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Traveling waves in rotating Rayleigh-Bénard convection
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A combined analytical, numerical, and experimental study of the traveling-wave wall mode in rotating
Rayleigh-Bénard convection is presented. No-slip top and bottom boundary conditions are used for the nu-
merical computation of the linear stability, and the coefficients of the linear complex Ginzburg-Landau equa-
tion are then computed for various rotation rates. Numerical results for the no-slip boundary conditions are
compared with free-slip calculations and with experimental data, and detailed comparison is made at a dimen-
sionless rotation rat@ =274. It is found that the inclusion of the more realistic no-slip boundary conditions for
the top and bottom surfaces brings the numerical linear stability analysis into better agreement with the
experimental data compared with results using free-slip top/bottom boundary conditions. Some remaining
discrepancies may be accounted for by the finite conductivity of the sidewall boundaries.
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[. INTRODUCTION curvature does not play a large role in deviations seen in
. o ~comparison between experiment and linear stability calcula-
Rayleigh-Bénard convection in the presence of rotationjgns.

about a vertical axis exhibits many features not seen in con- Further experimental work by Ning and EcKeE) [14] in
vection without rotation. For example, at high rotation ratesa convection cell with a larger aspect ratlds2.5, showed
the first instability of the conductive state is not to a bulk that the traveling-wave state was well-described by the com-
mode as predicted by Chandrasekliaf but rather to a plex Ginzburg-LandayCGL) equation(for a review of the
traveling-wave state localized near sidewall boundaries. Thapplication of amplitude equations to problems in pattern
first evidence for this mode can be seen in heat transpoformation, see Ref.15]). The experimentally determined co-
measurementf2,3]; a partial explanatiofi4] was based on efficients compared reasonably well with the theoretical pre-
linear stability calculationg5] which predicted a stationary dictions of KC for free-slip top/bottom boundary conditions.
azimuthally periodic wall mode. Flow visualization of rotat- Because the CGL equation should apply best to laterally
ing convection in a cylindrical convection cell with radius- large systems, a set of experiments with5 was recently
to-height ratiol'=1 revealed, however, that the wall mode Performed by Liu and EckéLE) [16,17. They determined
was a traveling wav§6,7]. The traveling-wave form of the the coefficients of the CGL equation as well as some higher-

wall mode follows quite generally from the broken left-right ©rder_corrections, mapped out the Eckhaus-Benjamin-Feir
symmetry in rotating systens] [18-217] stability boundary and measured properties of phase

Linear stability calculations in bounded cylindrical geom- dlﬁ#ﬁleosneI?etcr:e?\tséitsgrmivri;sn%rpIt;ergjgraggbect ratios provided
etry of '=1 by Goldsteinet al. (GMNK) [9] and for an S : . -
infinite slab of'== by Kuo and CrossKC) [10] and Her- more detailed information regarding the traveling-wave state

. in convection under rotation, which prompted us to reexam-
mann and BusseHB) [11] also demonstrated the traveling o he inear analysis for an infinite slab with the more re-

nature of the instability and provided numerical estimates fo%\listic boundary conditions. Before presenting our results, we

the parameters at the onset of the instability. The infinite Slal&escribe briefly the physical system. Details of the experi-

calculations used rigid sidewall boundaries but free'S"pmentaI apparatus can be found elsewHar@

boundary conditions on the top and bottom boundaries, gy ieigh-Bénard convection with rotation about a vertical
whereas th_e bo”r?d_ed geometry calculations |_n_vest|gategxis [1] is described by the following three-dimensionless
both free-slip and rigid top/bottom boundary conditions. Re'parametersRa, Q, andPr. The Rayleigh number, a measure
cently, agreement between linear stability calculations in—of the thermal f’orcing of the system, is defined Ra
cluding rigid top-plate conditions for a straight wall &t =gad®A 6/ v, whereg is the acceleratior; of gravity is the
=274[12] by Plaut(P) and a direct numerical simulation of o exp:—:msion coefficiend 6 is the temperature differ-
the wall mod_e in a curved geometfy3] by S_cheel, Paul, ence across a fluid layer of heigtht v is the kinematic vis-
Cross, and Fishe(SPCH, also at}=274, implied that wall cosity, andk is the fluid thermal diffusivity. The strength of

