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Abstract

We consider strongly nonlinear internal gravity
waves in a multilayer fluid and propose a math-
ematical model to describe the time evolution of
large amplitude internal waves. Model equations
follow from the original Euler equations under
the sole assumption that the waves are long com-
pared to the undisturbed thickness of one of the
fluid layers. No small amplitude assumption is
made. Both analytic and numerical solutions of
the new model exhibit all essential features of
large amplitude internal waves, observed in the
ocean but not captured by the existing weakly
nonlinear models. Differences between large am-
plitude surface and internal solitary waves are ad-
dressed.

1 Introduction

Two fundamental physical mechanisms, nonlin-
earity and dispersion, play important roles in
the evolution of long internal gravity waves com-
monly observed in the ocean, more generally in
any stratified fluids. Under the assumption of
weakly nonlinear and weakly dispersive, the bal-
ance between these two effects leads to a re-
markable phenomenon of solitons, very localized
disturbances propagating without any change in
form. However there have been a number of
observations of large amplitude internal waves
for which the weakly nonlinear assumption is far
from being realistic. For example, in the north-
western coastal area of the Unites States, Stan-
ton & Ostrovsky (1998) observed the train of
tidally-generated internal waves in the form of
solitary waves depressing the 7m deep pycnocline
up to 30m. Evidently the weakly nonlinear mod-
els like the Korteweg-de Vries (KdV) equation
commonly used in the community of geophysi-
cal fluid dynamics are completely irrelevant in
such cases and new models need to be devel-
oped. The theory to be desired is of course one

being able to account for full nonlinearity of the
problem but this simple idea has never been suc-
cessfully realized. Recently Choi and Camassa
(1996, 1999) have derived various new models for
strongly nonlinear dispersive waves in a simple
two-layer system, using a systematic asymptotic
expansion method for a natural small parame-
ter in the ocean, that is the aspect ratio between
vertical and horizontal length scales. Analytic
and numerical solutions of the new models de-
scribe strongly nonlinear phenomena which have
been observed but not been explained by using
any weakly nonlinear models. This indicates the
importance of strongly nonlinear aspects in the
internal wave propagation. An interesting point
to make is that the including strong nonlinear-
ity does not simply add new nonlinear terms but
change dispersive characters, from linear to non-
linear.

Despite of recent progress, the two-layer sys-
tem is often too simplified to be useful for prac-
tical applications. For instance, the two-layer
model has not only its limited despcription of
smoothly stratified ocean but also the lack of
higher-order baroclinic wave modes. Therefore
the theory needs be extended to the more general
situation relevant for real oceanic applications.
Here we will study a continuously stratified fluid
approximated by a stack ofseveral homogeneous
layers.

2 Governing Equations

For an inviscid and incompressible fluid of den-
sily pi, the velocity components in Cartesian
coordinates (ut,wt) and the pressure pt (i :
1,' . . , N) satisfy the continuity equation and the
Euler equations:

u i ,  *  w i "  0 ,  ( 1 )

u6 * uiu6* * wiui" -pi.r lpi ,  (2)

u 6 1  l u i w i * * w 6 w 4 "  - p t r / p t - 9 ,  ( 3 )



Figure 1: A multi-laYer sYstem

where g is the gravitational acceleration and sub-

scripts with respect to space and time represent

puriiul difierentiation. For a stable stratiflcation'

pi < pi+\ is assumed . The boundary condi-

iions at the upper and lower interfaces of the i-

th layer require the continuity of normal velocity

and pressure:

n i t + u c r l i r : w i ,  a t  2 : r 1 i @ ' t ) '  ( 4 )

\t+t1l uirli+lr : ui, at 2 : r1aa1(t't) ' (5)

pi = pi-r at 7 :  r1i(x' , t)  (6)

In  (4 ) - (6 ) ,  n t@, t )  (d  :  1 , ' ' '  ,  N)  i s  the  loca t ion

of ttr" tpp"t interface of the i-th layer given by

nr: et -'i n, , (7)
j= t

where h1 is the undisturbed thickness of the i-th

Iayer and (1(r,t) is the interfacial displacement'

TLe posit ion of the bottom, nv+t(n,t) can be

written as

N

?N+1  :  ( n+ r  -Dn i :  ( r+ r  -  h ,  ( 8 )
j = 1

where (1,,11(z,t) is the bottom topography and

h is the total dePth.

