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Large amplitude internal waves interacting with a linear shear current in a system of two layers of
different densities are studied using a set of nonlinear evolution equations derived under the long
wave approximation without the smallness assumption on the wave amplitude. For the case of
uniform vorticity, solitary wave solutions are obtained under the Boussinesq assumption for a small
density jump, and the explicit relationship between the wave speed and the wave amplitude is found.
It is shown that a linear shear current modifies not only the wave speed, but also the wave profile
drastically. For the case of negative vorticity, when compared with the irrotational case, a solitary
wave of depression traveling in the positive x direction is found to be smaller, wider, and slower,
while the opposite is true when traveling in the negative x direction. In particular, when the
amplitude of the solitary wave propagating in the negative x direction is greater than the critical
value, a stationary recirculating eddy appears at the wave crest. © 2006 American Institute of

Physics. [DOI: 10.1063/1.2180291]

I. INTRODUCTION

Large amplitude internal waves are no longer rare phe-
nomena evidenced by an increasing number of field observa-
tions and the study of their physical properties has been an
active research area in recent years; for example, see Lynch
and Dahl,' Ostrovsky and Stepayants,2 and Helfrich and
Melville.” Classical weakly nonlinear theories including the
well-known Korteweg—de Vries (KdV) equation have been
found to fail in this strongly nonlinear regime, and it has
been suggested that new theoretical approaches are necessary
to better describe large amplitude internal waves.

These strongly nonlinear waves have often been studied
numerically for both continuously stratified and multilayer
fluids (Lamb;* Grue et al”). Alternatively, with the long
wave approximation but no assumption on the wave ampli-
tude, the strongly nonlinear asymptotic models were pro-
posed (Miyata;6 Choi and Camassa;7 Choi and Camassag),
and it was found that these simplified models are indeed
valid for large amplitude waves. In particular, for traveling
waves, the system of coupled nonlinear evolution equations
can be reduced to a single ordinary differential equation, and
its solitary wave solution shows excellent agreement with
laboratory experiments and numerical solutions of the Euler
equations (Camassa et al.g). The success of this asymptotic
model even for large amplitude waves can be attributed to
the fact that the internal solitary wave becomes wider as the
wave amplitude increases and, therefore, the underlying long
wave assumption is valid even for large amplitude waves.

Many of these previous studies have neglected the back-
ground shear current effect, which is important in real ocean
environments but is not well understood. In this paper, the
strongly nonlinear model is further generalized to include the
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shear current effect, and its solitary wave solutions and their
wave characteristics are studied.

For continuously stratified flows, Maslowe and
Re:dekopp10 considered weakly nonlinear internal waves in
shear flows and showed that the KdV and Benjamin-Ono
equations can be derived for long waves in the shallow and
deep configurations, respectively, both with and without
critical layers. Stastna and Lamb'' investigated numerically
the effect of shear currents on fully nonlinear internal waves.
For a linear shear current of negative constant vorticity, they
found the internal solitary wave of elevation traveling in the
positive x direction is taller and narrower, while the wave
propagating in the opposite direction becomes shorter and
wider. Their numerical solutions showed that the maximum
wave amplitude solution approaches the conjugate flow limit
(or a front solution), although the so-called wave breaking
and shear instability limits are also possible for some param-
eter ranges.

For two-layer system, Breyiannis ef al."* considered in-
ternal waves in a linear shear current numerically using a
boundary integral method. Since their focus was on surface
waves at the air-water interface, they added wind of constant
velocity in the upper layer, resulting in a velocity disconti-
nuity at the interface. Therefore, along with the large density
jump that they considered, their results are not directly ap-
plicable to internal waves of our interest.

Here, we consider a system of two layers, each of which
has constant density and constant vorticity by assuming the
detailed vorticity distribution is not important for long inter-
nal waves. Solitary wave solutions are computed and com-
pared with those of the irrotational model, and particular
attention is paid to wave profiles, wave speeds, and stream-
lines. This paper is organized as follows. With the governing
equations in Sec. II, the strongly nonlinear model is pre-
sented in Sec. III and is reduced to a single equation for
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FIG. 1. Internal waves in two-layer system interacting with linear shear
currents.

solitary waves. In Sec. IV, using the Boussinesq assumption
and assuming vorticity is uniform for simplicity, the proper-
ties of large amplitude internal solitary waves propagating in
both horizontal directions are described in detail with con-
cluding remarks in Sec. V.

