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ABSTRACT

A theoretical model is developed to study the evolution
of nonlinear surface waves interacting with slowly-varying
surface currents and bottom topography. The model is
then solved numerically using a pseudo-spectral method.
Our numerical solutions for the evolution of both periodic
standing waves and solitary waves for the case of uniform
water depth are validated with fully nonlinear numerical
solutions of the Euler equations. For a uniform surface
wave train interacting with a slowly varying surface cur-
rent, the local wave number and wave amplitude are com-
puted from our numerical solutions of the model and show
good agreement with those of the wave action model. It is
shown that the nonlinear model can be further generalized
to include the effect of slowly-varying bottom topography
of arbitrary amplitude.

1 INTRODUCTION

Computing the evolution of highly time-dependent, three-
dimensional, nonlinear surface wave fields accurately in
nonuniform ocean environments is one of the most chal-
lenging hydrodynamic problems. The energy transfer be-
tween different length scales is a complex physical process,
and the understanding of nonlinear wave-wave interaction
is still far from complete when surface waves are interact-
ing with nonuniform currents and bottom topography. In
this paper, a formulation is presented to incorporate wave-
current interaction and bottom topography effects into the
nonlinear wave prediction model, and the evolution of non-
linear surface gravity waves is studied numerically.

In the absence of surface currents and bottom topogra-
phy, the free surface elevation, ζ(x, t), and the free surface
velocity potential, Φ(x, t) ≡ φ(x, ζ, t), can be found from

the free surface boundary conditions written (Zakharov
1968) in the form of

∂ζ

∂t
+ ∇Φ·∇ζ =

(
1 + |∇ζ|2

)
W , (1)

∂Φ
∂t

+ 1
2 |∇Φ|2 + gζ = 1

2

(
1 + |∇ζ|2

)
W 2 , (2)

where x = (x, y) is the horizontal coordinates, g is the
gravitational acceleration, and W = ∂φ/∂z|z=ζ is the ver-
tical velocity evaluated at the free surface located at z = ζ.
Notice that equations (1)–(2) can be considered as nonlin-
ear evolution equations for ζ and Φ defined in the horizon-
tal plane, once the expression for W is found in terms of ζ
and Φ. An explicit expression for W was obtained first by
West et al. (1987) for infinitely deep water using asymp-
totic expansion for small wave steepness. After expanding
the free surface vertical velocity and the free surface veloc-
ity potential in Taylor series about the mean free surface,
West et al. (1987) obtained a closed set of explicit nonlin-
ear evolution equations. Dommermuth & Yue (1987) also
adopted a similar idea with solving the resulting bound-
ary value problems numerically at each order. This ap-
proach has been further extended to water of finite depth by
Matsuno (1992), Craig & Sulem (1993), and Choi (1995),
among others, with slightly different expansion methods.

Here, the original formulation of West et al. (1987) is
further generalized to include slowly-varying surface cur-
rents and bottom topography effects by assuming the length
scales of variation of surface currents and bottom topogra-
phy are much greater than the peak wavelength, while their
magnitudes of variation are allowed to be finite.
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2 GOVERNING EQUATIONS

For an ideal fluid, we can introduce the velocity potential
φ(x, z, t) satisfying the Laplace equation:

∇2φ +
∂2φ

∂z2
= 0 for − h ≤ z ≤ ζ(x, t), (3)

where ζ(x, t) is the free surface elevation and the horizon-
tal gradient ∇ is defined by

∇ =
(

∂

∂x
,

∂

∂y

)
. (4)

The bottom boundary condition is given by

∇φ·∇h +
∂φ

∂z
= 0 at z = −h. (5)

At the free surface, the velocity potential φ and the surface
elevation ζ satisfy the kinematic and dynamic free surface
boundary conditions:

ζt + u·∇ζ = w at z = ζ(x, t), (6)

φt + 1
2 (∇φ)2 + 1

2φz
2 + gζ = 0, at z = ζ(x, t), (7)

where g is the gravitational acceleration and ρ is the fluid
density.