the Coriolis force resulting from rotation about a vertical axis
at angular rotation frequendyp is measured by the dimen-
*Present address: Department of Naval Arch. and Marine Engisionless rotation rat€)=Qpd?/v. (The Coriolis force is

neering, University of Michigan, Ann Arbor, Ml 48019, USA. sometimes parametrized by the dimensionless Ekman num-
"Present address: United Technologies Research Center, Edser which is the inverse of).) The third parameter is the
Hartford, CT 06108, USA. Prandtl numbePr=v/« which controls the dominant form
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of the nonlinearity in thermal convection. The centrifugal
force is not important for these experiments in which the u=0, 6=0 atz=+7, ©)
ratio of the centrifugal acceleratidd3R, whereR is the cell

radius, to the gravitational acceleratignis 0.03 (see, for  free-slip boundary condition,

example, the heat transport curve in Re]). For fixedPr,
the bifurcation parameter for the convection problemeis
=Ra/Ra.—1, whereRa,((}) is the critical Rayleigh number
for the onset of convection. Rotation suppresses that ons
and, for large(, the critical Rayleigh number for the bulk
mode Ra, scales likeQ*? [1], whereasRa, for the wall

d
u,=v,=w=0, =0 atzzia. (6)

el'[he free-slip boundary conditions at the top and bottom are
unphysical, but analytic solutions are available for this case.
mode with insulating sidewall boundaries scales @s Thes_e can be u_sed to validate our algorithm f_or solving the
[10,17. The geometry also enters the problem and is reprel0-SliP case which can only be treated numerically. Further
sented by the aspect ratid which is the radius-to-height simplification can be achieved by introducing the velocity

ratio for a cylindrical convection cell. vector potential

This paper is organized in the following order: After in- =V X (vi+ di
troducing the governing equations with the boundary condi- U=V X+l + k)
tions in Sec. II, the linear stability analysis is carried out =(y = )i + (= e+ X + (b= xyk, (7)

analytically for the free-slip boundary condition and numeri-
cally for the no-slip boundary condition. Then the linear co-"Wnere the componentgly,z,t), ¢(x,y,z,1), and(x,y,z,1)

efficients of the CGL equations are computed. In Sec. il we?r€ the new unknowns to be determined &ngl k) are the
compare our results with experimental data and earlier nudnit vectors in thex,y,z) directions. The velocity field gen-

merical solutions. Further discussions and conclusion arrated by Eq(7) is consistent with either free-slip or no-slip
made in Sec. IV. boundary conditions om (which eliminate the need of a

scalar potential The x component of the vector potentigl
(corresponding to the Stokes streamfunction for axisymmet-
ric flows about the vertical axis in cylindrical geometrig

not necessary fdinear traveling waves, since it would cor-

For our experimental setup, the dynamics of the fluid is 4 1o th b d din the followi
governed by the incompressible Navier-Stokes equations iffspond to the zero-wave-number mode, and in the following
analysis we assumg=0. The vorticity is then given, in

the Boussinesq approximation. Adopting Cartesian coordi< t th al b
nates centered at the midplane of the cell and on the sidd€™™Ms of the vector potential, by

II. GOVERNING EQUATIONS

wall, these equations are conveniently written in terms of the -V xy= S+ N
vorticity field o=V X u, whereu(x,t)=(u,v,w) is the three- @=V XU= (bt ha)i + (2~ b 2
dimensional velocity vector, +(by = = PyyK. (8)

@~ Pr(V2w+20u,+ V X 6k) = (- V)u- (- V)e,
(1)