Il. GOVERNING EQUATIONS

For an inviscid and incompressible fluid of density p;,
the velocity components in Cartesian coordinates (u; ,w,)
and the pressure p;k satisfy the continuity equation and the
Euler equations,

U +w;. =0, 2.1)
U+ Uy + Wi == plp;, (2.2)
Wit U;Wi +Ww, =—=p,lp;—g, (2.3)

where g is the gravitational acceleration and subscripts with
respect to space and time represent partial differentiation.
Here, i=1 (i=2) stands for the upper (lower) fluid (see Fig.
1) and p,; <p, is assumed for a stable stratification.

The boundary conditions at the interface are the continu-
ity of normal velocity and pressure,

L+urle=wy, pr=p, atz={(x1),
(2.4)

* *
§t+u]§X=W]’

where  is the interface displacement. At the upper and lower
rigid surfaces, the kinematic boundary conditions are given
by

wT(x,hl,t) =0, w;(x,—hz,t) =0, (2.5)

where h; (h,) is the undisturbed thickness of the upper
(lower) fluid layer.

We assume that the total velocity can be decomposed
into a background uniform shear of constant vorticity (}; and
a perturbation so that

u; (x,9,2) = Qz + u(x,2,0),  w; =wix,z,0), (2.6)

where u; and w; are the total horizontal and vertical veloci-
ties, respectively, while u; and w; represent the perturbation
velocities. From conservation of vorticity, any two-
dimensional perturbation to uniform shear flows must be ir-
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rotational and, therefore, the perturbation velocities can be
written as u;= ¢, and w;=¢,, where the velocity potential ¢;
satisfies the Laplace equation V?¢,=0. By substituting into
the linearized system of (2.2) and (2.4),

&, =A, cosh[k(z — hy)]e’ =",
2.7)
¢, =A, cosh[k(z + hz)]ei(kx—wt)’

the linear dispersion relation between wave speed ¢ and
wave number k can be obtained from

Cz(plcoth khl + poOth khz) - C(pIQI - szz)/k
- 8&(py—p1)/k=0. (2.8)

For long waves (kh;—0), the linear long wave speed is
found to be

= hihy(p1 €2y = pot),)
2(p1hy + pohy)

. \/h%h%(Plﬂl - PzQz)2
4(pihy + pyhy)?

which, for ),=0, can be reduced to
[ ghihy(py = p1)
c=+\|T7—7——"—.
pihy + pahy

lll. A STRONGLY NONLINEAR MODEL

ghihy(pr = p1)
pihy + pohy

. (29

(2.10)

For long surface gravity waves in a single layer with
constant vorticity, a system of nonlinear evolution equations
was derived by Choi" by adopting the similar asymptotic
expansion method used in Choi and Camassa.” Since the
detailed derivation of the model can be found in Choi,13 it
will be omitted here.

Assuming the ratio of water depth to the characteristic
wavelength is small for long waves, the pressure in (2.3) is
expanded to the second order in this small parameter to in-
clude the nonhydrostatic pressure effect, which, when com-
bined with (2.1) and (2.2), results in the nonlinear evolution
equations for the lower layer,

m=hy+{,
(3.1)

Mo = Qohy oy + Qo + (1), = 0,

_ _ _ 1/(2
Uy = Oohytty + Uyt + g8 == Po/py + ;(577262> ,
)

X

(3.2)

where P=p(x,{,1) is the pressure at the interface providing
coupling with the upper layer, and the depth-averaged veloc-
ity u, and the nonhydrostatic pressure effect G, are defined
by

_ L(*
I/lz(.x,t) = _J MZ(-va’t)dZ’ (33)
M2J -n,

Downloaded 16 Mar 2006 to 141.211.175.139. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



036601-3 The effect of a background shear current

G (x,1) = Unyy — Qoholly o + Qo olly o + sl — (ﬁzx)z-
(3.4)

The kinematic equation (3.1) is exact, while the dynamic
equation (3.2) contains an error of O(€*), where € is defined
by the ratio of water depth to the characteristic wavelength.
The second term of the right-hand side of (3.2) represents the
nonlinear dispersive effect of large amplitude internal waves.

For the upper layer, by simply replacing ({,g,{)) by
(=¢,—g,—Q) and the subscript 2 by 1, we can obtain an
appropriate set of equations. Then, the complete set of equa-
tions for the four unknowns (£,u;,u,,P) is, in dimensional
form, given by

U, _
— i+ (1), =0 (3.5)

i+ Uiy — I,

u; + Uty + uyy + g8, = —

(3.6)
where U, is the velocity at the rigid boundary given by
= thl’

Uy=—-Qyh,. (3.7)

For ,=0, the system given by (3.5) and (3.6) can be re-
duced to the system of equations of Choi and Camassa.®

When computing traveling wave solutions, it is useful to
write the horizontal momentum equation (3.6) in the follow-
ing conserved form:

i+ = il | | Uty + —u; +
ul 6 7]1 MIXX , lul 2 ul g .

