is neglected, while the linear theory is used for the deep lower-
layer. As the wave amplitude increases, we can expect that the nonlinear dispersive
effects of the thin upper layer become more important, thereby making comparison
with the Euler solutions worse. On the other hand, incorporating these additional
dispersive effects, while straightforward for the upper layer, increases substantially
the complexity of the lower-layer model, and, as we shall see, it is not clear to what
extent the extra complexity justifies the increase in the range of validity of the model.

Figures 10 and 12, where the depth of the lower layer has been increased to a
depth ratio of h2/H = 0.99, show that, even for this slight increase of depth ratio
with respect to that of h2/H = 0.96, the agreement between solutions of the Euler



16 R. Camassa, W. Choi, H. Michallet, P.-O. Rus̊as and J. K. Sveen

–0.2 0 0.2 0.4 0.80.6

–10

–8

–6

–4

–2

0

um(z)/c0

z—
h1

Figure 12. Same as previous figure, but with h2/H = 0.99. Velocity profiles for two solitary
waves of amplitude |a|/h1 = 0.5 and |a|/h1 = 1.2, respectively.

–40–60 –20 0 20 40 60 –40 –20 0 20 40

–2

–1

0

ζ
—
h1

ζ
—
h2

0.4

0.2

0

0.6

0.8

1.0

1.2 (b)(a)

t(g/h1)1/2 t(g/h2)1/2

Figure 13. Wave profiles for deep configuration with ρ1/ρ2 = 0.78: experimental data
(dots) collected in Michallet & Barthélemy (1998), strongly nonlinear theory (solid line),
weakly nonlinear ILW theory (dashed line). (a) h2/H = 0.96 (h1/h2 = 0.54/12.94 = 1/24),
(b) h2/H = 0.09 (h1/h2 = 9.32/0.92 = 10.13).

equations and those of the asymptotic model improves noticeably. Thus, we can
conclude that the validity of the model for the deep configuration is somewhat limited
to intermediate wave amplitudes and the model for the deep configuration should be
used with caution (as expected) as soon as the transition between deep and shallow
configurations, as measured by closeness to the maximum-amplitude wave for a given
depth, is approached with increasing amplitudes. However, it must be remarked that
stability issues might dominate the dynamics of large-amplitudes waves, so that this
intermediate regime could very well cover most of what is observable in practice.

4.2. Strongly nonlinear model vs. experiments

For the comparison of numerical solutions of the asymptotic model with experimental
data, we chose two different depth ratios, h2/H =0.96 (h1/h2 = 1/24) and h2/H = 0.09
(h1/h2 = 10.13). The first depth ratio is for the case of the thin upper and deep lower
layers for which the governing equations are given by (2.18)–(2.19), while the second
is for the opposite case of a thicker upper layer. As shown in figure 13, the numerical
solitary-wave solutions of the model show good agreement with the experimental data
(except at the trailing tails in the experiments). The fact that the model predicts slightly
narrower wave profiles than the experiments is consistent with the observation made
in the comparison between the Euler equations and the model. We can see from these



Validity of strongly nonlinear models 17

–8–10 –6 –4 –2 0 1 2 3 4 5 6

0.20

0.15

0.10

0.05

0

ω

(g/h1)1/2
ω

(g/h2)1/2

0.10

0.05

0

0.15

0.20

0.25
(b)(a)

a/h1 a/h2

–––––– ––––––

Figure 14. Effect wavelength (wave frequency) vs. amplitude for deep-configuration with
ρ1/ρ2 = 0.78: experimental data (dots) collected in Michallet & Barthélemy (1998),
deep-configuration theory (solid line), weakly nonlinear ILW theory (− − −), strongly
nonlinear shallow-configuration theory (— - —), weakly nonlinear shallow-configuration
KdV theory (— - - —). (a) h2/H =0.96 (h1/h2 = 0.54/12.94 = 1/24), (b) h2/H = 0.09
(h1/h2 = 9.32/0.92 = 10.13).
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Figure 15. Wave speed vs. amplitude for the deep configuration: experimental data
(dots) collected in Michallet & Barthélemy (1998), strongly nonlinear theory (solid line),
weakly nonlinear ILW theory (dashed line). (a) h2/H = 0.96 (h1/h2 = 0.54/12.94 =1/24),
(b) h2/H = 0.09 (h1/h2 = 9.32/0.92 = 10.13).

comparisons that weakly nonlinear theories are completely ineffective for describing
solitary waves of these wave amplitudes, and the higher-order nonlinearity in the
asymptotic model is essential in describing nonlinear internal waves.

