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A combined analytical, numerical, and experimental study of the traveling-wave wall mode in rotating
Rayleigh-Bénard convection is presented. No-slip top and bottom boundary conditions are used for the nu-
merical computation of the linear stability, and the coefficients of the linear complex Ginzburg-Landau equa-
tion are then computed for various rotation rates. Numerical results for the no-slip boundary conditions are
compared with free-slip calculations and with experimental data, and detailed comparison is made at a dimen-
sionless rotation rateV=274. It is found that the inclusion of the more realistic no-slip boundary conditions for
the top and bottom surfaces brings the numerical linear stability analysis into better agreement with the
experimental data compared with results using free-slip top/bottom boundary conditions. Some remaining
discrepancies may be accounted for by the finite conductivity of the sidewall boundaries.
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I. INTRODUCTION

Rayleigh-Bénard convection in the presence of rotation
about a vertical axis exhibits many features not seen in con-
vection without rotation. For example, at high rotation rates
the first instability of the conductive state is not to a bulk
mode as predicted by Chandrasekhar[1] but rather to a
traveling-wave state localized near sidewall boundaries. The
first evidence for this mode can be seen in heat transport
measurements[2,3]; a partial explanation[4] was based on
linear stability calculations[5] which predicted a stationary
azimuthally periodic wall mode. Flow visualization of rotat-
ing convection in a cylindrical convection cell with radius-
to-height ratioG=1 revealed, however, that the wall mode
was a traveling wave[6,7]. The traveling-wave form of the
wall mode follows quite generally from the broken left-right
symmetry in rotating systems[8].

Linear stability calculations in bounded cylindrical geom-
etry of G=1 by Goldsteinet al. (GMNK) [9] and for an
infinite slab ofG=` by Kuo and Cross(KC) [10] and Her-
mann and Busse(HB) [11] also demonstrated the traveling
nature of the instability and provided numerical estimates for
the parameters at the onset of the instability. The infinite slab
calculations used rigid sidewall boundaries but free-slip
boundary conditions on the top and bottom boundaries,
whereas the bounded geometry calculations investigated
both free-slip and rigid top/bottom boundary conditions. Re-
cently, agreement between linear stability calculations in-
cluding rigid top-plate conditions for a straight wall atV
=274 [12] by Plaut(P) and a direct numerical simulation of
the wall mode in a curved geometry[13] by Scheel, Paul,
Cross, and Fisher(SPCF), also atV=274, implied that wall

curvature does not play a large role in deviations seen in
comparison between experiment and linear stability calcula-
tions.

Further experimental work by Ning and Ecke(NE) [14] in
a convection cell with a larger aspect ratio,G=2.5, showed
that the traveling-wave state was well-described by the com-
plex Ginzburg-Landau(CGL) equation(for a review of the
application of amplitude equations to problems in pattern
formation, see Ref.[15]). The experimentally determined co-
efficients compared reasonably well with the theoretical pre-
dictions of KC for free-slip top/bottom boundary conditions.
Because the CGL equation should apply best to laterally
large systems, a set of experiments withG=5 was recently
performed by Liu and Ecke(LE) [16,17]. They determined
the coefficients of the CGL equation as well as some higher-
order corrections, mapped out the Eckhaus-Benjamin-Feir
[18–21] stability boundary and measured properties of phase
diffusion in the stable wave-number band.

These recent experiments for larger aspect ratios provided
more detailed information regarding the traveling-wave state
in convection under rotation, which prompted us to reexam-
ine the linear analysis for an infinite slab with the more re-
alistic boundary conditions. Before presenting our results, we
describe briefly the physical system. Details of the experi-
mental apparatus can be found elsewhere[17].

