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On the fission of algebraic solitons

By WoovyounNGg CHOI

Theoretical Division and Center for Nonlinear Studies, Los Alamos
National Laboratory, Los Alamos, NM 87545, USA

The fission of an algebraic internal soliton climbing onto a shelf in a two-fluid system
of infinite depth is investigated. It is shown that, by using conservation laws of
the Benjamin—Ono equation with variable coefficients, we can predict the number
of solitons emerging from an incident solitary wave and their amplitudes. These
predictions are also verified with numerical solutions.

1. Introduction

When a solitary wave in shallow water of uniform density propagates over a topog-
raphy varying slowly from one constant depth to another (smaller) constant depth,
it splits into a finite number of solitons after reaching a shelf. This phenomenon
was first studied by Madsen & Mei (1969) both numerically and experimentally. By
making use of the Korteweg—de Vries (KdV) equation with variable coefficients, Tap-
pert & Zabusky (1971), Ono (1972) and Johnson (1972, 1973) provided analytical
descriptions on the phenomenon. Also Djordjevic & Redekopp (1978) examined the
disintegration of internal solitary waves in (stratified) shallow water by using the
similar KdV model.

In this paper, we study the fission of an internal solitary wave climbing onto a
shelf in a two-fluid system of infinite depth as illustrated schematically in figure 1.

Without any topographical disturbance in the lower fluid layer, the unidirec-
tional propagation of weakly nonlinear long waves in this system is described by the
Benjamin—-Ono (BO) equation (Benjamin 1967; Davis & Acrivos 1967; Ono 1975),
which admits a solitary wave solution decaying algebraically at infinity. In addition to
those in the laboratory experiments (Davis & Acrivos 1967; Koop & Butler 1981), a
number of observations of internal solitary waves in the lower atmosphere have been
reported in recent years (Christie et al. 1978, 1979; also see the review by Smith
1988) and these waves have been identified as algebraic solitary waves governed by
the BO equation. But the effects of topographical disturbances such as hills or moun-
tains, which are essential in understanding the long-time evolution of internal waves
in the atmosphere, have been neglected in the literature for algebraic solitary waves.
In spite of its physical importance, the main reason for this neglect is that no simple
mathematical model appropriate to this circumstance has been available.

Here we propose a simple model equation and consider the fission phenomenon
as the first step in understanding the transformation of algebraic solitary waves
propagating in a non-uniform medium. It can be easily conjectured that a similar
fission phenomenon as for the KdV solitary waves may occur when an algebraic
solitary wave propagates over a shelf of decreasing depth. This conjecture, however,
has not been confirmed by any means and no definite results have been reported.
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Figure 1. Schematic illustration of the problem.

From the Euler equations, by using a systematic asymptotic expansion method,
Choi & Camassa (1996a) recently have derived various nonlinear evolution equations
for long internal (bidirectional) waves including the effects of non-uniform bound-
aries. One of their models appropriate for the current problem can be written, in
terms of the displacement of the interface ¢ and the layer-mean velocity across the
lower layer u, as

Ct + [(h + C)u]z = 0; U + U, + (1 - pr)ng = er[(hut)x]7 (1~1)

where h(z) is the thickness of the lower fluid layer perturbed from hy by a sta-
tionary topography, the density ratio between two fluids is assumed to be p,(=
Pupper/ Plower) < 1 for stable stratification and g is the gravitational acceleration. The
non-local operator H in (1.1) is the Hilbert transform defined by

1 [* f&@)

T ' —x

H[f] = da’, (1.2)

where  stands for the integration as Cauchy principal value. In order to derive
(1.1)t, it was assumed that the thickness of the lower fluid layer is much smaller
than a characteristic wavelength and nonlinear and dispersive effects balance each
other, which gives

e=ho/L <1, wu/co=0(C/ho) = O(e), (1.3)

where L is a typical wavelength and c; is the linear long wave speed given by cy? =
gho(1 — p;). Therefore we have, for weakly nonlinear long waves, ({;, (s, Ut, Uz) =
O(€?) and, for a slowly varying topography, h, = O(e). While the first equation in
(1.1) implying conservation of mass is exact, the second equation from conservation
of horizontal momentum has an error of O(e*).