3 Nonlinear DisPersive Model

Under the assumption that the thickness of each

Iayer is much smaller than the characteristic

wavelength, we have the following scaling relation

betweerrzl arrd wi, from the continuity equation

( 1 ) ,
wt lu t  :  O(h i l  L )  :  O(e)  4< I ,  (9 )

where .L is a typical wavelength' For finite-

amplitude waves' we also assume that

u; lus :  OG;' lh):  O(1) '  (10)

where LIs is a characteristic speed chosen as [/g :

Gh)t|". Based on the scalings in (9)-(10), we

non-dimensionalize all physical variables as

n  :  L r * ,  z  :  h z * ,  1 :  ( L l U s ) t . ,  )
Ci: hei, pi:  biu&)pi, l  ( t l)
ui :  Uout, wi :  eUowi '  )

and assume that all variables with asterisks are

O(1)  in  e .
by integrating (i)-(2) across the i-th laver

?lt+r < z < rli) and imposing the boundary con-

ditions (4)-(6)' we obtain the layer-mean equa-

tions (Wu J.981):

u u +  ( H r t r ) , : 0 ,  H t : n t -  T r + t ,  ( 1 2 )

(Hfia)t + (ntun;),: -HIFG, (13)

where the layer-mean quantity / is defined as

and we have dropped the asterisks for simplic-

ity. The quantities ufi and p1r prevent closure

oi the .yste* of layer-mean equations (12)-(13)'

The following analysis will therefore focus on ex-

pressing these quantities in terms of 14 and ul to

close the sYstem.
The vertical momentum equation (3) for the

i-th layer can be written as

Pt, :  -L - " l*0, * u' iwir r wi 'wi"f '  (15)

Hence, we can seek an asymptotic expansion of

f :  (ua,wi,pt) in Powers of e2,

! ( r , z , t ) : 1 ( o )  a  e 2 7 $ )  * O t ' + ' '  ( 1 6 )

where /(-) :  O(1) for m :0, 1, '  '  "

Ilom (15)-(16), after imposing the pressure

continuity across the interface given by (6)' the

leading-order Pressrue Pr(o) is

p (o) :  -e -  r t )  + Pi@,t) ,  (17)

where P;(r,  t)  :  paa(x,r1l,J) is the pressure at

the upper surface of the ith layer' For i : 1'

since the upper boundary is free, we impose p1 :

Py(t, t)  at '  z :4r, instead of (6), where P1 is

! (n , t1 :  ;  I : : . , f  
( r ,z , t )dz,  (14)



the.'knowq,atpospheric pressure. By'substit;rting
(16)-(17) into (2), one obtains

u[o) :ulo)@,t) i f  urLo) :o 
,at 1:ou,

Notice that condition (18) is automatically sat-
isfied if we assume that the flow is initi{tlly'ino-
tational (Choi & Camassa 1996). From ({), *e
ca,n novv obtain the leading-order vertical'velodity
ut(o) tutt.*tot the kinematic boundary cbndition
(5) at the interface as

.[o) : -1uaf))Q - rto+r,) * D$1r+t, (19)

where D; stands for material derivative,

Dt: 0t t un(016, 
' 

(20)

Fbom (16) and (18), it can be easily shown that

Hru,-U: H;'E'idt + O(eA) , (2L)

so that the layer-mean horizontal mormentum
equation (13) fn dlmbnsionless form becomes

il**Etdu - -P;; + O(ea). (22)

At O(e2), from (15)-(16) and (19), the equa-
tion for pr(1) is

puLi) -L.ulo'+ui(o)ui(o) +wn@wn@ll

: aa@,t)(z - \e+i 'f ba(r,t) '  (23)