We also compare the model’s solutions with experimental data of the characteristic
wave frequency and wave speed for varying wave amplitude. The wave frequency is
defined (Michallet & Barthélemy 1998) as

ω = 2 a

/∫ ∞

−∞
ζ (x, t) dt . (4.1)

As shown in figure 14, although the asymptotic theory slightly overestimates the
wave frequency over the range of wave amplitudes considered, it improves the match
with experimental data with respect to the weakly nonlinear theory (ILW). Notice
that the strongly nonlinear theory for the shallow configuration is not applicable
to these depth ratios, but the experimental data show a tendency to approach the
shallow-configuration theory for larger values of wave amplitude. The wave speed
for the deep-configuration model increases at a slower rate than that of the weakly
nonlinear model, as can be seen in figure 15, and shows good agreement with the
experimental data.
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5. The transition from shallow to deep configuration
The strongly nonlinear asymptotic models for the Euler equations that we have

introduced and tested rely on the assumption of either shallow or deep fluid layers. In
order to explore the domain of validity of these models, we examine how their solitary-
wave solutions behave with respect to depth ratio by comparison with numerical
solutions of the full Euler system.

In principle, by progressively increasing one of the two fluid layers, we would
expect the contrast between solitary-wave solutions of the Euler system and those
of the strongly nonlinear model for the shallow configuration to increase, while the
agreement with corresponding solutions of the deep configuration model ought to
improve. However, notice that for any finite fluid layers, there still exists a wave of
maximum amplitude. In fact, while it is doubtful (but not strictly proved) that the
deep-configuration strongly nonlinear model supports a maximum-amplitude wave,
both the strongly nonlinear model and Euler systems have limiting wave solutions
of similar front-like form occurring at exactly the same amplitude. Being a front, the
effective wavelength tends to infinity as the maximum amplitude is approached, so
that the wave can again be viewed as long with respect to both fluid depths. In this
limit, it can be expected that the solutions of the shallow-configuration model recover
good agreement with the Euler ones. Of course, a large depth ratio increases the
size of the velocity jump at the interface, and so waves approaching the maximum
amplitude would presumably be unobservable when one fluid layer is much larger
than the other, owing to the shear instabilities that would develop in this case. For a
fixed (large) depth ratio, we therefore expect that the deep-configuration model works
only for a finite range of wave amplitudes, while the domain of validity for the deep
configuration model becomes wider as the depth ratio increases.

We compare the Euler solution with those from the shallow- and deep-configuration
models in figure 16, which shows the (right-half) wave profiles as the amplitude
increases for three depth ratios: h2/H = 0.9, h2/H = 0.96 and h2/H =0.99. We present
only the data for the lowest-amplitude wave from the strongly nonlinear deep model
(2.18)–(2.19) (dot-dash curves) for each case of depth ratio, as this model cannot work
well for higher amplitudes, as mentioned before. For a fixed depth ratio, the theory
for the deep configuration yields a better agreement with the Euler equations than
the shallow-configuration model when waves are small (but still quite large compared
with the undisturbed upper-layer thickness as in case (b) and (c) of the figure, where
the amplitude is more than twice and ten times h1, respectively). The opposite is true
for large-amplitude waves. Notice that the major deviations of theory of the shallow
configuration from the Euler computation for these large depth ratios occur in the
wave’s wings, which are noticeably smaller for the Euler wave profiles. This can also
be seen by the plots of effective wavelength vs. amplitude depicted in figure 17. By
observing the Euler curves in figure, it is tempting to conjecture that the λ(a) relations
parameterized by h2/H admit an envelope that in the limit h2/H → 1 approaches a
straight line (of slope 
 2 for this particular density ratio). In contrast, the curves
in figure 17 suggest that their envelope for solitary waves of the strongly nonlinear
model is far from linear, and as h2/H → 1, the shallow-configuration waves carry a
much larger volume than their Euler counterparts.

