
Large amplitude internal solitary waves in a two-layer system
of piecewise linear stratification

Arnaud Goullet and Wooyoung Choia�

Department of Mathematical Sciences, Center for Applied Mathematics and Statistics,
New Jersey Institute of Technology, Newark, New Jersey 07102-1982, USA

�Received 15 April 2008; accepted 10 August 2008; published online 16 September 2008�

We study large amplitude internal solitary waves in a two-layer system where each layer has a
constant buoyancy frequency �or Brunt–Väisälä frequency�. The strongly nonlinear model originally
derived by Voronovich �J. Fluid Mech. 474, 85 �2003�� under the long wave assumption for a
density profile discontinuous across the interface is modified for continuous density stratification.
For a wide range of depth and buoyancy frequency ratios, the solitary wave solutions of the first two
modes are described in detail for both linear-constant and linear-linear density profiles using a
dynamical system approach. It is found that both mode-1 and mode-2 solitary waves always point
into the layer of smaller buoyancy frequency. The width of mode-1 solitary waves is found to
increase with wave amplitude while that of mode-2 solitary waves could decrease. Mode-1 solitary
wave of maximum amplitude reaches the upper or lower wall depending on its polarity. On the other
hand, mode-2 solitary wave of maximum amplitude can reach the upper or lower wall only when the
interface is displaced toward the shallower layer; otherwise, the maximum wave amplitude is
smaller than the thickness of the deeper layer. Streamlines and various physical quantities including
the horizontal velocity and the Richardson number are computed and discussed in comparison with
the recent numerical solutions of the Euler equations by Grue et al. �J. Fluid Mech. 413, 181
�2000��. © 2008 American Institute of Physics. �DOI: 10.1063/1.2978205�

I. INTRODUCTION

Nonlinear internal solitary waves have been observed
frequently in density stratified coastal oceans for many years,
but recent field measurements of exceptionally large ampli-
tude solitary waves have prompted a number of new theoret-
ical studies, which have improved greatly the understanding
of highly nonlinear internal solitary wave characteristics.

For continuous density profiles, steady solitary wave so-
lutions of the Euler equations �in a frame of reference mov-
ing with the solitary wave� can be obtained by solving nu-
merically the Dubreil–Jacotin–Long �DJL� equation.1,2

Among many, Tung et al.,3 Turkington et al.,4 and
Brown and Christie5 computed large amplitude mode-1 and
mode-2 solitary wave solutions. It was shown that, as the
wave amplitude increases, the characteristic wavelength of
solitary waves increases so that flat “tabletop” solitary wave
solutions can be found. In the presence of background shear,
Stastna and Lamb6 computed the solitary wave solutions of
the DJL equation using the variational method of Turkington
et al.4

Due to their simplicity, the reduced long wave models
such as the Korteweg–de Vries �KdV� and the extended KdV
equations7,8 have been widely used, but these classical
weakly nonlinear models are not applicable to the large am-
plitude regime of interest. For a system of two constant den-
sity layers, strongly nonlinear long wave models have been
proposed and studied by Miyata9 and Choi and Camassa10

for both shallow and deep configurations. Compared to the

numerical solutions of the Euler equations, the strongly non-
linear models predict accurately the wave profiles and the
associate velocity fields of large amplitude internal solitary
waves. Recently, Camassa et al.11 showed that the solitary
wave solutions of the strongly nonlinear models are in good
agreement with laboratory experiments of Grue et al.12 for
the shallow configuration and those of Michallet and
Barthélemy8 for the deep configuration. Since the character-
istic horizontal length scale increases with wave amplitude, it
is not so surprising that the long wave model approximates
better as the wave amplitude increases. It is therefore quite
an accurate statement that the usefulness of these strongly
nonlinear long wave models has been well recognized for
large amplitude internal solitary waves.

For real oceanic applications, the assumption of constant
density layers could be inaccurate and it would be necessary
to consider more realistic density profiles. A density profile
that is more realistic, but simple enough so that any analyti-
cal description is feasible is a linear density profile with a
constant Brunt–Väisälä �or buoyancy� frequency for which
the nonlinear Euler equations can be reduced to the linear
Helmholtz equation for the stream function. By approximat-
ing a realistic density profile by a number of layers of differ-
ent constant buoyancy frequencies, the Helmholtz equation
can be easily solved in each layer although two neighboring
layers are coupled nonlinearly through the boundary condi-
tions at the interfaces. For two and three layer systems, Grue
et al.13 and Fructus and Grue,14 respectively, adopted a
boundary integral formulation to compute numerically fully
nonlinear solutions of the Euler equations. On the other
hand, Voronovich15 used a long wave asymptotic approacha�Electronic mail: wychoi@njit.edu.
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similar to that of Choi and Camassa10 and obtained a
strongly nonlinear �steady� model for a two-layer system of
constant buoyancy frequencies. In his work, Voronovich15

allowed a density jump across the interface where continuity
of pressure and normal velocity is required. For a set of
physical parameters for the Coastal Ocean Probing Experi-
ment �COPE� experiment,16 it was shown that the solitary
wave solutions of Voronovich’s model are in reasonable
agreement with the observed data, but no systematic descrip-
tion of solitary wave characteristics for a wide range of
physical parameters involved was provided.