A. Amplitude equation

The conducting state, corresponding to the zero solution
5 for Egs.(1) and(2), becomes unstable for certain values of
6 - V°6-Raw=-u-Vé. (2)  the parameters. Mathematically, these can be determined
) ) ) ) _ through the study of a linear eigenvalue problem. Assuming
Here we have nondimensionalized the equations by scaling,at the instability manifests itself as small amplitydppro-
length byd, time byd?/ k, temperature(x,t) by xv/(agd),  priate near onsgt traveling waves, we can writed
thereby collecting the three-dimensionless parameters intra-(¢ 4 )™ as
duced in Sec. |, respectiveliRa ), andPr. Notice that the
temperatured is measured with respect to the conducting ®(x,y,z,t) = Ad,(y, 2" + c.c, 9
solutionu=0, 6,=A6(1-2z/d)/2. . . .
For boundary conditions at the sidewall, we impose noVNereA is the complex wave amplitudg,is the wave num-
slip for velocity u and insulation for temperaturé ber, and c.c.stands for the complex conjugate. When

R o]>0(<0), the system is linearly unstablestable.
u=0, 6,=0 aty=0. (3) The smallne_ss _assumption allows us to Iinea_rize Efqps.
and(2). Taking into account Eq(9) yields the eigenvalue

The system is assumed to relax to the conducting state faoblem
from the sidewall, so that we can take zero boundary condi- _
thﬂS a'[yZOO, ((TL]_"‘M]_)(D]_—O, (10)
for operatord_; andM; which can be read off the left-hand

u—0, 6—0 asy— o, (4) side of Eqs(1) and(2), with the boundary conditions for the

) . eigenfunction®; from Egs.(3) and(6), namely,
At the top and bottom surfaces, we consider two different

boundary conditions: no-slip boundary condition, 1= =y=6,,=0 aty=0, (11
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d1=y=6,=0 asy— x, (12) solvability condition on the higher-order equations. This pro-
. cedure is standard but a bit laborious and we omit the details;
for the no-slip case, we report the result for the coefficients of the linear terms in
1 the CGL equation in Table II.
$1= b= =0,=0 atz= 13, (13) For the c?inear-term coefficients there is an alternative to
and, for the free-slip case, carrying out the expansion to higher-orders by making use of
our numerical solutions for linear stability. After computing
1= 1= 1,= 6,=0 atz= 3. (14) o near the critical Rayleigh number and wave number, we

) _ ) calculate numerically the first- and second-order derivatives
As shown earlief10,11], solutions of Eq(10) with the free-  of ; with respect tk andRa at (k.,Ra,) to obtain
slip boundary conditiori14) are separable and can be found

almost entirely by analytic tools. We used these solutions to _. do —_R Jdo 21 (92_0'
validate our numerical computations for the case of no-slip ~ ¢~ ak | a="R& JRal, T2 9Kk,
boundary condition, where a closed-form solution is not 17)

available and a fully two-dimensional eigenvalue problem
must be solved. To solve E¢10) numerically, we used a where the subscrigt stands for the evaluation at the critical
pseudospectral method similar to that developed by Marquegalues (k,,Ra,). In our computations, a second-order finite
et al. [23]. The semi-infinite domain is truncated at Somedifference is used to evaluate Eq_?) and gi\/es accurate
(largg) y=L, where we impose the boundary condition for results(see below. The derivatives in Eq(17) are the coef-

y=c. The sensitivity on the size of the computational do- ficients of the linear CGL equatiof24] in the form
main is expected to be very low because the experimentally

observed traveling waves are confined in a narrow region Art CgAct eaA+ BAK=0. (18)

close to the wall. The effect of the domain size will be ex- ; ;
Comparing Eq(18) with Eq. (16), we have
amined in detail later. In both free-slip and no-slip cases, paring Eq(18) a. (16
Newton-Raphson can be used to find iteratively the critical 1 > Br o _Bi
wave numbek. and the critical Rayleigh numb&a,, which i &= a Co= a’ €= B’ (19)

is the minimum value oRa for which R¢o]=0. Then the _ _ S

eigenvalue becomes the wave frequengy Im[o,], and the ~ and the subsgrlpts andi represent the real and imaginary

corresponding eigenfunctiod, determines the velocity- Parts, respectively. _

temperature field, respectively. When we choosé=Ayexp(i(gx-st)), whereq=k-k; and
Next, solutions away from the critical valtRa, can be Ao is a real constant, and substitute this into the CGL equa-

obtained in the form of a traveling wave solution §g) tion (16), the real and imaginary parts yield

which is slowly modulated in space and time by letting the — 2.2 2

amplitudeA vary slowly inx andt, €=4°0"* Qoo (20)