Rayleigh-Bénard convection with rotation about a vertical
axis [1] is described by the following three-dimensionless
parameters:Ra, V, andPr. The Rayleigh number, a measure
of the thermal forcing of the system, is defined byRa
=gad3Du /nk, whereg is the acceleration of gravity,a is the
thermal expansion coefficient,Du is the temperature differ-
ence across a fluid layer of heightd, n is the kinematic vis-
cosity, andk is the fluid thermal diffusivity. The strength of
the Coriolis force resulting from rotation about a vertical axis
at angular rotation frequencyVD is measured by the dimen-
sionless rotation rateV=VDd2/n. (The Coriolis force is
sometimes parametrized by the dimensionless Ekman num-
ber which is the inverse ofV.) The third parameter is the
Prandtl numberPr=n /k which controls the dominant form
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of the nonlinearity in thermal convection. The centrifugal
force is not important for these experiments in which the
ratio of the centrifugal accelerationVD

2 R, whereR is the cell
radius, to the gravitational accelerationg is 0.03 (see, for
example, the heat transport curve in Ref.[22]). For fixedPr,
the bifurcation parameter for the convection problem ise
=Ra/Rac−1, whereRacsVd is the critical Rayleigh number
for the onset of convection. Rotation suppresses that onset
and, for largeV, the critical Rayleigh number for the bulk
mode Rab scales likeV4/3 [1], whereasRac for the wall
mode with insulating sidewall boundaries scales asV
[10,11]. The geometry also enters the problem and is repre-
sented by the aspect ratioG which is the radius-to-height
ratio for a cylindrical convection cell.

This paper is organized in the following order: After in-
troducing the governing equations with the boundary condi-
tions in Sec. II, the linear stability analysis is carried out
analytically for the free-slip boundary condition and numeri-
cally for the no-slip boundary condition. Then the linear co-
efficients of the CGL equations are computed. In Sec. III, we
compare our results with experimental data and earlier nu-
merical solutions. Further discussions and conclusion are
made in Sec. IV.

II. GOVERNING EQUATIONS

For our experimental setup, the dynamics of the fluid is
governed by the incompressible Navier-Stokes equations in
the Boussinesq approximation. Adopting Cartesian coordi-
nates centered at the midplane of the cell and on the side-
wall, these equations are conveniently written in terms of the
vorticity field v= = 3u, whereusx ,td=su,v ,wd is the three-
dimensional velocity vector,

vt − Prs¹2v + 2Vuz + = 3 ukd = sv · =du − su · =dv,

s1d

ut − ¹2u − Ra w= − u · = u. s2d

Here we have nondimensionalized the equations by scaling
length byd, time byd2/k, temperatureusx ,td by kn / sagd3d,
thereby collecting the three-dimensionless parameters intro-
duced in Sec. I, respectively,Ra, V, andPr. Notice that the
temperatureu is measured with respect to the conducting
solutionu=0, uc=Dus1−2z/dd /2.

For boundary conditions at the sidewall, we impose no
slip for velocity u and insulation for temperatureu,

u = 0, uy = 0 aty = 0. s3d

The system is assumed to relax to the conducting state far
from the sidewall, so that we can take zero boundary condi-
tions aty=`,

u → 0, u → 0 asy → `. s4d

At the top and bottom surfaces, we consider two different
boundary conditions: no-slip boundary condition,

u = 0, u = 0 atz= ±
d

2
, s5d

free-slip boundary condition,

uz = vz = w = 0, u = 0 atz= ±
d

2
. s6d

The free-slip boundary conditions at the top and bottom are
unphysical, but analytic solutions are available for this case.
These can be used to validate our algorithm for solving the
no-slip case which can only be treated numerically. Further
simplification can be achieved by introducing the velocity
vector potential

u = = 3 sxi + fj + ckd

= scy − fzdi + s− cx + xzdj + sfx − xydk , s7d

where the componentsxsy,z,td, fsx,y,z,td, andcsx,y,z,td
are the new unknowns to be determined andsi , j ,kd are the
unit vectors in thesx,y,zd directions. The velocity field gen-
erated by Eq.s7d is consistent with either free-slip or no-slip
boundary conditions onu swhich eliminate the need of a
scalar potentiald. The x component of the vector potentialx
scorresponding to the Stokes streamfunction for axisymmet-
ric flows about the vertical axis in cylindrical geometryd is
not necessary forlinear traveling waves, since it would cor-
respond to the zero-wave-number mode, and in the following
analysis we assumex=0. The vorticity is then given, in
terms of the vector potential, by

v = = 3 u = sfxy + cxzdi + scyz− fxx − fzzdj

+ sfyz− cxx − cyydk . s8d

A. Amplitude equation

The conducting state, corresponding to the zero solution
for Eqs. (1) and (2), becomes unstable for certain values of
the parameters. Mathematically, these can be determined
through the study of a linear eigenvalue problem. Assuming
that the instability manifests itself as small amplitude(appro-
priate near onset) traveling waves, we can writeF
=sf ,c ,udT as