In this paper, we modify the approach of Voronovich15

such that the density is continuous across the interface al-
though the slope of density profile �or the Brunt–Väisälä
frequency� is assumed to have a jump. Due to the absence of
density jump, the interface is no longer considered a vortex
sheet and, therefore, continuity of tangential and normal ve-
locities must be the boundary conditions at the interface,
which are different from those of Voronovich.15 With the
long wave model presented in Sec. II, both mode-1 and
mode-2 solitary wave solutions are obtained by solving a
system of coupled nonlinear ordinary differential equations.
A simpler density profile of linear and constant density strati-
fication in the upper and lower layers, respectively, is con-
sidered first in Sec. III. The characteristics of large amplitude
internal solitary waves are described in detail and the corre-
sponding streamlines and other flow quantities are also pre-
sented. Solitary wave solutions for the linear-linear density
stratification are then discussed in Sec. IV.

II. MATHEMATICAL MODEL

We consider a system of two fluid layers where the den-
sity is a piecewise linear function so that it can be expressed
as

��z� = ��0�1 − N1
2z/g� for 0 � z � H1,

�0�1 − N2
2z/g� for − H2 � z � 0,

� �1�

where Ni�0 are the Brunt–Väisälä �or buoyancy� frequen-
cies that are assumed to be constant in each layer, Hi are the
layer thickness, �0 is the density at the interface, and g is the
gravitational acceleration. See Fig. 1 for a schematic of the
problem. Notice that the density is continuous, but its slope
has a jump across the interface located initially at z=0.

To describe a traveling wave propagating with constant
speed c in the negative x-direction, we adopt a frame of

reference moving with the wave so that the problem is steady
and the total stream function, �i, can be written as

�i�x,z� = cz + �i�x,z� , �2�

where �i are the stream functions representing by the internal
wave motion and �i�x ,z�→0 as x→−� is imposed at the
upstream. After assuming that the fluid is incompressible and
inviscid, the Euler equations can be reduced, under the
Boussinesq approximation, to the DJL equation1,2 for �i,

�2�i

�x2 +
�2�i

�z2 +
Ni

2

c2 �i = 0 for i = 1,2. �3�

Since Ni are assumed to be constant in each layer, Eq. �3� is
the Helmholtz equation. The boundary conditions at the up-
per and lower rigid boundaries are given by

�1 = 0 at z = H1, �2 = 0 at z = − H2, �4�

while the kinematic boundary conditions at the interface lo-
cated at z=��x� are given, for both i=1 and 2, by

c�x + �i,z�x + �i,x = 0 at z = ��x� . �5�

where the subscripts x and z represent partial derivatives.
Notice that subtracting these two kinematic boundary condi-
tions �i=1,2� from each other gives continuity of normal
velocity, or, equivalently, continuity of stream function
across the interface,

�1 = �2 at z = ��x� . �6�

In addition, since the density is assumed to be continuous at
the interface, no velocity jump is allowed across the inter-
face. This requirement is fulfilled by continuity of horizontal
velocity

�1,z = �2,z at z = ��x� , �7�

which, along with Eq. �6�, guarantees continuity of normal
and tangential velocities across the interface and, therefore,
continuity of pressure �see Appendix A�.

Using the long wave approximation for small Hi /�,
where � is the characteristic wavelength, the solution of Eq.
�3� correct to O�Hi

2 /�2� can be found,15 after imposing the
boundary conditions given by Eqs. �4� and �5�, as

�i�x,z� = − c�
sin�Ni�z−zi�

c �
sin�Ni��−zi�

c � +
c3

2Ni
2� �

sin�Ni��−zi�
c ��xx

	 �Ni�� − zi�
c

cot	Ni�� − zi�
c


sin	Ni�z − zi�
c



−

Ni�z − zi�
c

cos	Ni�z − zi�
c


� , �8�

where z1=H1 and z2=−H2. The first term of Eq. �8� is the
solution of �i,zz+ �Ni

2 /c2��i=0 that is the leading-order ap-
proximation of Eq. �3� for long waves and the remaining
terms are the next-order corrections at O�Hi

2 /�2�.
Notice that when linearized for � /Hi
1, the first term of

Eq. �8� becomes the linear long wave solution for �i,

z

H

H

1

2
2

1 x
N

Nζ(x)

FIG. 1. Two-layer system of piecewise linear density profile.
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�1
linear �

sin�N1�H1 − z�/c�
sin�N1H1/c�

,

�9�

�2
linear �

sin�N2�H2 + z�/c�
sin�N2H2/c�

.

By imposing the remaining boundary condition given by Eq.