By substituting z = ζ into (6) and (7), and using the
following chain rules for differentiation,

∇φ|z=ζ = ∇Φ−W∇ζ, (8)
∂φ

∂t

∣∣∣∣
z=ζ

=
∂Φ
∂t
−W

∂ζ

∂t
, (9)

where the free surface velocity potential Φ and the vertical
velocity at the free surface W are defined by

Φ(x, t) ≡ φ(x, z = ζ), W ≡ ∂φ

∂z

∣∣∣∣
z=ζ

, (10)

the free surface boundary conditions given by (6)–(7) can
be re-written to the form given by (1)–(2) in terms of ζ, Φ,
and W . If we can find the expression for W in terms of ζ
and Φ, equations (1)–(2) will be a closed system for ζ and
Φ.

3 EXPANSION METHOD FOR UNIFORM WATER
DEPTH

3.1 PHYSICAL SPACE

First we consider the case of constant water depth, ∇h =
0. Expanding the free surface velocity potential Φ in (10)

in Taylor series about the mean free surface yields

Φ =
∞∑

n=0

An

[
φ0

]
, (11)

where operator An is defined by

A2m = (−1)m ζ2m

(2m)!
4m, (12)

A2m+1 = (−1)m+1 ζ2m+1

(2m + 1)!
4mL. (13)

In (12)–(13), we have used ∂2φ/∂z2 = −4φ from (3),
4 = ∇2, and

φz(x, 0, t) = −L
[
φ0

]
, φ0 = φ(x, 0, t). (14)

where L is the linear integral operator to be determined by
solving the following linear boundary value problem:

∇2φ +
∂2φ

∂z2
= 0 for −h ≤ z ≤ 0, (15)

with the boundary conditions at z = 0 and z = −h given
by

φ(x, 0, t) = φ0(x, t) φz(x,−h, t) = 0. (16)

Notice that the series given by (11) can be also inverted to

φ0 =
∞∑

j=1

Φj , (17)

where

Φj = −
j−1∑
l=1

Al

[
Φj−l

]
for j ≥ 2, Φ1 = Φ. (18)

Similarly, the vertical velocity at the free surface, W , can
be expanded in Taylor series as

W =
∞∑

n=1

Wn, Wn =
n∑

j=1

Cj

[
Φn−j

]
, (19)

where Φn is given by (18) and operator Cn is defined by

C2m = (−1)m+1 ζ2m

(2m)!
4mL, (20)

C2m+1 = (−1)m+1 ζ2m+1

(2m + 1)!
4m+1. (21)

Notice that Wn = O(εn) and Φn = O(εn) with ε being the
wave steepness defined by ε=wave amplitude/wave length,
and they can be found recursively, as a function of ζ and Φ.
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3.2 FOURIER SPACE

Suppose that all physical variables can be written in Fourier
series

f(x, t) =
∑
n,m

anm(t) ei(nk1x+mk2y), (22)

and, then, the two linear operators in An and Cn can be
written as

4 = −k2, L = −k tanh(kh), (23)

where

k2 = (nk1)
2 + (mk2)

2
.

By substituting (23) into (12)–(13) and (18), the expres-
sions for Φn can be written explicitly as

Φ1 = Φ,

Φ2 = −ζk tanh(kh) Φ1,

Φ3 = −ζk tanh(kh) Φ2 −
1
2!

ζ2k2Φ1,

Φn = −
n−1∑
j=1

Aj

[
Φn−j

]
for n ≥ 2, (24)

where An is given by

A2m =
ζ2m

(2m)!
k2m,

A2m+1 =
ζ2m+1

(2m + 1)!
k2m+1 tanh(kh).

Similarly, the expansion for W in (19) can be found as

W1 = k tanh(kh) Φ1,

W2 = k tanh(kh) Φ2 + ζk2Φ1,

W3 = k tanh(kh) Φ3 + ζk2Φ2 +
1
2!

ζ2k3 tanh(kh) Φ1,

Wn = −
n−1∑
j=0

Cj

[
Φn−j

]
for n ≥ 1, (25)

where operator Cn is given by

C2m =
ζ2m

(2m)!
k2m+1 tanh(kh),

C2m+1 =
ζ2m+1

(2m + 1)!
k2m+2.