From the bidirectional model (1.1), we derive a simpler model equation in §2 for
unidirectional waves in a slowly varying medium, which is the BO equation with
variable coefficients. By using conservation laws of the model, it is shown in § 3 that
we can predict the number of solitons emerging from an incident solitary wave on
a shelf and their amplitudes. Numerical solutions of the model are obtained and
compared with our analytical predictions in §4.

1 The bidirectional model (1.1) can be obtained from (5.40)—(5.41) in Choi & Camassa (1996a), where
the upper (lower) fluid layer is thin (deep), after replacing (¢2, g, 7%, pr) by (—¢, —g, H, 1/p:) and
neglecting the higher-order dispersive terms of O(e*).

Proc. R. Soc. Lond. A (1997)



On the fission of algebraic solitons 1755

2. The unidirectional model
First we non-dimensionalize all physical variables in (1.1) as
o= phor”, t=(phofco)t’, C=hoC*, h=hoh*, u=cou’,  (2.1)

by which hyg, p, and the effective gravity g. = (1—p,)g can be scaled out from (1.1). To
derive a model for unidirectional waves in a slowly varying medium, a characteristic
length for the variation of a topography Lj is assumed to be much greater than
a typical wavelength L, so that L/L, = O(e¢) and h, = O(ho/Ly) = O(€e?) while
h, = O(e) in the bidirectional model (1.1). We also adopt the following stretched

coordinates
“ do 9
E—C':/ 2(6—20'-)—_t], T=€x, (22)

where the local wave speed, ¢ = ¢(7) to be determined, is assumed to be a function
of 7 only, signifying the slow variation of depth h = h(7). After dropping asterisks
for dimensionless variables, we expand the physical variables f = ({,u) as

f(£7 T) = ef(l) + Ezf(Z) +y (23)

and assume that the amplitude of the stationary topography can be O(1), in other
words h(7) = O(1), while the wave amplitude is O(e). Substituting (2.3) into (1.1)
and using

0, = —€d, Oy = (e/c(1))0 + €0, (2.4)

at first order, we have

ul) = (1/e(n)¢,  efr) = £v/h(7), (2.5)

where () = 4(1) = 0 is imposed at infinity and c(7) is taken as positive (negative)
for right-going (left-going) waves.
At second order, (1.1) yields

¢ - c((T)) & = hu® + hu® + %(C(l)u(l))s, (2.6)
u? — — G )C(Z) ¢+ 1u<1> oy H[ug ], (2.7)

from which the evolution equation for ¢V can be obtained, by use of (2.5), as
¢ 3 C‘”C“) 1) +3 le C(l) —0, (2.8)

where H is understood as the Hilbert transform in 5 .
In terms of the original physical variables (z,t) with ¢ = (™) + O(€?), (2.8) can
be written, with the same order of approximations, as

ha

+ =0 (2.9)

Gt Gt o O BRHIC] +

where ¢ = c(e?z), h = h(e?z) and we have used
€0y = —0;, €0, =0, + (1/c)d,, (2.10)
the leading-order equation (; = —c(;[1 + O(e)] to obtain the higher-order (nonlinear
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and dispersive) terms and H[h(€*x)(,.] = h(€*z)H[(z][1 + O(€?)]. Equation (2.9)
is the BO equation with variable coefficients which represents the effects of a non-
uniform bed. It is analogous to the KdV equation with variable coefficients, for
surface waves in shallow water of slowly varying depth, derived by Kakutani (1971)
and Johnson (1973).

From now on, we only consider the right-going waves and choose c(e?z) =
++/h(e%x).