�7�, the equation for the interface ��x� can be obtained, with
an error of O�Hi

2 /�2�, as

A����xx + B����x
2 + C��� = 0, �10�

where

A��� =
1

4N1
csc2	N1�H1 − ��

c

�c + N1� cot	N1�H1 − ��

c

��c sin	2N1�H1 − ��

c

 − 2N1�H1 − ���

+
1

4N2
csc2	N2�H2 + ��

c

�c − N2� cot	N2�H2 + ��

c

��c sin	2N2�H2 + ��

c

 − 2N2�H2 + ��� , �11�

B��� =
1

8c
csc4	N1�H1 − ��

c

�c sin	2N1�H1 − ��

c

 − 2N1�H1 − ��� 	 �N1��3 + cos	2N1�H1 − ��

c

�

+ 2c sin	2N1�H1 − ��
c


� +
1

8c
csc4	N2�H2 + ��

c

�c sin	2N2�H2 + ��

c

 − 2N2�H2 + ���

	�N2��3 + cos	2N2�H2 + ��
c


� − 2c sin	2N2�H2 + ��
c


� , �12�

C��� = ��N1 cot	N1�H1 − ��
c


 + N2 cot	N2�H2 + ��
c


� .

�13�

We stress that continuity of horizontal velocity �or, equiva-
lently, tangential velocity� across the interface is imposed in
this paper and the coefficients of Eq. �10�, A, B, and C, are
different from those of Voronovich.15 In Ref. 15 a density
jump across the interface is introduced which allows a jump
in tangential velocity induced by the baroclinic vorticity gen-
eration mechanism and, therefore, only continuity of pres-
sure is required. While continuity of normal and tangential
velocities implies continuity of pressure, the converse is not
necessarily true �see Appendix A�.

By introducing �q , p���� ,�x�, Eq. �10� can be rewritten
as the following system of ordinary differential equations:

q̇ = p, ṗ = −
B�q�p2 + C�q�

A�q�
, �14�

where the dot denotes differentiation with respect to x. No-
tice that the origin �q , p�= �0,0� is always a fixed point due
to the boundary conditions at infinities for solitary waves.
Furthermore, for solitary wave solutions to exist, the origin
in phase space �q , p� has to be a saddle point connected to
itself by a homoclinic orbit. The condition on the Jacobian
for a saddle point to exist at the origin is given by
C��0� /A�0��0 �Ref. 15� that can be rewritten as

N1 cot�N1H1/c� + N2 cot�N2H2/c�
c�cN2 cot�N1H1/c� + cN1 cot�N2H2/c� − N1N2H1 csc2�N1H1/c� + H2 csc2�N2H2/c���

� 0. �15�

To find solitary wave solutions numerically, the system is
integrated, using a standard fourth-order Runge–Kutta
method, along a homoclinic orbit. The initial condition on
the unstable manifold is chosen to be close, of the order of
10−8, to the origin and is found from the eigenvectors with
positive real eigenvalues of the linearized system of Eq. �14�.

For a given set of parameters,

H � H2/H1, N � N2/N1, �16�

inequality �15� determines the admissible ranges of wave
speed c, as illustrated by the shaded regions in Fig. 2,
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c � c1 for mode 1,

�17�
cm � c � m for mode m = 2,3, . . . .

Notice that Fig. 2 is qualitatively similar to Fig. 1�a� in
Voronovich15 although the coefficients of the equation for the
interface are different, as mentioned previously. In Eq. �17�,
cm �m=1,2 , . . .� are the linear long wave speeds that are the
zeros of the numerator of Eq. �15� in descending order of
magnitude,

N1 cot�N1H1/cm� + N2 cot�N2H2/cm� = 0, �18�

while m �m=2,3 , . . .� are the singularities of the denomina-
tor of Eq. �15�, i.e.,

sin�NiHi/m� = 0 for i = 1,2, �19�

in descending order. Notice that the condition given by Eq.
�15� is necessary, but not sufficient, and solitary wave solu-
tions exist only on subintervals of the admissible speed
range.

Hereafter, to fix the length and time scales, we choose
H1=1 and N1=1. Then, H2=H and N2=N represent the
depth and buoyancy frequency ratios, respectively. In this
paper, we discuss solitary wave solutions for the following
two different density profiles: linear-constant �case 1� and
linear-linear �case 2� density profiles. Although case 1 can be
recovered from case 2 with N=0, it is considered separately
to make our discussion more accessible.

III. CASE 1: LINEAR-CONSTANT DENSITY PROFILE

When the density of the lower layer is constant �N=0�,
the thickness of the lower layer �or the depth ratio� H is the
only physical parameter. Then, for a fixed depth ratio, the
linear long wave speed cm can be found by solving Eq. �18�.
For example, the linear long wave speeds for the first
four modes can be found as �c1 ,c2 ,c3 ,c4�
= �0.437,0.197,0.124,0.090�, �0.493, 0.204, 0.125, 0.090�,
and �0.592, 0.210, 0.127, 0.091� for H=0.5, 1, and 5, respec-
tively. For these depth ratios, notice that the wave speeds
increase with H although the wave speeds for the higher
modes are not so different. Mode-1 linear long wave speed
c1 for varying H is shown in Fig. 3�a�. For H=0.5, the first
three linear eigenfunctions given by Eq. �9� with �2

linear

= �H2+z� /H2 are shown in Fig. 3�b�.
Mode-1 and mode-2 internal waves are most commonly

observed in field and laboratory experiments17–19 and we
therefore limit our detailed discussion of solitary waves to
the first two modes. Recently, for case 1, Grue et al.13 com-
puted mode-1 solitary wave solutions of the Euler equations
numerically using a boundary integral method and compared
them with their own laboratory experiment. Here, whenever
possible, mode-1 solitary wave solutions of the long wave
model are discussed in comparison with their numerical so-
lutions. On the other hand, to the best of our knowledge, no
systematic parameter study for mode-2 solitary waves is
available for a two-layer system of piecewise linear stratifi-
cation except for mode-2 periodic waves for a two-layer sys-
tem of constant densities in Refs. 20 and 21 and no compari-
son of mode-2 solitary wave solutions with previous results
is presented.