Fsx,y,z,td = AF1sy,zdeikx+st + c.c, s9d

whereA is the complex wave amplitude,k is the wave num-
ber, and c.c.stands for the complex conjugate. When
Refsg.0s,0d, the system is linearly unstablesstabled.
The smallness assumption allows us to linearize Eqs.s1d
and s2d. Taking into account Eq.s9d yields the eigenvalue
problem

ssL1 + M1dF1 = 0, s10d

for operatorsL1 andM1 which can be read off the left-hand
side of Eqs.s1d ands2d, with the boundary conditions for the
eigenfunctionF1 from Eqs.s3d and s6d, namely,

f1 = c1 = c1y = u1y = 0 aty = 0, s11d
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f1 = c1 = u1 = 0 asy → `, s12d

for the no-slip case,

f1 = f1z = c1 = u1 = 0 atz= ± 1
2 , s13d

and, for the free-slip case,

f1 = f1zz= c1z = u1 = 0 atz= ± 1
2 . s14d

As shown earlierf10,11g, solutions of Eq.s10d with the free-
slip boundary conditions14d are separable and can be found
almost entirely by analytic tools. We used these solutions to
validate our numerical computations for the case of no-slip
boundary condition, where a closed-form solution is not
available and a fully two-dimensional eigenvalue problem
must be solved. To solve Eq.s10d numerically, we used a
pseudospectral method similar to that developed by Marques
et al. [23]. The semi-infinite domain is truncated at some
(large) y=L, where we impose the boundary condition for
y=`. The sensitivity on the sizeL of the computational do-
main is expected to be very low because the experimentally
observed traveling waves are confined in a narrow region
close to the wall. The effect of the domain size will be ex-
amined in detail later. In both free-slip and no-slip cases,
Newton-Raphson can be used to find iteratively the critical
wave numberkc and the critical Rayleigh numberRac, which
is the minimum value ofRa for which Refsg=0. Then the
eigenvalue becomes the wave frequencyvc=Imfscg, and the
corresponding eigenfunctionF1 determines the velocity-
temperature field, respectively.

Next, solutions away from the critical valueRac can be
obtained in the form of a traveling wave solution Eq.(9)
which is slowly modulated in space and time by letting the
amplitudeA vary slowly in x and t,

F1sx,y,z,td = Asx,tdF1sy,zdeiskcx+vctd + c.c, s15d

wherevc and kc are the critical wave frequency and wave
number.

A multiscale asymptotic expansion with respect to the
small parametere;sRa−Racd /Rac!1 results in the com-
plex Ginzburg-Landau(CGL) equation with periodic bound-
ary conditions for the evolution of the amplitudeA [15,17],

t0sAt + cgAxd = es1 + ic0dA + j0
2s1 + ic1dAxx

− g0s1 + ic2duAu2A, s16d

where all the coefficients are real,t0 is the time scale,j0 is
the spatial scale,cg is the group velocity,e is the linear
bifurcation parameter, andg0 is the nonlinear parameter. The
coefficientsci’s control the dependence of the modulation
frequency on modulation wave number and one.

In their experiments, LE[17] measuredcg, t0, j0, and
c0−c1, and showed that the traveling-wave wall mode pro-
vides a classic example of a physical nonlinear-wave system
with a supercritical bifurcation described by the CGL equa-
tion. Thus, a test of how well the theory describes the experi-
ment can be carried out by computing the CGL coefficients.
For this purpose, it is in general necessary to expand the
solution F to third order in terms ofe and to impose the

solvability condition on the higher-order equations. This pro-
cedure is standard but a bit laborious and we omit the details;
we report the result for the coefficients of the linear terms in
the CGL equation in Table II.