Without any topographical disturbance (h = 1), (2.9) can be reduced to the BO
equation:

G+ G+ %CCQ: + %H[sz] =0, (211)

the solitary wave solution of which (Benjamin 1967) is given by

(10b02
X)=—20 2.12
G(X) = (2.12)
where ag > 0 and
X=z- (146t b=—r, 6=3a, (2.13)
3(10

The BO equation, (2.11), is known to have an infinite number of conservation laws
and the first four conserved quantities (Ono 1975; Meiss & Pereira 1978) are given
by

Il =/ Cdx, Ig =/ C2d.’L', (214)

Iy = / L+ CH[G)) Az, T, = / (3¢" + 3C°HG] + 367 do. (215)

For the case of a non-uniform depth, h = h(e*z), these quantities are no longer
conserved and, for example, the conservation laws for the first two quantities in (2.14)
(corresponding to mass and energy, respectively) have to be replaced, from (2.9), by

d ° © hx

) ca=g [ (i) caro@ 21
d oo
dt /_oo ¢ dz = O(€). (2.17)

Although the unidirectional model (2.9) fails to conserve mass because the reflected
waves are neglected, wave energy is adiabatically invariant as shown in (2.16), (2.17).
The same conclusion has been drawn for the KdV equation with variable coefficients
by Miles (1979). In addition to energy, the evolution equation (2.9) has another
quantity conserved adiabatically, which is
d o0
dt J_

On the other hand, it can be shown that the bidirectional model (1.1) with (2.1)
conserves mass exactly and energy adiabatically

%/ ¢dz =0, (2.19)

hY4¢dz = O(€®). (2.18)

Proc. R. Soc. Lond. A (1997)



On the fission of algebraic solitons 1757

G [ aeamna=5 [ curo@-o@), e

where, from (2.5), (2 = hu? + O(€®) has been used.

3. The disintegration of a solitary wave

To provide an analytic description of the development of a solitary wave mov-
ing over a shelf, we make a further analysis of the unidirectional model (2.8) for a
topography shown in figure 1. By substituting the following expression:

¢ (7,€) = [M()P/*¥(7,8), (3.1)
(2.8) for the right-going waves can be written as
Yr + 59 + g H[thee] +v(T)Y =0, (32)
where
_ The(7)
v(T) = Lh(r) (3.3)
For (3.2), we can show that
d T o0
—(% =0, Jp=exp (/0 v(T) dT> /_oodzdﬁ, (3.4)
d B T o0
d—‘ZZ =0, Jo=exp (2/0 v(r) dT> /_oo P? g, (3:5)

where, from (3.3), we have

exp( /0 ’ v(T) dT) = h7/4, (3.6)

These conservation laws in (3.4), (3.5) for'(3.2) are related to two approximate con-
servation laws in (2.17), (2.18) for the evolution equation (2.9) written in terms of
the physical variables.

When v(7) =0 (or h, = 0), (3.2) has a solitary wave solution, from (2.12), (2.13),
given by

oo’

Yo = Bo® + (€ = yor)?’

(3.7)

where

Bo=4/Bao), o= 2(ao). (3.8)
Owing to the slow variation of topography, we assume that the profile of the incident
wave transformed from (3.7) upon reaching the shelf (at = z; or 7 = 7, see figure 1)
is still approximated to the shape of the solitary wave

____apf
B (E )Y

and then we can find the expressions for the local wave amplitude and wavelength,
a(r) and B(7), respectively, from the conservation laws in (3.4), (3.5), as

a=ah™™%, B =0 (3.10)

(U (3.9)
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On the shelf where v(7) = 0 in (3.2), the BO equation describes the subsequent
development of the incident wave given by (3.9). First notice that the area of an
algebraic solitary wave (3.7) is independent of wave amplitude such that

A() = / ’l/)() dé. = 7'('@0,30 = %T{', (311)

where (3.8) has been used for the last expression. If the incident wave of area A given
by (3.9) splits into several solitons (possibly plus a small dispersive wave tail) on the
shelf, we can see that the number of solitons N (Ono 1975) is the greatest integer
satisfying the following inequality:

N<A/Ay, A= /oo b d€ = map. (3.12)

By substituting (3.10), (3.11) into (3.12), the number of solitons emerging from an
initial solitary wave can be obtained from

N < h74, (3.13)

In other words, for given h; which is the thickness of the lower fluid layer on the
shelf, N can be determined by

(N+1)"%" < hy < N7, (3.14)