1 { 7 (_ 22U _
== _Px +| S\ Ui+ _Uiuixx Nillixx
p: 2 3 3h

(3.8)

or, after multiplying (3.6) by 7,

( 11U ) Ui 10}, Ui,
; - + - —— U
77[ l 2 h 17[ 17! u 77!“ 2 h 77[ hl 77[ ul

1<U,~>2 3] ;
+—|— ) | +¢m
3\ ) 7| Hemd

i 7i (- - U _
== ;lP + |: 3l ( Uy + Uiuixx - h__lniuixx
i i

(3.9

From (3.5), (3.8), and (3.9), it is easy to see that the follow-
ing three conservation laws hold:

?——fgdx 0, (3.10)
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iz _d (‘ L2 )dx 0 (i=1,2) (3.11)
—_— = — =1 U: = = .
dt dt ul 6771M1XX L 2 2

dP  d 1U; 2)

—=— - ==t ldx | =0, 3.12
" dt{Ep,f(mu oh ] (3.12)

which physically correspond to conservation laws for mass,
irrotationality, and horizontal momentum of a perturbation to
the background linear shear current.

In order to find solitary wave solutions traveling with
constant speed ¢, we assume that

Lx,1) = (X,

Substituting (3.13) into (3.5) and integrating once with re-
spect to X yields

_ h\ 1U; h?
u;=(c-U) 1—; 5;77, 1——? ,

ui(x,t)=u(X), X=x-ct. (3.13)

(3.14)

where we have used the boundary conditions at infinity: 7;
—h; and u;—0 as |X|—cc. After substituting (3.13) into
(3.8) and integrating with respect to X once, Eq. (3.8) can be
written as

I, _ U N\ 3,
gpi%‘ _C+Ui+ui_h_i77i uiXX_EuiX

1
:pi{(—c+ Uu; + Eﬁ?+g§]+P, (3.15)

where we have used u;y, ujxxy— 0 as X——o. When we sub-
tract (3.15) for i=1 and 2 to eliminate P, we have

N T
E Pﬂ/, _C+Ui+ui_;7/i Uixx — Ui

113
2

=> (- I)HPi[(—C"‘ Upu; + %ﬁiz"'gf]

i=1

(3.16)

On the other hand, when we add (3.9) for i=1,2 and inte-
grate once with respect to X, we have

Ez ] {( +Uj+u Ui >_ _2}
P 3 i i h,‘ i |Uixx iX
2

=2 Pi[(—c"‘ Ui+ u)u; -

i=1

1( U)U?
2 C 1 hl 77[

1U2
foody

K (3.17)

-g(= 1) (o h2)+hP}

where we have used 7+ 7, =h,+h, to obtain the last term in
the right-hand side. After using (3.15) with i=1 for P and
adding (3.16) and (3.17), the final equation for {y can be
found, after a lengthy manipulation, as

3(A L + AP+ AL+ Ay)
B’ + Byl + By + By> + Bs{ + By

ix= (3.18)

where
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p Ul
By=2 =ty — ap)) + 2 (h, 4hy),

4 a7 2
U U;
By=pi—5 (h} = hihy) = py— (h3 = hyhy)
h h;
+c(p U - paUy),
Ui U;
By=p; hzh h2+P2h2h 115+ picUy(hy = 2hy)
+ pacUs(hy = 2hy),
Bs==2chihy(p U, = psUs) + (pihi = pa3).

Bg=c’hihy(pihy + pohs).

When U;=0, (3.18) becomes the equation for irrotational in-
ternal waves (Miyata;14 Choi and Camassag),

X c [(plhl

2 [
&= [&%+2hy¢ + 2(c/Uy) 31

where, from (3.7), U,=—Q,h,.

IV. BOUSSINESQ ASSUMPTION WITH UNIFORM
VORTICITY

To further simplify Eq. (3.18), we assume a small den-
sity change across the interface (true for most oceanic appli-
cations) and use the Boussinesq assumption, so that we can
replace p;=py—Ap/2 and p,=py+Ap/2 by p, except for
terms proportional to the gravitational acceleration g. Also,
for simplicity, uniform vorticity is assumed and, thus, €,
=, =(). Then, the equation for {y given by (3.18) can be
simplified to

3(AL + AL+ Ay)
Byl* + B3P + Byl* + Bs( + By

= (4.1)

where the coefficients are given by
Ay = poQ3(hy + hy)l4 + Apg,
Ay == poQc(hy + hy) + Apg(hy = hy),