For the linear-term coefficients there is an alternative to
carrying out the expansion to higher-orders by making use of
our numerical solutions for linear stability. After computing
s near the critical Rayleigh number and wave number, we
calculate numerically the first- and second-order derivatives
of s with respect tok andRa at skc,Racd to obtain

cg = iU ] s

] k
U

c

, a = − RacU ] s

] Ra
U

c

, b =
1

2
U ]2s

] k2U
c

,

s17d

where the subscriptc stands for the evaluation at the critical
valuesskc,Racd. In our computations, a second-order finite
difference is used to evaluate Eq.s17d and gives accurate
resultsssee belowd. The derivatives in Eq.s17d are the coef-
ficients of the linear CGL equationf24g in the form

At + cgAx + eaA + bAxx = 0. s18d

Comparing Eq.s18d with Eq. s16d, we have

t0 = −
1

ar
, j0

2 =
br

ar
, c0 =

ai

ar
, c1 =

bi

br
, s19d

and the subscriptsr and i represent the real and imaginary
parts, respectively.

When we chooseA=A0exp(isqx−std), whereq=k−kc and
A0 is a real constant, and substitute this into the CGL equa-
tion (16), the real and imaginary parts yield

e = j0
2q2 + g0A0

2, s20d

s= cgq −
1

t0
sc0e − c1j0

2q2 − c2g0A0
2d. s21d

For small amplitude wavessA0!1d, Eq. s20d at the marginal
stability boundary gives at leading ordereM =j0

2q2. Differ-
entiating Eq.s21d with respect toq, we find the group veloc-
ity vg as

vg = cg +
2c1j0

2

t0
q, s22d

and, at the critical conditionsq=0d, we recovervg=cg.

III. NUMERICAL RESULTS AND DISCUSSIONS

For the numerical results described here, we chosePr
=6.3 following the experiment of Liu and Ecke[17]. Prior to
comparing with experimental data, we validate our numeri-
cal solutions. For the free-slip boundary conditions at the top
and bottom boundaries, we compare our numerical solutions
with those derived analytically[10,11].

As shown in Table I, our numerical solutions forRac and
vc are accurate for various choices of grid sizesDd and com-
putational domain sizesLd. Since we are interested in the
wall mode for which all disturbances are concentrated near
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the sidewall boundary, the relatively small computational do-
main in the y direction appears to work well. Under the
limitation of our computational resources, we choseL=2 and
D=1/10 in all of thecomputations presented hereafter. With
this choice, the maximum error in our numerical solutions is
less than 3 % for any physical quantities as well as for the
coefficients of the CGL equation.

Since no analytic solutions are available for the case of
rigid boundary, we tested our code for the no-slip boundary
condition by comparing results from the two different meth-
ods described above, i.e., we compared the values of linear
CGL coefficients obtained by imposing the solvability con-
dition with those obtained by taking finite difference deriva-
tives with respect to the parameters. As shown in Table II,

the two results are almost identical which gives confidence in
the code’s reliability.

For V=274, the computed eigenfunctionsF1=sf ,c ,ud
are presented in Fig. 1. The concentration of all disturbances
near the wall boundary aty=0 is immediately evident and
the use of a finite computational domain is therefore justi-
fied. The corresponding streamlines in thesx,zd plane and
the sx,yd plane are shown in Fig. 2 and the temperature
distribution in thesx,yd plane is shown in Fig. 3.

We now present our numerical results for linear coeffi-
cients of the wall mode in rotating convection. We make
extensive comparison with existing experimental(NE,LE)

TABLE I. Comparison between exact and numerical solutions
for the free-slip boundary conditions. For this computation,Dy=D,
Dz=D /2, V=274, andRac andvc are evaluated atkcd=3.968.

Exact D=1/8 D=1/10 D=1/8

L=2 L=2 L=3

Rac 19843.8 19841.2 19846.8 19843.9

Error s%d 0 −0.01 0.015 0.005

vc 24.213 24.202 24.213 24.212

Error s%d 0 −0.08 0 −0.04

TABLE II. Comparison of numerical solutions from two differ-
ent methods for the no-slip boundary condition. For this computa-
tion, V=274,Rac=19646.97,kc=4.221, andvc=22.413. Method 1:
differentiation of s as shown in Eq.(17). Method 2: solvability
condition.