For infinitely deep water, tanh(kh) → 1 for two-
dimensional waves and the system of West et al (1987)
originally presented can be recovered while tanh(kh) →
sign (k) for one-dimensional waves.

4 NONLINEAR EVOLUTION EQUATIONS

Now Φn and Wn are written explicitly in ζ and Φ and,
by substituting (19) or (25) for W into (1)–(2), we have a
closed system of nonlinear evolution equations for ζ and
Φ, in either physical or Fourier space, in the form of:

∂ζ

∂t
=

∞∑
n=1

Qn(ζ, Φ) ,
∂Φ
∂t

=
∞∑

n=1

Rn(ζ, Φ) . (26)

where Qn and Rn representing the terms of O(εn) are
given by

Q1 = W1, Q2 = W2 −∇Φ·∇ζ,

Qn = Wn + |∇ζ|2Wn−2 for n ≥ 3, (27)

R1 = −gζ, R2 = − 1
2 |∇Φ|2 + 1

2W1
2, R3 = W1 W2,

Rn = 1
2

n−2∑
j=0

Wn−j−1 Wj+1

+ 1
2 |∇ζ|2

n−4∑
j=0

Wn−j−3 Wj+1 for n ≥ 4. (28)

Notice that the leading-order terms (Q1 and R1) represent
linear dispersive effects while Qn and Rn for n ≥ 2 de-
scribe higher-order dispersive effects and nonlinear wave-
wave interaction. Alternatively, the resulting system can be
obtained by expanding the Dirichlet-Neumann operator, as
suggested by Craig & Sulem (1993).

5 NUMERICAL METHODS AND VALIDATION
WITH FULLY NONLINEAR SOLUTIONS FOR
ONE-DIMENSIONAL WAVES

For numerical computations, the right-hand sides of the
system given by (26) are truncated to some finite order
of wave steepness and, then, are evaluated via a pseudo-
spectral method based on the Fast Fourier Transform. So
the surface elevation ζ and the free surface velocity poten-
tial Φ are represented by double Fourier series:

(ζ, Φ) =

N1
2∑

n=−N1
2

N2
2∑

m=−N2
2

(
anm, bnm

)
eink1x+imk2y, (29)

where anm(t) and bnm(t) are the Fourier coefficients to
be found, N1 and N2 are the numbers of Fourier modes
in the x- and y-directions, respectively, and k1 = 2π/L1
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Figure 1: Comparison between numerical solutions of the
truncated fifth-order system (dots) given by (26) and the
fully nonlinear Euler equations (solid lines) for a periodic
standing wave. (a) h/λ = 1 with the third-order Stokes
wave solution of wave amplitude a/λ = 0.02 for ζ and
Φ = 0 as initial conditions. (b) h/λ = 0.1 with the linear
wave solution of wave amplitude a/λ = 0.01 for ζ and
Φ = 0.

and k2 = 2π/L2 with L1 and L2 being the computa-
tional domain lengths in the x- and y-directions, respec-
tively. Then, the evolution equations are integrated in time
using the fourth-order Runge-Kutta method. More expla-
nations about the numerical method can be found in Choi,
Kent & Schillinger (2005).

In this section, we consider one-dimensional waves to
validate our numerical solutions of the truncated system
given by (26) with those of the exact evolution equations
derived from the Euler equations without any approxima-
tion (Dyachenko et al. 1996; Choi & Camassa 1999). This
fully nonlinear theory is based on the conformal mapping
technique and can be applicable only to two-dimensional
flow (or one-dimensional waves). The details of the nu-
merical method for the exact evolution equations can be
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Figure 2: (a) Time evolution of a KdV solitary wave of
wave amplitude a/h = 0.2 in a periodic domain. In this
computation, the number of Fourier modes of Nx = 28 and
the initial conditions are ζ(x, 0) = ζKdV (x) and Φ = 0.
(b) Comparison between numerical solutions of the trun-
cated fifth-order system (dots) given by (26) and the fully
nonlinear Euler equations (solid lines) at three different
times.

found in Li, Hyman & Choi (2004). In our computations,
we choose g = 1 and λ = 1 (or h = 1). The number of
Fourier modes is Nx = 28 and the time step is ∆t = 0.01.