- i (kx+agt) 1
(I)l(x;y’ Z,t) A(X,t)‘pl(Y.Z)e +cC.C, (15) s= ng _ :(Coé' _ Clé*;OZqZ _ CZQOAOZ) . (21)
0

where w. and k. are the critical wave frequency and wave
number. For small amplitude wave®\,<1), Eq. (20) at the marginal

A multiscale asymptotic expansion with respect to thestability boundary gives at leading ordey = £,%9°. Differ-
small parametee=(Ra-Rg)/Ra. <1 results in the com- entiating Eq.(21) with respect tay, we find the group veloc-
plex Ginzburg-Landa¢CGL) equation with periodic bound- ity v, as
ary conditions for the evolution of the amplitude[15,17,

- : _o,+ 2% (22)
TO(AI + CgAx) = 6(1 + |CO)A+ 502(1 + |Cl)Axx Y~ g 70 q:
i 2
=~ Go(1 +ic)|AI°A, (16)  and, at the critical conditiofg=0), we recovemny=cg.
where all the coefficients are reay; is the time scale&, is
the spatial scalegy is the group velocity,e is the linear IIl. NUMERICAL RESULTS AND DISCUSSIONS

bifurcation parameter, arg}, is the nonlinear parameter. The
coefficients¢’s control the dependence of the modulation For the numerical results described here, we ch@ése
frequency on modulation wave number andeon =6.3 following the experiment of Liu and Eck#&7]. Prior to

In their experiments, LE17] measuredcy, 7o, &, and comparing with experimental data, we validate our numeri-
Co—C;, and showed that the traveling-wave wall mode pro-cal solutions. For the free-slip boundary conditions at the top
vides a classic example of a physical nonlinear-wave syster@nd bottom boundaries, we compare our numerical solutions
with a supercritical bifurcation described by the CGL equa-with those derived analyticallj10,11.
tion. Thus, a test of how well the theory describes the experi- As shown in Table I, our numerical solutions feg; and
ment can be carried out by computing the CGL coefficientsw. are accurate for various choices of grid siag and com-
For this purpose, it is in general necessary to expand thputational domain siz¢lL). Since we are interested in the
solution @ to third order in terms ofe and to impose the wall mode for which all disturbances are concentrated near
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TABLE |. Comparison between exact and numerical solutions TABLE Il. Comparison of numerical solutions from two differ-
for the free-slip boundary conditions. For this computatiaysA, ent methods for the no-slip boundary condition. For this computa-

A,=A/2,Q0=274, andRg, and . are evaluated at.d=3.968. tion, 1=274,Ra.=19646.97k.=4.221, andv.=22.413. Method 1:
differentiation of o as shown in Eq(17). Method 2: solvability
Exact A=1/8 A=1/10 A=1/8 condition.
L=2 L=2 L=3
Method 1 Method 2
Ra. 19843.8 19841.2 19846.8 19843.9
Error (%) 0 -0.01 0.015 0.005 Cg 1.918320 1.918320
e 24.213 24.202 24.213 24.212 a —39.807999 —39.807999
Error (%) 0 ~0.08 0 ~0.04 a; -25.342976 -25.342918
B -1.7404456 -1.7404476
Bi -0.8259564 -0.8259625