Method 1 Method 2

cg 1.918320 1.918320

ar −39.807999 −39.807999

ai −25.342976 −25.342918

br −1.7404456 −1.7404476

bi −0.8259564 −0.8259625

FIG. 1. Eigenfunctions forRa=Rac andV=274 with no-slip boundary condition:sad ufu / ufumax, sbd ucu / ucumax, scd uuu / uuumax
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and other numerical(GMNK,KC,HB) data where all the data
are made dimensionless by scaling length byd, time byd2/n,
and velocity byn /d. In several cases the experimental data
are sparse or have substantial error bars indicating a need for
better data but we present the results of our numerical com-
putation for the time when better data are available. We or-
ganize the presentation of the data in the following manner:
First, we discuss the basic linear stability parameters
Rac, kc, andvc as functions ofV. We then present coeffi-
cients for the CGL expansion, see Eq.(16), which include
the marginal stability boundary curvaturej0, the linear group
velocity vg, the time scalet0, and the combination of com-
plex coefficientsc0−c1 which is measured in the experiments
of NE and LE. Finally, we compare the experimentally ob-

tained radial structure of the wall mode with a numerically
computed linear eigenmode.

We first compare our results for linear parametersRac, kc,
andvc with the numerical results of GMNK, KC, and HB for
free-slip top and bottom boundary conditions and with the
experimental results of NE and LE. This comparison allows
us to evaluate the importance of incorporating no-slip bound-
ary conditions on the top and bottom and to estimate the
influences of wall conductivity and wall curvature. In all the
plots comparing experimental and numerical results, we use
data points for experimental measurements and solid(no
slip) or dashed(free slip) lines for the numerical results. In
Fig. 4, experimental results for the critical Rayleigh number
Rac for G=5 [17] are compared with numerical computa-
tions. Our free-slip calculations agree well with those of HB
and show little difference for free-slip and no-slip top/bottom
boundary conditions. The calculations of KC are slightly
higher than the experimental values, whereas the calculations
in finite geometry of GMNK are somewhat smaller. The KC
results take into account the finite sidewall conductivity of
the cell used by NE but the convection cell of LE had higher
sidewall conductivity because of different cell construction.
We have not conducted detailed calculations of this effect but
it seems to be a reasonable explanation for remaining dis-
crepancies between theory and experiment. Nevertheless, the
agreement among the numerical results is excellent except
for the finite aspect-ratio calculations of GMNK suggesting
that smallG lowersRac slightly.

The effect of rigid top/bottom boundaries is more pro-
nounced on the wave number. In Fig. 5, one sees again that
the three calculations ofkc for free-slip top/bottom boundary
conditions agree well. The no-slip boundary condition in-
creaseskc by about 10% and nearly halves the difference
between experiment and theory. The remaining discrepancy
is unresolved as there is little apparent difference between
the perfectly insulating calculations and the finite conductiv-
ity calculations of KC for the free-slip boundary condition. It

FIG. 2. Contourlines ofsad Reff̄yszdexpsikxdg and sbd Refc̄zsydexpsikxdg for Ra=Rac and V=274 with no-slip boundary condition,

wheref̄yszd and c̄zsyd represent the average off over y andc over z, respectively.

FIG. 3. Density plot of Refūzsydexpsikxdg for Ra=Rac and V

=274 with no-slip boundary condition, whereūz represents the av-
erage ofu over z.
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is important to recall, however, that the periodic boundary
conditions in the experiments lead to a discretization ofk
which is not reflected in the analysis, where use of an infinite
x-domain makesk range over all the reals.

The largest change brought about by the use of realistic
top/bottom boundary conditions is in the critical Hopf fre-
quency. In Fig. 6, the three free-slip results are indistinguish-
able but are significantly above the experimental values. The
rigid boundary conditions, however, yield excellent agree-
ment with the experimental results. Again small sidewall
conductivity does not seem to be important in the depen-
dence ofvc although in the high-conductivity limit there are
substantial differences in all the critical parameters[5,9]. An-
other way to compare the calculations of the linear param-
eters is to considervc as a function ofkc as illustrated in Fig.
7. The conclusion is that the main linear parameters agree
reasonably well with experimental results and that the rigid
top/bottom corrections improve the agreement.

Recently, two other calculations[12,13] were performed
at V=274 that provide a check at that particular value for our
linear stability calculations. The first was the same linear
stability calculation as we performed with rigid top and bot-
tom boundary conditions and a straight sidewall boundary
[12]. The second was a direct numerical simulation of an
annular geometry[13] in which the outer-sidewall and inner-
sidewall states are only weakly coupled near onset and thus
the calculated parameters should be a close approximation to
the outer-sidewall state in a cylinder. In Table III, we com-
pare the linear parameters obtained withV=274 for the ex-
perimental results of LE, the linear stability results of KC
and P, the direct numerical simulation of SPCF, and our
work. Our results agree perfectly with those of Plaut and are
quite close to the results of the numerical simulations of
SPCF. The largest difference is forvg which we discuss in
more detail below.