A. Mode-1 solitary waves

For a two-layer system of linear-constant density strati-
fication, as described in Appendix B, mode-1 internal soli-
tary waves always point into the layer of constant density
and, regardless of depth ratio, only solitary waves of depres-
sion �negative polarity� exist. This is consistent with what
Grue et al.13 observed numerically. In contrast, for a two-
layer system of constant densities, the polarity of solitary
waves depends on depth and density ratios: for example, if
the density ratio is close to 1, the interface is displaced to-
ward the deeper layer.

For case 1, mode-1 internal solitary waves of depression
exist over the following speed range:

c1 � c � 1, 1 = �1 + H�/� . �20�

Figure 4 shows homoclinic orbits in phase space �q , p�, as
defined in Eq. �14�, and the corresponding solitary wave pro-
files for three different wave speeds, c= �0.8,1.6,1.909�, and
a depth ratio of H=5. Unlike a two-layer system of constant
densities where no solitary wave solution exists beyond the
maximum wave amplitude that is always smaller than the
thickness of either layer, the maximum speed solitary wave
of depression reaches the lower wall when c approaches 1.
In phase space, as c approaches the maximum wave speed
1�1.9099, a cusp is formed at �q , p�= �−H ,0� on the ho-
moclinic orbit. This is also true for mode-1 solitary wave of
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FIG. 2. Admissible range of wave speed c �shaded region� for a saddle point
to appear at the origin for H=5 and N=0.2.

-1 -0.5 0 0.5 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

z

ψ linear

0 2 4 6 8 10
0.35

0.4

0.45

0.5

0.55

0.6

H

c1

(a) (b)

FIG. 3. �a� Linear long wave speed of first mode, c1, vs depth ratio, H, for
N=0. �b� Linear eigenfunctions ��� for mode 1 �—�, mode 2 �- - -�, and
mode 3 �— —� for N=0 and H=0.5.
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maximum amplitude for the case of linear-linear density pro-
file, as described in the Sec. III B. To determine whether
such large amplitude internal waves can be observed in real-
ity, their stability characteristics need to be examined.

The relationship between wave amplitude and wave
speed for mode-1 solitary waves is shown in Fig. 5�a�. It can
be seen that for small amplitude waves, the wave speed c
increases almost linearly with the wave amplitude a, but it
does at a slower rate as the wave amplitude increases further.
An approximate linear relationship between wave amplitude
and wave speed was also found numerically by Grue et al.13

up to �a��1.25 in their computation for H=4.13 and was
confirmed with their laboratory experiment. Beyond this am-
plitude, the observed solitary waves suffered from local
wave breaking and no attempts were made to compute soli-
tary wave solutions numerically. The wave amplitude of �a�
�1.25 is much smaller than the maximum wave amplitude
of �a�=H�=4.13� that the present theory predicts and, there-
fore, it is not so surprising to find the linear relationship
between c and a in their computation for �a��1.25.

As the amplitude �a� approaches its maximum value of
H, mode-1 solitary waves become wider and wider, which
can be seen from Fig. 5�b� for the half-width of the solitary
wave, �1/2, defined by ���1/2�=a /2. The wave speed and the
half-width of mode-1 solitary waves increase with wave am-
plitude in a manner similar to that for solitary waves in a
system of two constant density layers. For H=5, the half-
width has a minimum of �min�3.676 for a�−0.798 �or c
�0.879�. As H decreases, the wave amplitude corresponding
to the minimum wavelength decreases. For wave amplitudes
close to the amplitude of minimum width, the long wave
model becomes less valid, but it is expected to become in
much better agreement with the original Euler equations as

the wave amplitude increases, as noted for internal solitary
waves in a two-layer system of constant densities.11 The nu-
merical result of Grue et al.13 for H=4.13 showed no broad-
ening of solitary waves up to �a��0.8 although their labora-
tory experiment revealed significant broadening of solitary
waves for �a��0.8. We remark that the observed broadening
in the laboratory experiment for relatively small wave ampli-
tudes seems to be different from the broadening of large
amplitude waves shown in Fig. 5�b�. The observed broaden-
ing was attributed to local wave breaking that occurs when
the local fluid velocity is close to or exceeds the wave speed.
A description of time-dependent wave breaking is beyond
the scope of this paper, but it would be interesting to exam-
ine the stability characteristics of large amplitude solitary
waves that we describe in this paper.