the sidewall boundary, the relatively small computational do-
main in they direction appears to work well. Under the
limitation of our computational resources, we chase2 and  the two results are almost identical which gives confidence in
A=1/10 in all of thecomputations presented hereafter. With the code’s reliability.
this choice, the maximum error in our numerical solutions is  For (=274, the computed eigenfunctiod®,=(¢, ¢, 0)
less than 3 % for any physical quantities as well as for theare presented in Fig. 1. The concentration of all disturbances
coefficients of the CGL equation. near the wall boundary at=0 is immediately evident and
Since no analytic solutions are available for the case othe use of a finite computational domain is therefore justi-
rigid boundary, we tested our code for the no-slip boundanfied. The corresponding streamlines in thez) plane and
condition by comparing results from the two different meth-the (x,y) plane are shown in Fig. 2 and the temperature
ods described above, i.e., we compared the values of linealistribution in the(x,y) plane is shown in Fig. 3.
CGL coefficients obtained by imposing the solvability con- We now present our numerical results for linear coeffi-
dition with those obtained by taking finite difference deriva- cients of the wall mode in rotating convection. We make
tives with respect to the parameters. As shown in Table llextensive comparison with existing experimentslE,LE)

FIG. 1. Eigenfunctions foRa=Rga, and Q=274 with no-slip boundary conditiorta) |@|/|dlmae (0) |4/ |Amax (©) |6]/|6max
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FIG. 2. Contgurlines ofa) Re[gy(z)exp(ikx)] and (b) Re[%(y)exp(ikx)] for Ra=Ra. and (1=274 with no-slip boundary condition,
where ¢¥(z) and ¢#(y) represent the average @fovery and ¢ over z, respectively.

and other numericdlGMNK,KC,HB) data where all the data tained radial structure of the wall mode with a numerically

are made dimensionless by scaling lengtidbgime byd?/ v, computed linear eigenmode. _

and velocity byv/d. In several cases the experimental data We first compare our results for linear parametsg, k.,

are sparse or have substantial error bars indicating a need fandw with the numerical results of GMNK, KC, and HB for

better data but we present the results of our numerical confree-slip top and bottom boundary conditions and with the

putation for the time when better data are available. We orexperimental results of NE and LE. This comparison allows

ganize the presentation of the data in the following manner¥S to evaluate the importance of incorporating no-slip bound-

First, we discuss the basic linear stability parameter@’y conditions on the top and bottom and to estimate the

Ra,, k., andw, as functions of2. We then present coeffi- influences of wall conductivity and wall curvature. In all the

H il C . . . .

cients for the CGL expansion, see Ha6), which include plots comparing expenmental and numerical results, we use

the marginal stability boundary curvatugg the linear group d:?\ta points for eXpef'm‘?”ta' measurements and Soiw

velocity v, the time scaler,, and the combination of com- slip) or dashedfree slip lines for the numerical results. In
9 0 . . Fig. 4, experimental results for the critical Rayleigh number

plex coefficientxy—c, which is measured in the experiments

) . Rg, for I'=5 [17] are compared with numerical computa-
of NE and LE. Finally, we compare the experimentally Ob'tions. Our free-slip calculations agree well with those of HB

5 and show little difference for free-slip and no-slip top/bottom
boundary conditions. The calculations of KC are slightly
higher than the experimental values, whereas the calculations
in finite geometry of GMNK are somewhat smaller. The KC
results take into account the finite sidewall conductivity of
the cell used by NE but the convection cell of LE had higher
sidewall conductivity because of different cell construction.
We have not conducted detailed calculations of this effect but
it seems to be a reasonable explanation for remaining dis-
crepancies between theory and experiment. Nevertheless, the
agreement among the numerical results is excellent except
for the finite aspect-ratio calculations of GMNK suggesting
that smalll” lowersRa, slightly.