Suppose the incident wave given by (3.9) breaks into N solitons of amplitude o,
(1 =1,...,N) on the shelf without radiation, so that the four conservation laws in
(2.14)—(2.15) for v yield the following relationships between a and o; (Ono 1975)

N = 2ap, (3.15)

N N N
5N? —6N + 2
a, = Na, a,)? = (2N-1)a?, a,)d = (—————) a3, (3.16
n§:1 n§:1( )7 =( ) nE:l( ) N (3.16)

Equation (3.15) from mass conservation gives (3.12) and three relationships in (3.16)
determine the wave amplitudes up to three solitary waves. Generally, in order to
determine the wave amplitudes of N solitons, we need (N +1) successive conservation
laws of the BO equation.

For the formation of two solitons (for 0.534 < h; < 0.673), the first two equations
in (3.16) yield the algebraic equation for a4, (i = 1,2), as

(%)2_2(9‘1) +1l=, (3.17)

e e
and its solutions are given by

a1 = (1+ 1v2)a = 1.707a0h, ™4, @z = (1 - LV2)a ~ 0.293a0h, /%,  (3.18)

where we have used (3.10), and then the remaining relationship in (3.16) is auto-
matically satisfied. For three solitons (0.453 < h; < 0.534), the wave amplitude «;,
(1=1,2,3), can be determined from the solution of the following cubic equation

(9‘1)3 -3 (%)Z +2 (a—) ~ 2=, (3.19)

(8] (8]
o1 =~ 2.097aph, ™4, an ~ 0.765a0h1 "%, as &~ 0.139aph, /4. (3.20)
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Figure 2. Numerical solutions of (3.2) for an incident solitary wave of ap = 0.15. The shape of
the topography is given by (4.5) with 71 = 50 and (a) h1 = 0.673, (b) h1 = 0.534. Horizontal
bars indicate the predicted wave amplitudes by (3.18) and (3.20). '

From (3.1), notice that the physical wave amplitude, a;, for ¢ can be found as a; =
h1®/?q;. To verify these predictions, we proceed to obtain numerical solutions of
(3.2).

4. Numerical solutions

In solving (3.2) numerically, we adopt a finite difference scheme (using central
differencing in space and the leap-frog method in time) with periodic boundary
conditions in space. For any periodic function of period A, the Hilbert transform H
can be written, by use of the partial fraction expansion of cot(§), as

1 2
H=3 [ 1) - 5@ eotlate ~ o)/ d¢ (@.1)
—X/2
where we have regularized the integration by use of
1 M2
51, cottr(€ ~ /e =0 (4.2

and the integration in (4.1) is performed using the trapezoidal rule. Also the peri-
odic wave solution of wavelength A (Benjamin 1967) of the BO equation, (3.2) with
v(t) =0, is given by
A
0) =
v(6) 1 — Bcos(2m0/)\)’

(4.3)
where 0 = £ — 67 and

3 Qg 1 Q. Q. 271/2 8w
6= gac Ec- y A= ”Z'CKC E(; s B=|1- a—o s Aqe = 3—/\“, (44)

which reduces to the solitary wave solution (2.12) as A — oo.

To test our numerical code, we solve (3.2) with v(7) = 0 by taking as the initial
condition the periodic wave solution (4.3) of oy = 0.15 with large A(= 600) for
which numerical solutions for periodic waves can be regarded as those for solitary
waves. When we choose increments for space- and time-like variables as A¢ = 0.5
and A7 = 0.2, respectively, the maximum local error, relative to the wave amplitude,
of numerical solutions from (4.3) is less than 1% at 7 = 10® and mass and energy
are conserved up to O(1079).

Proc. R. Soc. Lond. A (1997)
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Figure 3. Comparison of numerical solutions between the bidirectional model (—) given by
(1.1) and the unidirectional model (- — —) given by (2.9): (a) transformation of an incident
solitary wave of ap = 0.15 propagating over the topography given by (4.5) with hy = 0.673
and 71 = 50; (b) disintegration into two solitons over the uniform shelf of A = 0.673 from the

numerical solution of the unidirectional model at ¢ = 200 shown in (a). Horizontal bars indicate
the predicted wave amplitudes a; = h*/%a;, (i = 1,2), where a; is given by (3.18).