Next, in order to further test the performance of the models with respect to the
Euler system, we compare effective wavelength and wave speed vs. increasing depth
ratio h2/H (the counterpart of figure 17), for solitary waves at fixed amplitudes that
can be considered large with respect to the upper-layer undisturbed thickness h1.
Of course, solitary waves of a certain amplitude a can be supported only for depth
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Figure 16. Plot of wave profiles at scaled amplitudes a varying in increments of 25 % of
limiting amplitude am, with the largest waves being 0.99 am. The density ratio is that of
the immiscible fluid experiments, ρ1/ρ2 = 0.78. Solid curve: Euler. Dashed curve: strongly
nonlinear model for shallow configuration (2.8)–(2.11). Dot-dashed: deep configuration model
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the interface is shown here.
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Figure 17. Effective wavelength vs. amplitude curves for increasing values of the depth ratio
parameter h2/H . (a) Euler computation. (b) Strongly nonlinear model for shallow configuration
(2.8)–(2.11). Density ratio of the immiscible fluid experiments, ρ1/ρ2 = 0.78. Three curves are
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retain some detail in the horizontal range of amplitudes for the smaller depth ratios.



20 R. Camassa, W. Choi, H. Michallet, P.-O. Rus̊as and J. K. Sveen

0.80 0.85 0.90 0.95 1.00

6

8

10

12

14

16

0.85 0.90 0.95 100 0.85 0.90 0.95 100

6

10

14

18

0.80 0.85 0.90 0.95 1.00

1.2

1.3

1.4

1.4

1.5

1.6

1.7

λ––|a|

λ––|a|

h2/H h2/H

(a)

(c)

(b)

(d )

c–c0

c–c0

Figure 18. Curves of effective wavelength, (a) and (c), and velocity, (b) and (d), vs. depth
ratio parameter h2/H at fixed-amplitude values. Solid curve: Euler computation; long-dash:
strongly nonlinear model for shallow configuration (2.8)–(2.11); short-dash: strongly nonlinear
model for deep configuration (2.18)–(2.19). Density ratio of the immiscible fluid experiments,
ρ1/ρ2 = 0.78. Cases (a) and (b) correspond to fixed amplitude a/h1 = −1, while for cases
(c) and (d) the amplitude is fixed to a/h1 = −2. Waves of fixed amplitude exist only for
thickness ratios larger than a minimum value fixed by the amplitude (cf. (2.14)); the maximum
thickness ratio for all cases here is h2/H = 0.999.

ratios larger than the value at which a = am, according to (2.14). Figure 18 shows the
result for the two amplitudes a/h1 = − 1 and a/h2 = − 2, with the density ratio of the
immiscible fluid experiment ρ1/ρ2 = 0.78. For these two amplitudes, it is evident that
the shallow-water configuration becomes inadequate at relatively large aspect ratios
h2/H 
 0.9, while the deep configuration model does well in qualitative predictions
such as slope and convexity with increasing aspect ratios past h2/H > 0.98, but suffers
somewhat in quantitative agreement, especially for the effective wavelength. It should
be noted, however, that these amplitudes correspond to rather strong nonlinear waves,
probably near the limits of what can be observed in experiments and in the field,
and the agreement improves with lower amplitudes, as the comparison between the
a/h1 = −2 and the a/h1 = −1 cases show.

6. Discussion
We have presented a comparison between experimental, analytical and numerical

results for internal waves in two-layer fluids, devoted to assess the applicability and
test the limitations of various levels of mathematical theories available for such
systems. Experimental results refer to both miscible and immiscible fluids, where
large-amplitude travelling waves comparable to the thickness of at least one of the
layers are generated in set-ups that strive to minimize effects assumed to be small
in the theory. The analytical results are obtained mainly from asymptotic models,
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which have been appropriately generalized so that they can support the highly
nonlinear regimes observed experimentally. The Euler equations arguably offer the
most comprehensive level of description of our physical set-ups, provided viscous (and
diffusive, for miscible fluids) effects can be considered negligible. However, extracting
information from the Euler system almost invariably requires numerical assistance,
which can become quite intensive when moving two-dimensional wave patterns and
long time scales are considered.