The effect of rigid top/bottom boundaries is more pro-
nounced on the wave number. In Fig. 5, one sees again that
the three calculations df. for free-slip top/bottom boundary

0 0.2 0.4 0.6 0.8 1 conditions agree well. The no-slip boundary condition in-
x/A creasesk; by about 10% and nearly halves the difference
_ between experiment and theory. The remaining discrepancy

FIG. 3. Density plot of REF(y)explikx)] for Ra=Ra and}  is unresolved as there is little apparent difference between
=274 with no-slip boundary condition, wherg represents the av- the perfectly insulating calculations and the finite conductiv-
erage off overz. ity calculations of KC for the free-slip boundary condition. It

15

y/d

05
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FIG. 4. Critical Rayleigh numbeRg, vs () for experimental FIG. 5. Criticgl wave numbel; vs Q for e>_<perimenta| data with
data withl'=5 (LE, solid circle, (HB, open squane Chandrasekhar | = (LE, solid circl8, andl'=2.5 by(NE, solid squark (HB, open
1961 (long-short-short dashgd(GMNK, long-short dashed (KC, square, (K_C, dotted Ilne),_ free-slip top/bottom boundary_ (_:ondlt_lons
dotted ling, free-slip top/bottom boundary conditiofdashed ling (dashed ling; and no-slip top/botiom houndary conditiogeolid
and no-slip top/bottom boundary conditiogslid line). line).

5000

is important to recall, however, that the periodic boundarymeasure precisely: the marginal stability boundary and the
conditions in the experiments lead to a discretizatiorkof linear group velocity. In Fig. 8, we show the marginal stabil-
which is not reflected in the analysis, where use of an infinitgty boundary from our calculations and from the experiment
x-domain makek range over all the reals. by LE. Similar to the dependence & on the boundary
The largest change brought about by the use of realistigonditions, there is improvement in the agreement between
top/bottom boundary conditions is in the critical Hopf fre- experiment and theory using the rigid boundary conditions.
quency. In Fig. 6, the three free-slip results are indistinguishp,o remaining differences are, however, outside the uncer-
able but are significantly above the experimental values. Thgyiyiies of measurement. Finite sidewallyconductivity could
rigid boundary conditions, however, yield excellent agreey -ve an impact here. Another way to check the correspon-

ment with the experimental results. Again small sidewall ; : :
conductivity does not seem to be important in the depengence of the calculations and the experiment is to compare

dence ofw, although in the high-conductivity limit there are the Stab.'l'ty boundaries as a fu'nctlonsofor, equwalentlyg.o
substantial differences in all the critical parame{ér9]. An- for v_qrymgQ. Fr(_)m Eq.(20), since we can fit the margl_nal
other way to compare the calculations of the linear paramStaPility boundaries to a parabola, we find the quadratic co-
eters is to consides, as a function ok, as illustrated in Fig.  efficient & from the experimental data, as shown in Fig. 9.
7. The conclusion is that the main linear parameters agree
reasonably well with experimental results and that the rigid
top/bottom corrections improve the agreement.

Recently, two other calculationd42,13 were performed
at()=274 that provide a check at that particular value for our
linear stability calculations. The first was the same linear
stability calculation as we performed with rigid top and bot-
tom boundary conditions and a straight sidewall boundary 80
[12]. The second was a direct numerical simulation of an
annular geometry13] in which the outer-sidewall and inner-
sidewall states are only weakly coupled near onset and thus
the calculated parameters should be a close approximation to 15¢ 1
the outer-sidewall state in a cylinder. In Table IIl, we com-
pare the linear parameters obtained witkr274 for the ex- 10 ) S
perimental results of LE, the linear stability results of KC 100 1000
and P, the direct numerical simulation of SPCF, and our Q
work. Our results agree perfectly with those of Plaut and are
quite close to the results of the numerical simulations of FIG. 6. Critical frequencwc vs ) for experimenta| data with
SPCF. The largest difference is fog which we discuss in =5 (LE, solid circle, (GMNK, long-short dashed (KC, dotted
more detail below. line), (HB, open squarg free-slip top/bottom boundary conditions

We now consider linear parameters that are related to th@lashed ling and no-slip top/bottom boundary conditiotsolid
CGL expansion near onset and which are more difficult tdine).