Ay = poc?(hy + hy) — Apghihy,

By =—3p,Q%(hy + h,)/4,

By = poQ(hi = 3) + poQe(hy + hy),

By = poQPhihy(hy + hy) = 2pQe(h? = h3),

(3.19)

pah3)E+ (pihy + pahy) iy
For the one-layer case (p;=0) (3.18) can be reduced to the model for surface waves in a uniform shear flow,

PLE + (4 + 12g31UD E+ (12051 U3)(¢? = cU,y — ghy) ]

13

(3.20)

Bs ==2pgQchihy(hy + hy) + poc®(h = 13),

B = poc*hihy(hy +hy).

From the fact that the numerator has to vanish at the wave
crest where {=a with a being the wave amplitude, the wave
speed ¢ can be found, in terms of a, as

_Qa \/g(Ap/p(»(m —a)(h, +a)
27 hy+h, ‘

(4.2)

Notice that, compared with the irrotational (1=0) case, the
nonlinear wave speed is increased by Qa/2, while the linear
wave speed ¢, given, from (4.2) with a=0, by

g(Ap/py)hihy
o=\ .
hy+h,

is unaffected by constant vorticity under the Boussinesq
assumption.

As in the irrotational case, when A,a”>+A;a+A,=0 in the
numerator of (4.1) has double roots, we have the maximum
wave amplitude, at which, instead of a solitary wave, a front
solution appears and beyond which no solitary wave solution
exists. This condition can be written as A§=4A2A4 to yield
the following expression for the maximum wave speed c,,:

(4.3)

Downloaded 16 Mar 2006 to 141.211.175.139. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



036601-5 The effect of a background shear current

L 11

U/e,

FIG. 2. Maximum wave amplitude a,, given by (4.5) for varying U,/c,
where U;=Qh, and ¢ is the linear long internal wave speed defined by
(4.3): - - -, hy/hy=2.5; —, hy/h;=5. The density ratio is p,/p;=1.001, and
the superscripts + and — indicate the waves propagating in the positive and
negative x directions, respectively.

1
S =—|Qh —h
ci= [ =)

+\4g(Apl/po) (hy + hy) + Q%(hy + hy)?]. (4.4)

Then, the maximum wave amplitude a,, can be found, from
(4.2), as

o= 28(Ap/po) (hy = hy) + 20 hy + hy)c,
" 4g(Aplpo) + VP (hy + hy)

(4.5)

For ()=0, the maximum wave speed and the maximum wave
amplitude can be reduced to

Cp=* %\”g(AP/PO)(hl +hy), ay,= %(hl -hy), (4.6)

which are the results of Choi and Camassa® under the Bouss-
inesq assumption.

In this paper, without loss of generality, we assume ()
>0 and consider waves traveling in both positive and nega-
tive x directions. The density ratio p,/p;=1.001 is chosen for
the results presented here, and h,>h, is assumed so that a
solitary wave of depression is expected, unless () is large.

As shown in Fig. 2, when propagating in the negative x
direction, the maximum wave amplitude (a,,) increases con-

Shy

(a)
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FIG. 3. Wave speed ¢ vs wave amplitude a given by (4.2) for the case of
hy/hy=5 and p,/p;=1.001: —, U;/cy=0; - - -, U,/cy=0.3464 (or
Q/\g/h;=0.01), where U;=Qh, and ¢, is the linear long internal wave
speed defined by (4.3). Notice that |¢*|=|c7| for Q=0. The density ratio is

p»/p;=1.001, and the superscripts + and — indicate the waves propagating
in the positive and negative x directions, respectively.

siderably as ) (or, equivalently, U,) increases, approaching
—h,. On the other hand, when propagating in the positive x
direction, the maximum wave amplitude (a;,) decreases and
its polarity changes as () increases. Even though the thick-
ness of the lower layer is greater than that of the upper layer,
it is possible for a solitary wave of elevation to exist, for
example, when Qh,/cy>0.8 for h,/h;=5. Figure 2 also
shows that, for () # 0, the maximum wave amplitude can be
zero, implying that no solitary wave solution exists, even at a
depth ratio different from the critical ratio (h,/h,=1) for
0=0.

From Fig. 3, for a given depth ratio and Qh,/c, it can
be seen that the wave speed (c7) is greater for the wave
traveling in the negative x direction compared with that of
the irrotational solitary wave of same amplitude, while the
opposite is true for the wave traveling in the positive x
direction.