For the case of constant-linear density profile, the stream
function �i�x ,z� induced by internal solitary waves is given
by Eq. �8�. For the lower layer with N=0, the expression for
�2 can be further reduced to

�2�x,z� = −
c�H + z��

H + �
+

�H + z�
6

	 c�

H + �



xx

	��H + z�2 − �H + ��2� . �21�

Figure 6 shows streamlines of �=constant for solitary
waves of c=0.7, 1.2, and 1.85, where � is the total stream
function defined by Eq. �2�. When the solitary wave speed
�or amplitude� is greater than a critical value, a recirculating
eddy, or a set of closed streamlines emerges in the upper
layer, as shown in Figs. 6�b� and 6�c�. This is not possible for
a two-layer system of constant densities unless a background
shear is present.22 To find a critical wave speed at which a
recirculating eddy emerges in the upper layer, we look for a
condition for a stagnation point to appear on the upper wall
at �x ,z�= �0,1�. As the wave speed increases beyond the
critical wave speed, this stagnation point splits into two stag-
nation points located symmetrically about x=0 so that a re-
circulating eddy is formed. Since the total horizontal velocity
at the center of the upper wall, U1�x ,z�=�1z at �x ,z�
= �0,1�, is expressed by

U1�0,1� = c +
1

2
csc	a − 1

c

�− 2a − �c − �a − 1�cot	a − 1

c

�

	�c − a cot	a − 1

c

����0�� , �22�

we can find numerically the critical wave speed ccr from
U1�0,1�=0. At this critical wave speed, the local fluid veloc-
ity at �x ,z�= �0,1�, u1=�1z�0,1�, induced by the internal
solitary wave has the same magnitude as the wave speed c,
but opposite sign. After using ���0�=−C�a� /A�a� from Eq.
�10� with ��0�=a and ���0�=0 and the relationship between
c and a shown in Fig. 5�a�, we can find ccr�0.73 for H=2
and ccr�0.925 for H=5. The corresponding critical wave
amplitudes are acr�−0.656 and acr�−0.926 for H=2 and 5,
respectively. For H=4.13, the critical wave amplitude is
found acr�−0.886 that is comparable to acr�−0.855 com-
puted numerically by Grue et al.13 This difference of about
3% between the long wave theory and their numerical value
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FIG. 4. �a� Homoclinic orbits in phase space �q , p���� ,�x� for mode-1
solitary waves of c=0.8 �—�, 1.6 �- - - -�, and 1.9 �— —� for N=0 and H
=5. �b� The corresponding mode-1 solitary wave profiles of a=−0.5765,
−3.0188, −4.8546, respectively. In this paper, since the solitary wave is
symmetric about x=0, only a half of the solitary wave profile is shown.
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is not clear, but the two values compare surprisingly well
when considering that the critical wave amplitude is not so
different from the amplitude for the minimum wavelength
�a�−0.725� for which the long wave model is expected to
compare less favorably with the Euler equations.

Figure 6 also shows the vertical variation of the horizon-
tal velocity induced by mode-1 solitary wave along the maxi-
mum displacement of the interface and the Richardson num-
ber Ri defined by

Ri2 = Ni
2/�ui,z�2. �23�

Notice that the induced horizontal velocity ui defined by ui

��i,z vanishes at a point on the axis of symmetry at x=0 in
the upper layer, as predicted by linear theory, although the
wave speed c needs to be added to ui to obtain the total
velocity. The horizontal velocity variation in the vertical di-
rection is, in fact, indistinguishable from the numerical solu-
tion of Grue et al.13 to graphical accuracy.

For case 1, the Richardson number for the upper layer is
given by Ri=1 / �ui,z�2 and that for the lower layer of constant
density is Ri=0. It is well known, from linear stability analy-
sis, that a vertically sheared parallel flow in a stably stratified
fluid could be unstable when the Richardson number is less
than the critical Richardson number of 0.25. We remark that
this criterion is a necessary condition for shear instability
while it is a sufficient condition for stability. In Fig. 6, for
c=1.85, it is observed that the local Richardson number
computed using Eq. �23� becomes less than 0.25 inside the

recirculating eddy. The flow induced by a solitary wave is
not strictly parallel, but the variation of the horizontal veloc-
ity in the horizontal direction is negligible for long waves so
that the Richardson number criterion can be used. The soli-
tary wave shown in Fig. 6�c� could therefore be locally un-
stable although the local Richardson number is found experi-
mentally to be much lower than 0.25 when periodic internal
waves become unstable by the Kelvin–Helmholtz
instability.23

The wave amplitude �a0.25� for which the minimum Ri-
chardson number in the upper layer becomes equal to 0.25 is
computed numerically and is compared in Fig. 7 with the
critical wave amplitude �acr� beyond which a recirculating
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eddy first appears. Notice that acr is always smaller than
a0.25. For a fixed depth ratio, unless there is an instability
mechanism other than shear instability, a recirculating eddy
in the upper layer appears for �a��acr until �a� exceeds a0.25.
For �a��a0.25, the solitary waves could become unstable.

B. Mode-2 solitary waves

The behavior of mode-2 solitary wave solutions depends
primarily on the depth ratio H and the following two ranges
of H will be considered: H�1 and H�1. When the thick-
ness of the lower layer of constant density is smaller than
that of the upper layer of linear density stratification �H
�1�, mode-2 solitary waves of negative polarity of −H�a
�0 exist and the solitary wave of maximum amplitude
reaches the lower wall. On the other hand, when the lower
layer of constant density is deeper �H�1�, the maximum
solitary wave amplitude is always smaller than the thickness
of the lower layer so that −H�amax�a�0. As shown in
Fig. 8, the maximum amplitude approaches amax�−0.791
for large H. The corresponding wave speed ranges are c2

�c�1 /2�2 and c2�c�2�=1 /�� for H�1 and H�1,
respectively, where c2 is mode-2 linear wave speed and 1

and 2 can be computed from Eqs. �20� and �19�, respec-
tively.