For a topography in the form of

1, for <0,
h() =4q 1— (1= hy)cos®(n(t —11)/2711), for0< 7 <7, (4.5)
hy, form <,

the length of the transition between two uniform regions (from h = 1 to h;) is
chosen to be 71 = 50 so that its slope is O(107%) in the computations. We choose
the amplitude of an incident solitary wave oy = 0.15 and the depth of the lower
fluid over the shelf h; = 0.673 and h; = 0.534 for the formation of two and three
solitons, respectively. As indicated by horizontal bars in figure 2, the predicted wave
amplitudes (a; ~ 0.512, ay ~ 0.088 for h; = 0.673 and a; =~ 0.944, ay =~ 0.344,
as ~ 0.063 for h; = 0.534) by (3.18) and (3.20) are in good agreement with the
numerical results. For values of h; somewhat lower than the upper values predicted
by (3.14), numerical solutions show small dispersive tails in addition to solitary waves
whose amplitudes are slightly greater than those predicted by (3.18) or (3.20).

We also use the same numerical scheme to solve the bidirectional model (1.1) and
the unidirectional model (2.9) in the physical space and time (z,t). The comparison
between numerical solutions of the two different models for A; = 0.673 is made in
figure 3.

As shown in figure 3a, the numerical solutions of the bidirectional model exhibit
small reflected waves which have been neglected in the unidirectional model and
there is a slight disagreement in phase between the two solutions which increases in
time. Although the unidirectional model is unsatisfactory in conserving mass and
energy (with 6.7% loss of mass and 6.1% gain of energy at ¢ = 300) compared with
the bidirectional model (with 2.2% loss of energy), it still captures all salient features
of the initial fission process. The phase difference between two solutions decreases
as the slope of a topography becomes smaller, since reflected waves neglected in the
unidirectional model are insignificant in this case. A similar observation has been
made for surface waves in comparison of numerical solutions between the uni- and
bidirectional models (the KdV equation and the Boussinesq equations, respectively)
by Teng & Wu (1993). To carry out numerical simulations beyond ¢ = 300, a larger
domain of computation is required for bidirectional waves, as indicated in figure 3a.
Instead of increasing a computational domain to examine the fission process over
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a longer time, we obtain numerical solutions for the uniform depth of h = 0.673
by taking as the initial condition the numerical solution of the unidirectional model
(2.9) at t = 200. As shown in figure 3b, numerical solutions of the bidirectional model
also support the predictions in § 3, except a phase shift, based on the unidirectional
model for a slowly-varying topography.

5. Concluding remarks

We have studied the disintegration of an algebraic solitary wave propagating over a
shelf by use of the BO equation with variable coefficients. Contrary to the case of the
KdV equation with variable coefficients for which theoretical predictions rely on the
information of eigenvalues of the related linear operator (which is the Schrodinger
operator), it is shown that all predictions here are made by simply imposing an
adiabatic approximation and using conservation laws of the BO equation (with vari-
able coefficients). These predictions are confirmed by numerical solutions of both the
unidirectional and bidirectional models.

Since both models proposed here are valid only for weakly nonlinear waves, an
important question is the effect of finite wave amplitude. A theoretical investigation
on the fully nonlinear effects has been initiated recently by Choi & Camassa (1996b)
by deriving a simple set of equations and we may have a more complete explanation
on the phenomenon of interest in the near future. Despite the fact that we neglect
the compressibility of air and the background shear due to wind, the unidirectional
model derived here seems to be still useful for more general problems of the propa-
gation of internal waves over a topography in the atmosphere. In fact, without any
topographical disturbance, it has been shown that the governing equation is still the
BO equation even when these two effects (compressibility and shear) are taken into
account (Miessen et al. 1990; Rottman & Einaudi 1993).

This work was partly supported by the US Department of Energy through the CHAMMP
program. The author thanks R. Camassa and T. Y. Wu for many valuable discussions.
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