In equation (23), a; and bl are defined as
' 

a6(x,t) :-u;6 *fr;Ttir, - (6tn)' , (24)

ba(x,t) : -D;2rh+t, (25)

where we'have used E; : vo(o) + O(e2)' After
integrating (23) with respect to z and imqosing

the dyna,mic boundary condition in (6), we ob-
tain pa(1);

p'(L) : t"nl@ - nr+t)2 - (no - nn*r)"]
+ urlk - q+L).- (a - ru,)] . (zo)

Fbom'(lD'and (26), we can find ff i; ' , the
right-hand-si{g term of the horizontal moderr-
tum equatiohlp2-); and the $nat set cif equations
for the i-th, lay"g;,can,be fgund, in dimensional
rorm. as

uar+ (n6a); '  *J,, ' , : l ' l '  *r:  rt i-qi+t, e!T)
\  / Z  . , ,  , t , ,  

! . .  - .  |  . ,

a4* i la f r ,6* . f f f i i .1* to$*q/ , fy ,1r , , .  r , , ;
: 

i G,rl ", + t:.n?!:) ?.+,,!j"*n *.bn) qn*,, .
(28)

For l ( i ( fl, (27)-(28) determines the evolu-
tion of 2-l[-un]nowns, E4 and. q;, while Pa is given
by the following recursion formula obtained from
(17) and (26):

Pi+r : Pt, i pr (ono - Lon*o" 
- uor,n). (29)

These equations have been derived under the sole
assumption that the waves a,re long compa,red
wlth the'water depth and we'have imposed no
assumption on wave amplitude. The kinematic
equation (27) is exact, while the dyna,rnic equa-
ti6ns (28)-(29) have non-hidioStatic contribu-
tioirs coriect up to O(e2).

Even for rigidJid approximation ((r : 0), the
system :ot (27\-(28) is still tralid if Pr is regarded
as unknown pressure at the top bounda,ry.

4 Hydrostatic Approximation

When we neglect dispersive effects (say ai : bi:
0), we recover the hydrostatic equations for mul-
ti layer system (i : L,." , N):

H6+  (H tU) , : 0 ,  H t=qa - � r l i + r ,  ( 30 )

- l  /or tdu'41*Tilfra, 
+ SL \-r) 

H j, * grtt+t,
i=l r rt

= -Prr lh , (31)

where (29) has been used.

5 One-layer System

For the'.case of a honogeneous 'layer (1V - 1),
equations (27)-(28) reduce to the system of equa-
tions derived by Green & Naghdi (1976) by using
the director sheet theory. Without any topogra-
phy- at the bottom gnd exlernal pressure at the
&&ee surface (ez : h,: 0), equations (27)-(28)
possess the solitary wave solution given by

(r(x) : aseeh2(kx), X : n - ct, (32)

k 2 h ?  : , , = 3 o  . , .  4  : t ' *  ! .  ( g 3 )
4(h t  *a )^  g fu  :  h1 ' l

where a irnd c. a,re wave;a,mplitude and'speed,
r6sliectively.

For weakly nonlinear unidirectional waves of
a/h - O(ez), (27)-(28) can be r€drfced to the
KdV equation.for (1:

L  ,  3 ,  A 2

herr4 
(rr + fterfu, +' uJ,Cg,+: o. (34)
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seem to be generic in strongly nonlinear

6 Two-layer System

As shown in Choi & Camassa (1999), with rigid
lid approrimatio-n ((1 : 0),.the coupled system of
(27)-(28) for i : !;2 can be reduced, for traveling
waves at the inte:face, to

l l2x)- :

sCSlczbrHz+ pzTi - gbz- piHflz] 
,r^,, \ J o )

where -EI1 - ht - Cz and Hz: hz * (2. This pa.r-
ticula^r form of equation has been obtained ea,r-
lier by Miyata (1985) using conservation laws, for
steay flows.