For H=5, the profiles of mode-2 solitary waves for three
different wave amplitudes �or wave speeds� are shown in
Fig. 9�a�. Unlike mode-1 solitary waves, the half-width of
mode-2 solitary waves decreases slightly as the wave ampli-
tude increases. As can be seen in Fig. 9�b�, mode-2 solitary
wave is narrower and travels slower when compared to
mode-1 solitary wave of same amplitude. On the other hand,
for H�1, the width of mode-2 solitary waves increases as a
approaches −H.

A recirculating eddy appears in the upper layer of linear
stratification when mode-2 solitary wave speed �or wave am-
plitude� is greater than a critical value. While a monopole-
type eddy is observed with mode-1 solitary waves, a dipole-
type eddy is accompanied by mode-2 solitary waves. Figure
10 shows streamlines inside a recirculating eddy for a
mode-2 solitary wave of c=0.28 for three different values of
H. It is interesting to notice that the flow pattern inside a
recirculating eddy can vary depending on the depth ratio H.
For small H, the recirculating eddy has a normal dipole
structure, as depicted in Fig. 10�a�, but, for H�1.357, its
interior flow configuration undergoes a bifurcation and turns

into a more complicated pattern, as shown in Fig. 10�b�. As
H increases further, a normal dipole structure reappears. Sta-
bility characteristics of recirculating eddies of different flow
patterns are of interest, but cannot be determined from the
present steady long wave theory. For a fixed wave amplitude,
the Richardson number inside mode-2 eddy is found smaller
compared to that inside mode-1 eddy and, therefore, mode-2
solitary wave seems to be more susceptible to shear
instability.

IV. CASE 2: LINEAR-LINEAR DENSITY PROFILE

We now consider the case of a piecewise linear density
profile and, in addition to the depth ratio H, the ratio of
buoyancy frequencies N is another physical parameter. As
shown in Appendix B, it is found that the polarity of solitary
waves depends only on N, but is independent of the depth
ratio H. Solitary waves are always of depression for N�1
�when the density gradient of the lower layer is less than that
of the upper layer� and of elevation for N�1. This implies
that solitary waves always point into the layer of smaller
density gradient, which is consistent with the previous obser-
vation for the linear-constant density profile case where soli-
tary waves point into the lower layer of zero density gradi-
ent. This observation is valid for both mode-1 and mode-2
solitary waves. For N=1, there is no jump in density gradient
and, therefore, no solitary waves exist; for N=0, the results
for case 1 can be recovered.

A. Mode-1 solitary waves

For case 2, mode-1 solitary wave solutions exist in the
following speed ranges

c1 � c � 1 for N � 1, c1 � c � N1 for N � 1, �24�

where c1 is the fastest linear long wave speed satisfying the
linear dispersion relation given by Eq. �18� and 1= �1
+H� /� is given by Eq. �20�. These admissible ranges of c
are illustrated in Fig. 11 for H=5, 1, and 0.5. The lower
boundary of the shaded region represents the linear long
wave speed given by Eq. �18�. For fixed H, the maximum
wave speed �or the upper boundary of the shaded region in
Fig. 11� is independent of N for N�1, while it is a linear
function of N for N�1. As the wave speed c approaches its
maximum value 1 or N1, the solitary wave reaches the
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lower or upper wall, for N�1 and N�1, respectively. It can
be noticed from Fig. 11�a� that, for large H, the range of
admissible wave speed between the minimum and maximum
speeds is very narrow for N�1 and, therefore, the wave
speed is almost independent of the wave amplitude a, where
0�a�1. On the other hand, for small H, the range of wave
speed is relatively narrow for N�1.

Figure 12 shows the streamlines, the induced horizontal
velocities at the maximum interfacial displacement, and the
variation of the Richardson number in the vertical direction
at x=0 for solitary waves of wave speed c=1.6, 1.75, and
1.908 for H=5 and N=0.8. The wave characteristics of
mode-1 solitary waves for case 2 are found very similar to
those for case 1 with N=0. A recirculating eddy can be ob-
served when the wave speed �or the wave amplitude� is
greater than a critical value, as noted previously. The Rich-
ardson number is greater than 0.25 everywhere along the
axis of symmetry �at x=0� for c=1.6 and 1.75, while it be-
comes less than 0.25 for c=1.908.

B. Mode-2 solitary waves

For N=0, it was found in case 1 that mode-2 solitary
waves of negative polarity exist up to a maximum wave
amplitude that is equal to or smaller than the thickness of the
lower layer for H�1 and H�1, respectively. For nonzero N,
there are two special values of N for which no solitary wave
solutions can be found: N=1 and N=1 /H. The former �N
=1� represents a single layer system of uniform linear strati-
fication for which no solitary wave solutions of any mode are

known to exist since the problem becomes linear. On the
other hand, mode-1 solitary wave solution exists even for
N=1 /H.