We now consider linear parameters that are related to the
CGL expansion near onset and which are more difficult to

measure precisely: the marginal stability boundary and the
linear group velocity. In Fig. 8, we show the marginal stabil-
ity boundary from our calculations and from the experiment
by LE. Similar to the dependence ofkc on the boundary
conditions, there is improvement in the agreement between
experiment and theory using the rigid boundary conditions.
The remaining differences are, however, outside the uncer-
tainties of measurement. Finite sidewall conductivity could
have an impact here. Another way to check the correspon-
dence of the calculations and the experiment is to compare
the stability boundaries as a function ofV or, equivalently,j0
for varying V. From Eq.(20), since we can fit the marginal
stability boundaries to a parabola, we find the quadratic co-
efficient j0 from the experimental data, as shown in Fig. 9.

FIG. 4. Critical Rayleigh numberRac vs V for experimental
data withG=5 (LE, solid circle), (HB, open square), Chandrasekhar
1961 (long-short-short dashed), (GMNK, long-short dashed), (KC,
dotted line), free-slip top/bottom boundary conditions(dashed line),
and no-slip top/bottom boundary conditions(solid line).

FIG. 5. Critical wave numberkc vs V for experimental data with
G=5 (LE, solid circle), andG=2.5 by(NE, solid square), (HB, open
square), (KC, dotted line), free-slip top/bottom boundary conditions
(dashed line), and no-slip top/bottom boundary conditions(solid
line).

FIG. 6. Critical frequencyvc vs V for experimental data with
G=5 (LE, solid circle), (GMNK, long-short dashed), (KC, dotted
line), (HB, open square), free-slip top/bottom boundary conditions
(dashed line), and no-slip top/bottom boundary conditions(solid
line).
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The rigid boundary correction is in the right direction rela-
tive to the free-slip case but again does not fully account for
the difference.

The comparison of the linear group velocity as a function
of q is less satisfying but also the most difficult. The experi-
mental determinations are made by extrapolating finite am-
plitude data to zero at the marginal stability boundary, which
introduces some uncertainty. The higher-order corrections,
i.e., quadratic inq, are even less robust because they are
obtained[17] from phase dynamics near the center of the
stability band. Thus, we compare our calculations with the
experimental group velocity data only to linear order inq. In
Fig. 10, the data and numerical results are compared. Our
calculations of the linear group velocity as a function ofq
show some differences but in this case the use of rigid
boundary conditions worsens rather than improves the agree-
ment between experiment and theory. The slope of the linear
dependence ofvg on q has the correct magnitude and does
not change much with top/bottom conditions but the zero
intercept becomes smaller when rigid conditions are in-
cluded. The influence of curvature can be estimated from the
difference between the linear stability calculation for a

straight and thermally insulating sidewall wherevg=1.9, see
Table III, and the direct numerical simulation of SPCF for a
curved sidewall with insulating thermal boundary conditions
wherevg=2.0. Thus, curvature seems to contribute less than
a 5 % difference invg. The only remaining explanation is
finite sidewall thermal conductivity. It is interesting to note
that the results of Kuo[25] indicate that some quantities are
not monotonic as a function of wall conductivity. This ap-
pears to be the case forvg.

Finally, we consider two quantities that have significant
experimental uncertainties, but are sufficiently important to
deserve a comparison with the numerical data. The charac-
teristic timet0 andc0−c1 are plotted in Figs. 11 and 12 as a
function of V. As is obvious from these plots, more experi-
mental work is needed before a conclusion can be made re-
garding the effectiveness of including realistic top-bottom
boundary condition. Notice that the no-slip dependence of

FIG. 7. Critical frequencyvc vs kc for experimental data with
G=5 (LE, solid circle), andG=2.5 by(NE, solid square), (HB, open
square), (KC, dotted line), free-slip top/bottom boundary conditions
(dashed line), and no-slip top/bottom boundary conditions(solid
line).