Figure 1 shows an example of comparisons between
numerical solutions of the fifth-order nonlinear evolution
equations and the fully nonlinear Euler equations for one-
dimensional periodic standing waves for two different
depths of h/λ = 1 and h/λ = 0.1. Notice that, even
with for the lower-order (e.g. third-order) nonlinear evo-
lution equations, the two solutions are indistinguishable to
graphical accuracy. From figure 1(b), it can be seen that, as
the water depth decreases, nonlinear effects become more
important and the higher-harmonic components are easily
amplified.

For another validation of our numerical method for the
finite-depth formulation, we consider the propagation and
collision of solitary waves in shallow water, as shown
in figure 2. Initially, a Korteweg-de Vries (KdV) soli-
tary wave given by ζKdV (x) = a sech2(x/l) with l2 =
4h/(3a) is located at the center of the computational do-
main. Since Φ = 0 at t = 0, a single solitary wave is
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disintegrated into two solitary waves propagating in oppo-
site directions and colliding with solitary waves propagat-
ing from neighboring computational domains due to our
periodic boundary conditions. Once again, the two solu-
tions show good agreement, as shown in figure 2.

6 EFFECTS OF SLOWLY-VARYING CURRENTS

Consider a two-dimensional horizontal surface current,
U = U(x), which is assumed to vary slowly so that
λ(∇·U)/|U | = O(µ), where µ = λ/L is a small param-
eter representing the slow variation of the current, with λ
being the typical wavelength and L being the characteristic
length of current variation. By assuming that Uy − Vx =
O(µ2) at t = 0, it can be shown that the vorticity is O(µ2)
for all t. This implies that all perturbations to this current
field will be irrotational with an error of O(µ2). Therefore,
by adopting an expansion method similar to that introduced
in sec. 3, it can be shown that the nonlinear evolution equa-
tions given by (26) are slightly modified, with an error of
O(ε2), to

∂ζ

∂t
+ ∇·(U ζ) =

∞∑
n=1

Qn[ζ, Φ] , (30)

∂Φ
∂t

+ U ·∇Φ =
∞∑

n=1

Rn[ζ, Φ] . (31)

A more classical approach to study wave-current interac-
tion is to use the wave action model. For a slowly-varying
linear wave train, it is well-known that the surface eleva-
tion ζ can be approximated by

ζ = a(x, t) eiθ(x,t), (32)

where the slowly-varying local amplitude a(x, t) and local
wave number k(x, t) ≡ ∇θ then can be found by solv-
ing the wave action equation and the kinematic equation,
respectively, (Bretherton & Garrett 1969; Phillips 1977):

∂(a2/σ)
∂t

+∇·
[
(cg + U) (a2/σ)

]
= 0,

∂k

∂t
+∇ω = 0.

(33)
In equation (33), the group velocity cg and the local wave
frequency ω(k,x, t) ≡ −θt can be found from

cg =
∂σ

∂k
, ω = σ + k·U , σ2 = gk. (34)

As a special case, when the local wave amplitude and wave
number remain unchanged in time, the wave action model
(33) can be further simplified to

(cg +U) (a2/σ) = constant, σ+kxU = constant. (35)

-30 -20 -10 0 10 20 30
0

4π

x (m)

k (m  )-1
2π

3π

π

-30 -20 -10 0 10 20 30

x (m)

k (m  )-1

0

4π

2π

3π

π

(a) (b)

Figure 3: Variation of the local wave number k(x) pre-
dicted by the steady kinematic equation given by (35) for
(a) waves traveling to the left (case 1) and (b) waves trav-
eling to the right (case 2) in the absence of surface current.
The dashed lines represent the initial wave number of the
uniform wave train whose wave amplitude and wavelength
are 1cm and 1m, respectively.
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Figure 4: Numerical solutions of the nonlinear evolution
equations given by (30)–(31) for surface elevation ζ(x, t):
(a) a uniform wave train traveling to the left (case 1); (b) a
uniform wave train traveling to the right (case 2). Initially,
the wave amplitude and wavelength of the uniform wave
train are 1cm and 1m, respectively.
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In this paper, to demonstrate consistency of the nonlinear
evolution equations given by (30)–(31) with the wave ac-
tion model in (33), we consider a simple one-dimensional
surface current:

U(x) = U0 + U1 cos2(πx/L) for −L/2 ≤ x ≤ L/2,
(36)

with the following dimensional parameters: U0= -1 m/s,
U1= 0.2 m/s, and L = 64 m and study the evolution of ini-
tially monochromatic wave trains with a wavelength of 1 m
and an amplitude of 1 cm propagating in the both negative
(case 1) and positive (case 2) x-directions in the absence
of surface current. The number of Fourier modes in our
computations is 210 (with the number of grid points per
wavelength being 16) and the time step is ∆t=0.01 sec.

Before making detailed comparisons between numeri-
cal solutions of the nonlinear evolution equations and the
wave action equation, the changes in the local wave num-
ber are calculated from equation (35) (obtained under the
steady assumption which might not be valid here) and are
presented in figure 3. These steady solutions indicate that
for the wave train propagating in the negative x-direction
the wavenumber and the wave amplitude both increase
slightly when interacting with the current. For the wave
train propagating in the +x-direction, figure 3 shows that
the wavenumber and amplitude increase considerably and,
as indicated by the closed trajectories in figure 3(b), some
wave groups are trapped inside the computational domain.

As shown in figure 4, the numerical solutions of the non-
linear evolution equations given by (30)–(31) show that an
initially uniform wave train traveling in the negative x di-
rection experiences a slight modulation in wave amplitude
and wave number, in agreement with figure 3(a) expects.
On the other hand, for waves traveling in the +x direction,
the wave steepness increases steadily in time, as shown in
Figure 4(b) until t=100s at which time the simulation was
terminated. At about this same time, a singularity also de-
velops in the solution of (33) due to the convergence of
two wave trains with different wavenumbers at the same
location. Thus, the narrow-band assumption expressed by
equation (32) appears to break down at this point.

As shown in figures 5 and 6, numerical solutions of (30)–
(31) for the local wave number and local wave amplitude
compare well with those of (33). Surface waves propagat-
ing in the negative x-direction experience fairly small and
quasi-time-periodic perturbations (because of the periodic
boundary conditions), while the local wave amplitude and
local wave number for surface waves propagating in the
positive x direction increases.

(a)

(b)

Figure 5: Evolution of the local wave number k(x, t) and
the local wave amplitude ratio defined by a(x, t)/a0 for the
waves traveling in the negative x-direction (case 1): (a) the
nonlinear surface wave model given by (30)–(31); (b) the
kinematic and wave action equations given by (33). These
results correspond to the numerical solution shown in fig-
ure 4(a).
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(a)

(b)

Figure 6: Evolution of the local wave number k(x, t) and
the local wave amplitude ratio defined by a(x, t)/a0 for the
waves traveling in the positive x-direction (case 2): (a) the
nonlinear surface wave model given by (30)–(31); (b) the
kinematic equation given by (33). These results correspond
to the numerical solution shown in figure 4(b).

7 EFFECTS OF SLOWLY-VARYING BOTTOM TO-
POGRAPHY

The system given by (26) can be further generalized to in-
clude the effects of slowly-varying bottom topography of
arbitrary amplitude. By assuming that the local water depth
h(x) varies slowly so that µ = λ|∇h|/h � 1 and substi-
tuting into (3)–(7) the following transformations:

x̄ =
∫ x

x0

η(x′, y) dx′, ȳ =
∫ y

y0

η(x, y′) dy′, z̄ = η(x)z,

where η = h0/h(x) and h0 is the local water depth at
x = x0, the boundary value problem for φ(x, z̄) in the
transformed horizontal domain becomes, with an error of
O(µ), (

∇2
+

∂2

∂z̄2

)
φ = 0 in −h0 < z̄ < 0, (37)

∂φ

∂z̄
= 0 at z̄ = −h0, (38)

∂ζ

∂t
+ η2 ∇φ·∇ζ = η

(
∂φ

∂z̄

)
at z̄ = η(x) ζ(x, t),

(39)