The speed range for which mode-2 solitary waves exist
is shown in Fig. 13 for H=5, 1, and 0.3. Notice that, for
some values of N, a narrow range of speed is allowed for
mode-2 solitary waves, in particular, for H=5. To describe
mode-2 solitary waves for varying N in detail, the case of
H�1 for which the thickness of the lower layer is greater
than that of the upper layer is considered first and the results
for H�1 will be summarized later.

For small N for which the buoyancy frequency of the
lower layer is smaller than that of the upper layer, solitary
waves of depression exist over a speed range of c2�c
�2�=1 /�� for N�1 /H, as shown in Fig. 13�a�. For this
range of N, while the maximum wave speed is independent
of N, the maximum wave amplitude is a function of N and is
always smaller than the thickness of the lower layer. In Fig.
14�a� with H=5 and N=0.1, the solitary wave profiles are
shown for three different wave speeds of c=0.23, 0.26, and
0.317. Unlike mode-1 waves, the width of mode-2 solitary
waves decreases slightly as the amplitude increases. A simi-
lar observation has been made for the case of N=0.

For 1 /H�N�1, mode-2 solitary waves of depression
exist over a speed range of c2�c�N1 / �1+N�. As shown in
Fig. 14�b�, the width of the solitary waves increases with the
wave speed �or the wave amplitude�, which has not been
observed for small N��H−1�. By tracking the location of a
singularity of the right-hand side of the system given by Eq.
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�14� located outside a homoclinic orbit, the maximum wave
amplitude is found to be �a�max= �1+NH� / �1+N��H at
which the singular point touches the homoclinic orbit.

For N�1, the buoyancy frequency in the upper layer is
smaller and, therefore, mode-2 solitary waves are of eleva-
tion. The range of wave speed lies in c2�c�N1 /2. As can
be seen from Fig. 14�c�, the width of the solitary waves
increases as the wave amplitude increases and the solitary
wave of maximum amplitude reaches the upper wall.

When the thickness of the lower layer is equal to or
smaller than that of the upper layer �H=1 or H�1�, the
ranges of wave speed and wave amplitude are summarized in
Table I.

Although the solution behavior for mode-2 solitary
waves is complicated, our findings for mode-2 solitary waves
can be summarized as follows. First, the polarity of solitary
waves is determined by N: Solitary waves of depression for

N�1 and of elevation for N�1. Second, the solitary wave
of maximum amplitude can reach the upper or lower bound-
ary when the solitary wave points toward the thinner layer;
otherwise, the maximum amplitude is smaller than the thick-
ness of the deeper layer. Lastly, the width of mode-2 solitary
waves does not necessarily increase as the wave amplitude
increases.

V. CONCLUSION

We have studied large amplitude internal solitary waves
for a two-layer system of linear stratification using a strongly
nonlinear asymptotic model derived under the long wave ap-
proximation with no smallness assumption on wave ampli-
tude. Two layers have different constant buoyancy �Brunt–
Väisälä� frequencies, but the density is continuous across the
interface. For linear-constant and linear-linear density pro-
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files, both mode-1 and mode-2 solitary wave solutions are
described in detail over the entire physical parameter space
of depth and buoyancy frequency ratios.

Regardless of the depth ratio, it is found that the internal
solitary waves always point to the layer of smaller buoyancy
frequency. For a system of two constant density layers, the
polarity of internal solitary waves is determined by the den-
sity and depth ratios. For fixed depth and buoyancy fre-
quency ratios, a recirculating eddy appears at the wave crest
when the wave amplitude exceeds a critical value. Mode-1
internal solitary waves become wider as the wave amplitude
increases which is not necessarily true for mode-2 internal
solitary waves. The solitary wave of maximum amplitude
can reach either the upper or lower wall although large am-
plitude solitary waves might be unstable since the Richard-
son number inside the recirculating region could become less
than 1

4 �according to the Richardson number criterion for
shear instability�.

Even though the results presented in this paper are based
on the long wave model, it is found that they show good
agreement with the fully nonlinear numerical results of Grue
et al.13 for mode-1 solitary waves. Keeping in mind that the
reduced gravity can be assumed to be small for oceanic ap-
plications, the characteristic horizontal length scale increases
as the wave amplitude increases and, therefore, the long
wave solutions for large amplitude internal solitary waves
are expected to be a good approximation to the fully nonlin-
ear solutions of the Euler equations, as noticed for a two-
layer system of constant densities.11 For continuously strati-
fied fluids, using a singular perturbation technique, Akylas

and Grimshaw24 computed mode-2 internal solitary waves
with oscillatory tails excited in resonance with mode-1 peri-
odic waves whose phase velocity is the same as mode-2 long
wave speed. Since we consider a long wave model with zero
boundary conditions at both infinities, the existence of
mode-2 solitary waves with oscillatory tails for the present
two-layer system cannot be addressed and it is required to
solve the Euler equations to find such solitary wave solu-
tions.