As shown in Fig. 4(a), solitary wave profiles of a/h,
=-0.5 are obtained by solving (4.1) numerically using MATH-
EMATICA, and it is found that the solitary wave traveling in
the positive x direction is wider than that of the solitary wave

FIG. 4. Solitary wave profiles for U,/cy=0.3464 (Q/\g/h,;=0.01, dashed line), where U,=Qh,, compared with those for Q=0 (solid line) for p,/p,
=1.001 and h,/h,=5. (a) a/h;=-0.5, (b) a=0.99a,,, where a,,/h;~-0.9165 and —3.0835 for waves traveling to the right and left, respectively.
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(b)

FIG. 5. Streamlines for a solitary wave propagating in the negative x direction, without and with a recirculating eddy, for U,/c,=0.3464 (Q0/ \s“‘g/ h,=0.01,
dashed line), p,/p,;=1.001, and h,/h,=5: (a) a=0.7a,, and (b) a=0.99a,,, where a,,/h, =-3.0835. Notice that the frame of reference moving with the solitary

wave is used and the vertical scale is exaggerated.

traveling in the negative x direction. Also, as can seen in Fig.
4(b), the wave profiles near the maximum wave amplitudes
are very different for two waves traveling in opposite direc-
tions. For example, the wave propagating in the negative x
direction is much taller and narrower, which is consistent
with the numerical solution of Stastna and Lamb'' for con-
tinuously stratified shear flows.

It is interesting to notice that, when a large amplitude
wave is traveling in the negative x direction, it is possible for
a recirculating eddy to appear at the wave crest. Figure 5
shows the streamlines for solitary waves of two different
wave amplitudes. A well-defined stationary recirculating

02 -cz+u,(X)(z—hy)  for

q’ X7 =
( Z) %QZZ —cz+ EZ(X) (Z + h2) for

Then, the total horizontal velocity in the upper layer at the
origin (X=0) can be found, after substituting (3.14) for u;, as

A% _
- —QZ—C_+ MI(O)
dz

g(Ap/py)(hy + a)

(i + 1)ty —a) 4.8)

1
=Qz--Qa+h
Z 2 a+ 1

from which the vertical location of a stagnation point z, can
be found as

eddy can be observed for a/h;=0.99a,, where a,/h,
=-3.0835, as shown in Fig. 5(b), while it disappears for
al/h,=0.7a,, In the absence of shear, the presence of a sta-
tionary recirculating eddy was observed previously in two-
layer system with a constant Brunt-Viisild frequency along
with a density jump across the interface by Voronovich.'

The criterion of existence of this recirculating eddy can
be found from the fact that a stagnation point where the
velocity vanishes should appear in the upper layer, more spe-
cifically, a<z=<0. At the leading order, the total stream
function ¥ can be approximated by

{(X)<sz<h,
-h,<z<{X).

4.7)

(4.9)

_a_h sl +a)
“T270 N (b +h)hy—a)

For this stagnation point to lie in a<zy=<0, the following
inequality between a and () must be satisfied:

O=_ 2hy |8(Ap/py)(hy + a)
a (hy+hy)(hy—a)’

which is shown in Fig. 6.

(4.10)
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Solitary waves without recirculating eddy

afth,

0.5 1 1s 2 25
Ulc,

FIG. 6. Domain of existence of recirculating eddy for p,/p;=1.001 and
hy/hy=5. Solid line: the maximum wave amplitude given by (4.5); dashed
line: Eq. (4.10).

V. CONCLUDING REMARKS

We have studied large amplitude internal solitary wave
solutions in a linear shear current using the strongly nonlin-
ear asymptotic model. It is found that, even for small back-
ground vorticity, the wave characteristics are significantly
different for waves traveling in opposite directions. The
background linear shear current changes not only the wave
speed, but also the wave shape drastically. Therefore, the
knowledge of background currents is essential for the
accurate interpretation of an increasing number of field
measurements.

Validity of the strongly nonlinear model in the absence
of shear has been examined by Ostrovsky and Grue'® and
Camassa ef al.’ It was found that solitary wave solutions of
the model show excellent agreement with Euler solutions
and laboratory/field experiments in shallow configuration in
which the depth ratio h,/h; is less than roughly 10. The
model proposed here is therefore expected to be valid for the
same depth ratio range. As the thickness of one layer is much
greater than the other, a deep configuration model similar to
that in Choi and Camassa® should be adopted, although its
validity might be limited to intermediate wave amplitudes
for a fixed depth ratio.”

Phys. Fluids 18, 036601 (2006)

Here, a simple, uniform vorticity distribution is adopted
and a similar approach used here can be applied to a more
general vorticity distribution which might be approximated
by the stack of constant vorticity layers.
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