∂φ

∂t
+ 1

2η2|∇φ|2 + 1
2η2

(
∂φ

∂z̄

)2

+ gζ = 0

at z̄ = η(x) ζ(x, t), (40)

where ∇ = (∂/∂x̄, ∂/∂ȳ). Then, using the chain rules for
differentiation in (8)–(9), the free surface boundary condi-
tions given by (39)–(40), under the same order of approxi-
mation, can be also re-written as

∂ζ

∂t
+ η2∇Φ·∇ζ = η

(
1 + η2|∇ζ|2

)
W , (41)

∂Φ
∂t

+ 1
2η2|∇Φ|2 + gζ = 1

2η2
(
1 + η2|∇ζ|2

)
W 2 . (42)

Compared with those for constant water depth (η = 1 and
x = x) given by (1)–(2), the free surface boundary condi-
tions are slightly modified, but the governing equation and
the bottom boundary conditions are identical to those for
constant water depth in (3) and (5). Therefore, it can be
shown that a system of nonlinear evolution equations for
ζ(x, t) and Φ(x, t) in the transformed domain can be ob-
tained using the similar expansion technique as for constant
water depth.
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The expansions for Φ and W and the expressions forAn

and Cn in § 3 remain unchanged when replacing ζ, h, and
∇ by

ζ → η ζ, h → h0, ∇ → ∇. (43)

The resulting nonlinear evolution equations for ζ and Φ in
the transformed plane become

∂ζ

∂t
=

∞∑
n=1

Qn(ζ, Φ) ,
∂Φ
∂t

=
∞∑

n=1

Rn(ζ, Φ) , (44)

where Qn and Rn representing the terms of O(εn) are
given by

Q1 = ηW1, Q2 = ηW2 − η2∇Φ·∇ζ,

Qn = ηWn + η3|∇ζ|2Wn−2 for n ≥ 3,

R1 = −gζ, R2 = − 1
2η2|∇Φ|2 + 1

2η2W1
2,

R3 = η2W1 W2,

Rn = 1
2

n−2∑
j=0

η2Wn−j−1 Wj+1

+ 1
2η4|∇ζ|2

n−4∑
j=0

Wn−j−3 Wj+1 for n ≥ 4.

Notice that it is convenient to solve the system numer-
ically in the transformed domain and to transform the nu-
merical solutions back to the physical domain at the end
of computations. To test our formulation and numerical
method, we consider two examples in this paper using bot-
tom topography given by

b(x) =

{
b0 cos2

(
πx
2x0

)
for |x| ≤ x0

0 for |x| ≥ x0

. (45)

In figure 7, it is shown that the system given by (41)–(42)
can describe the well-known long wave phenomenon of
generation of upstream-propagating solitary waves in shal-
low water, first observed numerically by Wu & Wu (1982)
using the Boussinesq equations, with a uniform stream ve-
locity U close to the linear long wave speed (c0 =

√
gh0).

It is also shown that the system can be used to study refrac-
tion of short surface waves in water of finite depth, as can
be seen in figure 7(b).

8 CONCLUSION

We derive a system of nonlinear evolution equations writ-
ten in infinite series to describe the evolution of nonlinear
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Figure 7: (a) Generation of one-dimensional forced soli-
tary waves by bottom topography given by (45) with
b0/h0=0.2 and x0/h0 = 2 in a uniform stream of
U/
√

gh0 = 1. (b) Propagation of two-dimensional uniform
wave train of wave amplitude a/λ = 0.02 over bottom to-
pography of h0/λ = 0.4, b0/λ = 0.3, and x0/λ = 8 at
t/

√
λ/g = 10.

surface waves interacting with surface currents in water of
variable depth. For constant water depth, the truncated sys-
tem is solved numerically using a pseudo-spectral method
for periodic standing waves and solitary waves, and its nu-
merical solutions are validated with numerical solutions of
the fully nonlinear Euler equations. For wave-current inter-
action, our numerical solutions are consistent with numer-
ical solutions of the wave action model. It has been shown
that the formulation can be really generalized to the case of
nonuniform water depth using a simple transformation and
the evolution equations written in the transformed domain
has the variable coefficients.
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