TABLE III. Comparison of linear coefficients of the rotating
convection wall mode forV=274 andPr=6.3. Experiments are Liu
and Ecke(LE) [17]. Linear stability calculations are Kuo and Cross
(KC) [10], Plaut(P) [12], and our results. A direct numerical simu-
lation by Scheelet al. (SPCF) is also included[13].

Source Rac kc vc vg t0 j0 sc0−c1d /t0

LE 20850 4.65 −22.0 2.65 0.03 0.179 4.2

KC 19500 4.00 −24.0 2.22 0.026 0.24 14.4

P 19660 4.22 −22.4 1.91 0.025 0.21 6.4

SPCF 19500 4.2 −22.3 2.0 0.025 0.22 6.4

Present 19647 4.22 −22.4 1.92 0.025 0.21 6.4

FIG. 8. Marginal stability boundary(eM vs q) for experimental
data withG=5 (LE, solid circle), curve fit to the data(long-short
dashed), free-slip top/bottom boundary conditions(dashed line),
and no-slip top/bottom boundary conditions(solid line). V=274.

FIG. 9. Quadratic coefficientj0 vs V from fit to marginal sta-
bility boundary. Experimental data withG=5 (LE, solid circle,V
=274) and G=2.5 (NE, solid circle,V=544), free-slip top/bottom
boundary conditions(dashed curve), and no-slip top/bottom bound-
ary conditions(solid curve).
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c0−c1 on V indicates a trend that brings the no-slip curve
closer to the free-slip curve for higher angular velocitiesV,
but the free-slip curve seems closer to the experimental data
point in this region.

Another comparison of interest is that of the radial struc-
ture of the experimental data with the computed linear eigen-
function for rigid top-bottom boundaries. In the experiment
(LE), the shadowgraph intensity(proportional to temperature
deviation from a linear profile) is computed over a narrow
radial window by taking the standard deviation around the
azimuthal direction. Uncertainties in the radial position are
about 2 % near the wall and the determination of the inten-
sity near the wall is difficult owing to light reflection from
the boundary. The difficulties in this comparison are exacer-
bated by the finite amplitude of the data compared with the
linear conditions of the eigenfunction which was calculated
as closely as possible to match the experimental quantity. In

Fig. 13, we compare several data sets and the computed
eigenfunction. We have made some small shifts in amplitude
and radial position to obtain reasonable alignment. This is
not a well-defined operation and thus the results should be
viewed with caution. The clearest comparison is in the loca-
tion and magnitude of the secondary peak in the temperature
distribution. The location appears to be correct but the mag-
nitude of this peak is considerably smaller in the computed
eigenfunction.

IV. CONCLUSION

The inclusion of rigid top and bottom boundary condi-
tions to the problem of the stability of traveling waves in
rotating Rayleigh-Bénard convection for an infinite slab im-
proves the agreement between theory and experiment. The
critical Rayleigh numberRac is rather insensitive to the
change in top/bottom boundary conditions. The slightly
higher values ofRac for the experiments withG=5 suggest
that the finite thermal conductivity of the sidewalls elevates
Rac; recall that Rac for perfect conducting boundaries is
close to the bulk linear onset at significantly higher values of
Ra. The most dramatic improvement using the realistic top/
bottom boundary conditions is in the variation of the critical
frequencyvc with V which now agrees very well with ex-
periment. The critical wave numberkc dependence onV is

FIG. 10. Group velocityvg vs q for experimental data withG
=5 (LE, solid circle), curve fit to the data(dotted), free-slip top/
bottom boundary conditions(dashed line), and no-slip top/bottom
boundary conditions(solid line). V=274.

FIG. 11. Characteristic timet0 vs V for experimental data with
G=5 (LE, solid circle,V=274) and G=2.5 (NE) (solid circle, V
=544), free-slip top/bottom boundary conditions(dashed line), and
no-slip top/bottom boundary conditions(solid line).

FIG. 12.c0−c1 vs V for experimental data withG=5 (LE) (solid
circle, V=274) and G=2.5 (NE) (solid circle, V=544), free-slip
top/bottom boundary conditions(dashed line), and no-slip top/
bottom boundary conditions(solid line).