For a system of two constant density layers, the solitary
wave solutions of the inviscid model have been known to
suffer from the Kelvin–Helmholtz instability since only con-
tinuity of normal velocity is imposed to derive the model and
a jump in tangential velocity is induced when the interface is
deformed.25,26 Here, the solitary wave solutions are obtained
with imposing continuity of both tangential and normal ve-
locities, but might still be locally unstable for large wave
amplitudes when the Richardson number criterion is applied
at the location of maximum interfacial displacement. It
would be interesting to study the dynamics of both stable and
unstable solitary waves, but the present steady formulation
needs to be greatly modified.
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APPENDIX A: BOUNDARY CONDITIONS: PRESSURE
CONTINUITY VERSUS VELOCITY CONTINUITY

The pressure at the interface Pi is given, from the steady
Bernoulli equation,15 by

Pi = − 1
2 �1 + �x

2��c + �i,z�2 − �ig� + 1
2c2, �A1�

where the kinematic boundary condition �5� has been used to
express �i,x in terms of �i,z, and both �i,z and �i are evaluated
at z=�. Then, the pressure jump, �P� P1− P2, is given by

�P = − 1
2 �1 + �x

2��2c + �1,z + �2,z���1,z − �2,z�

− ��1 − �2�g� . �A2�

In the presence of density jump ��1��2�, when continuity of
pressure ��P=0� is imposed at the interface, the horizontal
velocity �and, therefore, the tangential velocity� is discon-
tinuous across the interface, as expected, and the interface

TABLE I. Wave speed c and wave amplitude a of mode-2 solitary waves for
varying N: �a� H�1; �b� H=1; �c� H�1. Here, anum is the maximum wave
amplitude that can be computed only numerically and no explicit expression
has been found.

�a� H�1 0�N�1 /H 1 /H�N�1 1�N

c c2�c�1 /� c2�c�N1 / �1+N� c2�c�N1 /2

a anum�a�0 �1−NH� / �1+N��a�0 0�a�1

�b� H=1 0�N�1 1�N

c c2�c�1 /� c2�c�N /�

a −1�a�0 0�a�1

�c� H�1 0�N�1 1�N�1 /H 1 /H�N

c c2�c�1 /2 c2�c�N1 / �1+N� c2�c�NH /�

a −H�a�0 0�a� �1−NH� / �1+N� 0�a�anum
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can be considered a vortex sheet. On the other hand, when
the density is continuous across the interface ��1=�2�, con-
tinuity of pressure gives

�P = �2c + �1,z + �2,z���1,z − �2,z� = 0, �A3�

which yields not only a physical solution satisfying continu-
ity of horizontal velocity ��1,z−�2,z=0� across the interface
but also a spurious nonphysical solution �2c+�1,z+�2,z=0�
for which continuity of tangential velocity is violated. On the
other hand, when continuity of horizontal velocity ��1,z

=�2,z� is imposed at the interface, continuity of pressure is
always satisfied.

Furthermore, when the DJL equation is solved using
asymptotic expansion, the two different boundary conditions
make a more significant difference even when �1=�2: conti-
nuity of pressure whose expression is valid only to O�Hi

2 /�2�
cannot be written as Eq. �A3� due to the truncation of higher-
order terms and, therefore, continuity of tangential velocity
is not guaranteed. This explains why the coefficients of the
equation for � in Voronocich15 resulting from pressure con-
tinuity is different from those of Eq. �10� in this paper.

APPENDIX B: POLARITY OF SOLITARY WAVES

In order to show that the polarity of internal solitary
waves in a linearly stratified two-layer system depends solely
on the buoyancy frequency ratio N, we study the system
given by Eq. �14� when the wave speed c is close to the
linear wave speed ci given by Eq. �18�. For c=ci, notice that
the Jacobian of the system at the origin of phase space,
�q , p�= �0,0�, has the form of

J = 	0 1

0 0



with double zero eigenvalues, for which a bifurcation known
as Takens–Bogdanov bifurcation27 can occur. One scenario
for this bifurcation is that the origin splits into a saddle point
and an elliptic point enclosed by a homoclinic orbit repre-
senting a solitary wave solution. Therefore, the polarity of
the solitary wave depends on the relative position of the
elliptic point with respect to the origin.

We first expand the right-hand side of system �14� about
the origin �q , p�= �0,0� up to quadratic order in q and p to
obtain

q̇ = p, ṗ = A1q + A2q2 + A3p2, �B1�

where Ai are constants depending on the parameters c, N, and
H with A1=0 for c=ci. In this reduced system, the fixed
points are given by �0,0� and �−A1 /A2 ,0� and it can be
shown that the second fixed point is an elliptic point since its
eigenvalues are purely imaginary. By assuming c=ci+� with
0��
1 and expanding the expression of −A1 /A2 up to first
order in �, we obtain

−
A1

A2
�

�

2ci

HN2csc2�HN/ci� + csc2�1/ci�
N2csc2�HN/ci� − csc2�1/ci�

. �B2�

The numerator of Eq. �B2� is always positive and the sign of
−A1 /A2 �or the polarity� is therefore determined by the de-
nominator. In fact, it is found numerically that −A1 /A2�0

for N�1 and −A1 /A2�0 otherwise. This implies that the
elliptic fixed point is located on the negative q axis for N
�1 and on the positive q-axis for N�1. Thus, it can be
concluded that the polarity of solitary waves depends only on
N and the solitary waves always point to a layer of smaller
buoyancy frequency.
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