35
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FIG. 7. Critical frequencyw. vs k. for experimental data with ) - ]
I'=5(LE, solid circle, andl'=2.5 by(NE, solid squarg (HB, open FIG: 8. Marginal stgblllt_y boundaryeM vs q) for experimental
squarg, (KC, dotted line, free-slip top/bottom boundary conditions data withI'=5 (LE, solid circle, curve fit to the datdlong-short

(dashed ling and no-slip top/bottom boundary conditiotsolid dasheq, free-slip top/bottom boundary conditiorigashed ling
line). and no-slip top/bottom boundary conditiofsolid line). (1=274.

The rigid boundary correction is in the right direction rela- Straight and thermally insulating sidewall wherg=1.9, see

tive to the free-slip case but again does not fully account forl @P!€ !ll, and the direct numerical simulation of SPCF for a
the difference. curved sidewall with insulating thermal boundary conditions

The comparison of the linear group velocity as a functionwherevgzz.o. Thus, curvature seems to contribute less than

of qis less satisfying but also the most difficult. The experi-2 ° % difference inug. The only remaining explanation is
mental determinations are made by extrapolating finite aminite sidewall thermal conductivity. It is interesting to note
plitude data to zero at the marginal stability boundary, whichthat the results of Kug2s] indicate that some quantities are
introduces some uncertainty. The higher-order correctiond!®t monotonic as a function of wall conductivity. This ap-
i.e., quadratic ing, are even less robust because they ard€ars to be the case fog. » L
obtained[17] from phase dynamics near the center of the Finally, we consider two quantities that have significant
stability band. Thus, we compare our calculations with theEXperimental uncertainties, but are sufficiently important to
experimental group velocity data only to linear ordegiin ~ d€S€rve a comparison with the numerical data. The charac-
Fig. 10, the data and numerical results are compared. OUfiStic time, andcy—c, are plotted in Figs. 11 and 12 as a
calculations of the linear group velocity as a functiongpf unction of 1. As is obvious from these plots, more experi-
show some differences but in this case the use of rigidnemaI work is negded beforela cor]clu3|on_ca}n be made re-
boundary conditions worsens rather than improves the agre@2rding the effectiveness of including realistic top-bottom
ment between experiment and theory. The slope of the lineatoundary condition. Notice that the no-slip dependence of
dependence of, on g has the correct magnitude and does

not change much with top/bottom conditions but the zero 0.30 ' ' ' ' '
intercept becomes smaller when rigid conditions are in- .
cluded. The influence of curvature can be estimated from the 025 | e |
difference between the linear stability calculation for a Q—’/

TABLE IIl. Comparison of linear coefficients of the rotating uwp 020 i .
convection wall mode fof)=274 andPr=6.3. Experiments are Liu i
and Ecke(LE) [17]. Linear stability calculations are Kuo and Cross
(KC) [10], Plaut(P) [12], and our results. A direct numerical simu- 0.15 - .
lation by Scheekt al. (SPCH is also included13].

010 1 1 1 1 1

Source Ra, ki o vy 7 &  (cp—c)lm 0 100 200 300 400 500 600
LE 20850 4.65 -22.0 2.65 0.03 0.179 4.2 Q
KC 19500 4.00 -24.0 222 0.026 0.24 14.4 FIG. 9. Quadratic coefficiengy vs Q) from fit to marginal sta-
P 19660 4.22 -224 191 0.025 0.21 6.4 bility boundary. Experimental data with=5 (LE, solid circle,
SPCF 19500 4.2 -223 20 0.025 0.22 6.4 =274 andI'=2.5 (NE, solid circle,()=544), free-slip top/bottom
Present 19647 4.22 -22.4 1.92 0.025 0.21 6.4  boundary conditiongdashed curvg and no-slip top/bottom bound-

ary conditions(solid curve.
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FIG. 12.cy—c4 vs Q) for experimental data with =5 (LE) (solid
N circle, =274 and I'=2.5 (NE) (solid circle, 2=544), free-slip
top/bottom boundary condition&dashed ling and no-slip top/

bottom boundary conditiongolid line).