FIG. 13. Comparison of eigenfunctions between experiment
(symbols) and numerical solution(solid line).
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also improved by the new calculations but some difference
remains. Similarly, the stability boundaries as a function of
modulation wave numberq are brought into closer, but not
excellent, agreement with experiment for the realistic bound-
ary conditions.

The source of the remaining differences between experi-
ment and the results reported here may be attributed to finite
sidewall conductivity in the experiments as opposed to the
perfectly insulating boundary conditions used in the analysis.
It would be useful in that regard to consider a single value of
V and systematically investigate the variation of parameters
as a function of sidewall conductivity. The other possible
source of discrepancy between numerics and experiment is
the cylindrical geometry of the experimental container. This
radial curvature could affect, for example, the structure of

the eigenfunction by enhancing the magnitude of the second-
ary peak. The periodic conditions imposed on the wave by
the experimental geometry might also lead to some system-
atic variations in the parameters. On the other hand, a close
comparison between the linear stability results atV=274 for
a flat wall [12] and direct numerical simulations at the same
V value for an annular geometry show little dependence on
curvature for the main linear parameters.

ACKNOWLEDGMENTS

We acknowledge useful discussions with Hermann Riecke
and Edgar Knobloch. This work was funded by the U.S.
Department of Energy(Grant No. W-7405-ENG-36).

[1] S. Chandresekhar,Hydrodynamic and Hydromagnetic Stability
(Oxford University Press, Oxford, 1961).

[2] T. Rossby, J. Fluid Mech.36, 309 (1969).
[3] V. P. Lucas, J. M. Pfotenhauer, and R. Donnelly, J. Fluid

Mech. 129, 251 (1983).
[4] J. M. Pfotenhauer, J. Niemela, and R. Donnelly, J. Fluid Mech.

175, 85 (1987).
[5] J. C. Buell and I. Catton, Phys. Fluids26, 892 (1987).
[6] F. Zhong, R. E. Ecke, and V. Steinberg, Phys. Rev. Lett.67,

2473 (1991).
[7] F. Zhong, R. E. Ecke, and V. Steinberg, J. Fluid Mech.249,

135 (1993).
[8] R. E. Ecke, F. Zhong, and E. Knobloch, Europhys. Lett.19,

177 (1992).
[9] H. F. Goldstein, E. K. Knobloch, E. K. Mercader, and M. Net,

J. Fluid Mech.248, 583 (1993).
[10] E. Y. Kuo and M. C. Cross, Phys. Rev. E47, R2245(1993).
[11] J. Hermann and F. H. Busse, J. Fluid Mech.255, 183 (1993).
[12] E. Plaut, Phys. Rev. E67, 046303(2003).
[13] J. D. Scheel, M. R. Paul, M. C. Cross, and P. F. Fisher, Phys.

Rev. E 68, 066216(2003).

[14] L. Ning and R. E. Ecke, Phys. Rev. E47, 3326(1993).
[15] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys.65, 851

(1993).
[16] Y. Liu and R. E. Ecke, Phys. Rev. Lett.78, 4391(1997).
[17] Y. Liu and R. E. Ecke, Phys. Rev. E59, 4091(1999).
[18] V. Eckhaus,Studies in Nonlinear Stability Theory(Springer-

Verlag, Berlin, 1965).
[19] T. B. Benjamin and J. E. Feir, J. Fluid Mech.27, 417 (1967).
[20] A. Newell, Envelope Equations, Lectures in Applied Math-

ematics Vol. 15(American Mathematical Society, Providence,
RI, 1974).

[21] B. Janiaud, A. Pumir, D. Bensimon, V. Croquette, H. Richter,
and L. Kramer, Physica D55, 269 (1992).

[22] Y. C. Hu, R. E. Ecke, and G. Ahlers, Phys. Rev. E55, 6928
(1997).

[23] F. Marques, M. Net, J. M. Massaguer, and I Mercader, Com-
put. Methods Appl. Mech. Eng.110, 157 (1993).

[24] P. G. Drazin and W. H. Reid,Hydrodynamic Stability(Cam-
bridge University Press, Cambridge, 1981).

[25] E. Y. Kuo, Ph.D. thesis, Caltech, 1994.

TRAVELING WAVES IN ROTATING RAYLEIGH-BÉNARD… PHYSICAL REVIEW E 69, 056301(2004)

056301-9