When replacing (2 by wave amplitude a in (36),
the numerator,has to vanish and this gives wave
speed c in terms of wave amplitude o as

"' _ (n, - ")(hz + a) te.7\
& :  h r h " - @ / d " r  

( r ' l

where cs is the linear first baroclinic wave speed
given by

z shthz(n-  p)  ,d^\
c o ' : "  

- ; - ' : -  
; -  i J b ,

Prn2 + Pzu
For uni-directional weakly nonlinear waves of
alh2: o(e2), (27)L(28) for i : 1,2 can be fur-
ther simplified to the KdV equation for (2 as be-
fore:

ezt * qCzn * ctezez, I c2e2*x :0 , (39)

where

3co mhZ - pzh? //n\" t : -  
2  p th rh l r l n f i t r '  

( +u /

, co nh?hz + pzhth\ | t1\"2:  
6 ^h"- r  -h '  

(+r /

The solitary pa.ve Bo\ution of (39) is given by (32)
with

I t  A C t  C 1
lS' .: 86,,,. 

c = co * 
Va. 142)

Figures 4 and 5 clearly show that strongly non-
linea,r solitary waves are slower and broader than
wea,kly nonlinear waves of the same amplitude.
In fact Choi & Ca,rrassa (1999) have demon-
strated that the strongly nohlinear theory yields
excelle[t; 4greepgpt twith' available expeimental
data or numerical solutions of the Euler equa-
tions.

0.2

Figure 2: Wave speed (clt/gTi versus wave arn-
plitude (a/h1) curves for surface solitary waves:
-, strongly nonlinea,r theory given by (33);
- - -, weakly nonlinear (KdV) theory given by
(35).

0.8

0.6

r' ' 0 . 4

0.2

0
1 2 t . 0 5 6

Figure 3: Surface solitary wave solutions (-
-) given by (32) for af h1 :(0.2, 0.41 0.6, 0.8)
compa,red with KdV solitary waves (- - -) of the
same amplitude. Here we show only half of the
wave profile.

It is interesting to notice that the solita,ry wave
solution of the KdV equations has the sa,rre form
as that of the GN equations give by (32) with

, t , ,  3 a  c  .  a  / ^ p \K-n i :  
4hr '  f f i :  

t *  
zhr '  

( rD /

which is the srnall amplitude limit of (33).

As shown in figure 2, the solita,ry wave speed
from the strongly nonlinear theory increases with
wave amplitude at a much slower rate than that
from the KdV theory. In figure 3, one can see
that the strongly nonlinear solita,ry wave solu-
tion given by (32) is certainly wider than the
KdV soliton of the same amplitude. In $6, we
will make the simila.r observations for interfacial
solita"ry waves in a two-layer system and these
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Figure 4: Wave speed (c/c6) versus wave am-
plitude (af h2) atrves for internal solita,ry wave
(nlpz : 0.99, h1f h2: 5): - ,  strongly non-
linear theory given by (37); - - -, weakly nonlin-
ear (KdV) theory given by @2).

T,5

0.5

0
0
x

Figure 6: A front solution of (36) for maximum
wave amplitude given by (43) for p1f p2: 0.99
and fu f  h2 :5 .

which is often contributed to the effects of viscos-
ity. On the other hand, for internal waves, the
front-like solutions of (36) hold the conservation
law for energy.

7 Discussion

For small aspect ratio of the thickness of each
fluid layer to typical wavelength, we have derived
a strongly nonlinear model to describe the evolu-
tion of finite amplitude long internal waves in a
multi-layer system.

The limiting behaviours of highest waves are
completely different between surface and inter-
nal waves. As shown by Stokes (1880), surface
waves of maximum amplitude have a sharp peak
of 120o, which cannot be captured by the present
long wave theory. Therefore one can see that the
GN theory for long surface waves ceases to be
valid when the waves become too high. On the
other hand, as wave amplitude increases, inter-
nal solitary waves becomes broader and broader,
leading to internal bore. Therefore the long wave
theory for internal waves is expected to be valid
even for large wave amplitude. This explains why
the strongly nonlinear theory for internal waves
gives much better agreement with experimental
data or numerical solutions of the Euler equa-
tions (Choi & Camassa 1999) compared to that
for surface waves.

This work was supported by the U.S. Depart-
ment of Energy.
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