FIG. 10. Group velocitwg vs g for experimental data with’
=5 (LE, solid circle, curve fit to the datadotted, free-slip top/
bottom boundary conditiongdashed ling and no-slip top/bottom

boundary conditiongsolid line). )=274.

Co—C; on ) indicates a trend that brings the no-slip curve
closer to the free-slip curve for higher angular velocitizs
but the free-slip curve seems closer to the experimental da
point in this region.

Another comparison of interest is that of the radial struc-
ture of the experimental data with the computed linear eigen-
function for rigid top-bottom boundaries. In the experiment
(LE), the shadowgraph intensitproportional to temperature
deviation from a linear profileis computed over a narrow
radial window by taking the standard deviation around th
azimuthal direction. Uncertainties in the radial position are
about 2 % near the wall and the determination of the inten;
sity near the wall is difficult owing to light reflection from
the boundary. The difficulties in this comparison are exacer-
bated by the finite amplitude of the data compared with the
linear conditions of the eigenfunction which was calculate
as closely as possible to match the experimental quantity. |

T

FIG. 11. Characteristic time, vs ) for experimental data with

0.040

0.035

0.030

0.025

0.020

0.015

0.010

0

1 1 1 1 ]
100 200 300 400 500 600
Q

Fig. 13, we compare several data sets and the computed
eigenfunction. We have made some small shifts in amplitude

and radial position to obtain reasonable alignment. This is

not a well-defined operation and thus the results should be
viewed with caution. The clearest comparison is in the loca-

tion and magnitude of the secondary peak in the temperature
distribution. The location appears to be correct but the mag-

nitude of this peak is considerably smaller in the computed

t%igenfunction.

IV. CONCLUSION

The inclusion of rigid top and bottom boundary condi-
tions to the problem of the stability of traveling waves in
rotating Rayleigh-Bénard convection for an infinite slab im-
Jroves the agreement between theory and experiment. The
critical Rayleigh numberRa. is rather insensitive to the
change in top/bottom boundary conditions. The slightly
higher values oRg, for the experiments with'=5 suggest
that the finite thermal conductivity of the sidewalls elevates
Ra,; recall thatRg, for perfect conducting boundaries is
dclose to the bulk linear onset at significantly higher values of
Ra The most dramatic improvement using the realistic top/
Bottom boundary conditions is in the variation of the critical
frequencyw, with 0 which now agrees very well with ex-
periment. The critical wave numbé&g dependence of) is

0.6

0.5

0.4

Intensity
=]
©

o
o

0.1

1/ty

I'=5 (LE, solid circle,Q2=274) andI'=2.5 (NE) (solid circle, Q

=544), free-slip top/bottom boundary conditiof@ashed ling and

no-slip top/bottom boundary conditioigsolid line).

FIG. 13. Comparison of eigenfunctions between experiment
(symbolg and numerical solutioisolid line).
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also improved by the new calculations but some differencehe eigenfunction by enhancing the magnitude of the second-
remains. Similarly, the stability boundaries as a function ofary peak. The periodic conditions imposed on the wave by
modulation wave numbeq are brought into closer, but not the experimental geometry might also lead to some system-
excellent, agreement with experiment for the realistic boundatic variations in the parameters. On the other hand, a close
ary conditions. comparison between the linear stability result§at274 for

The source of the remaining differences between experiy fiat wall[12] and direct numerical simulations at the same

ment and the results reported here may be attributed to finitg yajue for an annular geometry show little dependence on
sidewall conductivity in the experiments as opposed to the,rvature for the main linear parameters.

perfectly insulating boundary conditions used in the analysis.

It would be useful in that regard to consider a single value of

Q) and systematically investigate the variation of parameters ACKNOWLEDGMENTS

as a function of sidewall conductivity. The other possible

source of discrepancy between numerics and experiment is We acknowledge useful discussions with Hermann Riecke
the cylindrical geometry of the experimental container. Thisand Edgar Knobloch. This work was funded by the U.S.
radial curvature could affect, for example, the structure ofDepartment of EnergyGrant No. W-7405-ENG-36
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