Several conclusions can be drawn from our investigation. First, as usual with
asymptotic theories which rely on small parameters, it is hard to determine a priori
how small is ‘small’. One way to assess this is by direct comparison with solutions
of the parent equation, and, in turn, with dedicated experimental results, as we have
now done. From this, we can see that the strongly nonlinear model for the shallow
configuration is fairly robust, in the sense that it does not require an overly small
long-wave parameter for a favourable comparison with the Euler theory, and it
performs well even for fairly skewed depth ratios, at least as far as our solitary wave
test is concerned. This remains true across all types of comparison that we have
used, from the basic waveform test to the horizontal fluid parcel velocity profiles vs.
depth. Moreover, for the shallow configuration, our measurements show that both the
asymptotic model and the fundamental Euler theory are within experimental accuracy.

In contrast to this robustness, the strongly nonlinear model for the deep
configuration is more fragile and must be used with some caution. With an aspect ratio
in which the thin layer is only a few per cent of the total depth, it is still possible to
detect finite-depth effects when comparing to the Euler results for the type of waves we
have considered. So, for instance, as the sequence of figures 8–10 shows, simply moving
from an aspect ratio h2/H = 0.96 (the one which is experimentally available) to the
slightly larger ratio of h2/H = 0.99 substantially improves the comparison between the
strongly nonlinear model and the Euler computations. Similarly, the transition study
of § 5 shows that a depth ratio h2/H =0.9 is certainly not sufficient to bring forth
deep-configuration effects, and while no longer viable for depth ratios h2/H � 0.96,
the strongly nonlinear theory for shallow configuration does manage to capture the
bulk features of large-amplitude waves when compared to the Euler computations.

All of our tests focused on solitary waves. By combining the nonlinearity and
dispersion of water-wave dynamics, this is an interesting class of solutions, and one
that arises in a variety of physical situations; however, it remains to be seen how
successfully the various models are in rendering (some of) the truly time-dependent
interface dynamics available to two- or multiple-fluid-layer systems, especially when
the homogeneous-layer assumption is only approximately satisfied. A comparison
with unsteady Euler solutions will be a first step in further establishing the validity of
the asymptotic models. By restricting to two spatial dimensions, Euler computations
can be carried out numerically for sufficiently long times and with sufficient accuracy.
In this respect, we remark here that both the strongly nonlinear model and the Euler
theory are affected by Kelvin–Helmholtz instability, owing to the velocity jump at the
interface (see figures 4, 11, and 12) and some form of regularization is necessary to
implement consistent numerical algorithms (Liska, Margolin & Wendroff 1995; Jo &
Choi 2002). For the case of immiscible fluids, such regularization is naturally provided
by surface tension, at least for the Euler theory, but for miscible fluids, regularizing
effects come from more complicated interfacial physics, such as diffused interfaces
and viscosity. Further modelling at both the Euler and asymptotic level are necessary
to isolate the regularizing physical mechanisms in this case, such as the inclusion of
a thin third layer with continuous density transition.
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Finally, we stress that the strongly nonlinear models for both configurations are
not limited to one horizontal dimension, as in the present study, and these models can
easily be written (Choi & Camassa 1996) for two horizontal dimensions. Moreover,
extension of the present two-layer case to that of multiple layers is straightforward
(Choi 2000), as is the inclusion of bottom topographic forcing, provided it varies
gently enough so as to be compatible with the long-wavelength assumption. In fact,
we think that the main advantage afforded by the models lies in the two-(horizontal)
dimensional setting, whereby all dynamic terms are explicitly included, as opposed
to the limitations imposed by the implicit constraint on the velocity owing to the
pressure/Poisson-equation component in Euler computations. As is well known, this
aspect of the Euler system can make highly nonlinear realistic regimes very expensive
in a direct numerical approach.
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