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We study the dynamics of large amplitude internal solitary waves in shallow
water by using a strongly nonlinear long-wave model. We investigate higher
order nonlinear effects on the evolution of solitary waves by comparing
our numerical solutions of the model with weakly nonlinear solutions. We
carry out the local stability analysis of solitary wave solution of the model
and identify an instability mechanism of the Kelvin–Helmholtz type. With
parameters in the stable range, we simulate the interaction of two solitary
waves: both head-on and overtaking collisions. We also study the deformation
of a solitary wave propagating over non-uniform topography and describe
the process of disintegration in detail. Our numerical solutions unveil new
dynamical behaviors of large amplitude internal solitary waves, to which any
weakly nonlinear model is inapplicable.

1. Introduction

Under the assumption of small wave amplitude, various weakly nonlinear
models have been proposed to describe the evolution of internal solitary waves.
Different models under different approximations can be found, for example,
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in Choi and Camassa [1]. However, there have been an increasing number
of observations of large amplitude internal solitary waves [2], for which the
classical weakly nonlinear assumption is no longer valid.

For both shallow and deep water configurations, Choi and Camassa [3]
recently derived a new model for strongly nonlinear long waves in a simple
two-layer system. They used a systematic asymptotic expansion method for a
natural small parameter in the ocean, that is, the aspect ratio between vertical
and horizontal length scales. The most prominent feature of large amplitude
solitary waves of the model is that they are much wider and slower compared
with weakly nonlinear solitary waves described by the Kortweg–de Vries
(KdV) and Intermediate Long Wave (ILW) equations for the shallow and deep
water configurations, respectively.

Although steady solitary wave solutions of the model are in excellent
agreement with numerical solutions of the Euler equations and experimental
data [4], little is known about their dynamical properties. Due to their
complexity, it is very difficult to study the dynamics of large amplitude internal
waves in detail by using the original governing (Euler) equations and the
boundary conditions. Here, by taking advantage of simplicity of the model,
we investigate the evolution of large amplitude internal solitary waves in the
shallow water configuration.

This paper is organized as follows. With the model described in Section 2,
we present the local stability analysis of solitary wave solution of the model in
Section 3, by assuming that a slowly varying flow field generated by interfacial
solitary wave can be regarded as locally constant. In Section 4, after choosing
physical parameters appropriate for numerical stability, we study the interaction
between two solitary waves: the head-on and overtaking collisions. Because
phase shift is a typical nonlinear phenomenon occurring during the interaction,
we numerically measure phase shift to compare with weakly nonlinear result.
In Section 5, we also study the evolution of a solitary wave propagating over
non-uniform topography. The process of fission is described in detail and the
number of solitary waves disintegrated from one solitary wave is compared
with weakly nonlinear prediction.

2. Mathematical models

2.1. Strongly nonlinear model

To describe the evolution of large amplitude internal gravity waves, Choi and
Camassa [3] proposed a strongly nonlinear model for a two-layer system with
flat top and bottom boundaries. With non-uniform bottom topography (as shown
in Figure 1), the model needs to be slightly modified [5] and can be written as
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Figure 1. Two-layer system.
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where g is the gravitational acceleration, ρi is the fluid density, and the sub-
scripts x and t represent partial differentiation with respect to space and time,
respectively. In (1)–(3), the layer thickness ηi , the thickness average velocity
ūi , and the nonlinear dispersive term Gi are defined by

η1 = h1 − ζ, ū1(x, t) = 1

η1

∫ h1

ζ

u1(x, z, t) dz,

G1(x, t) = ū1xt + ū1ū1xx − (ū1x )2,

(4)

η2 = h2 − b(x) + ζ, ū2(x, t) = 1

η2

∫ ζ

−h2+b(x)
u2(x, z, t) dz,

G2(x, t) = ū2xt + ū2ū2xx − (ū2x )2,

(5)

and H2 is given by

H2 = −(∂t + ū2∂x )(ū2bx ). (6)

While the first two equations in (1) representing conservation of mass are
exact, two horizontal momentum equations, (2)–(3), have an error of O(ε4),
where ε measuring the ratio between water depth and characteristic wavelength
has been assumed to be small. Because no assumption on wave amplitude has
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been made, this model is expected to describe the evolution of large amplitude
internal waves much better than any weakly nonlinear models based on small
amplitude assumption. The bottom topography b(x) is also assumed to be
slowly varying and we recover the system of equations derived by Choi and
Camassa [3] when b(x) = 0.

The system of equations (1)–(3) can be further reduced to two evolution
equations. From (1), by imposing zero boundary conditions at both infinities,
ū2 can be expressed, in terms of ū1, as

ū2 = −
(

η1

η2

)
ū1. (7)

After eliminating Px from (2)–(3) and using (7) for the expression of ū2, one
can find a closed system of two evolution equations for η1 and ū1.

2.2. Weakly nonlinear models

Assuming ζ = O(ū1) = O(ū2) � 1, the system of (1)–(3) can be reduced to
the weakly nonlinear model, written for ζ and ū1, as

ζt − [(h1 − ζ )ū1]x = 0, (8)

ū1t + q1ū1ū1x + (q2 + q3ζ )ζx = q4ū1xxt , (9)

where qi s are slowly varying functions defined by

q1 = ρ1ĥ2
2 − ρ2h1ĥ2 − 2ρ2h2

1

ĥ2(ρ1ĥ2 + ρ2h1)
, q2 = gĥ2(ρ1 − ρ2)

ρ1ĥ2 + ρ2h1

, (10)

q3 = gρ2(ρ1 − ρ2)(h1 + ĥ2)

(ρ1ĥ2 + ρ2h1)2
, q4 = 1

3

h1ĥ2(ρ1h1 + ρ2ĥ2)

ρ1ĥ2 + ρ2h1

, (11)

and ĥ2(x) = h2 − b(x). The system of equations (8)–(9) will be used for
weakly nonlinear analyses presented in Sections 4 and 5.

For unidirectional waves, the system (8)–(9) with b(x) = 0 can be further
reduced to the Korteweg–de Vries equation for ζ (x, t) given by

ζt + c0ζx + c1ζ ζx + c2ζxxx = 0, (12)

where

c2
0 = gh1h2(ρ2 − ρ1)

ρ1h2 + ρ2h1
, c1 = q2

2c0

(
2 + q1 − q3h1

q2

)
, c2 = 1

2
q4c0. (13)
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3. Solitary waves and their stability

3.1. Solitary waves

By assuming solitary wave of speed c to have the form of

ζ (x, t) = ζ (X ), ūi (x, t) = ūi (X ), X = x − ct, (14)

and imposing the boundary condition of ηi → hi as |X | → ∞, ūi can be
written, from (1), as

ūi = c

(
1 − hi

ηi

)
. (15)

As shown in [3], by using (15), the strongly nonlinear model (2)–(3) for
b(x) = 0 becomes

(ζX )2 =
[

3g(ρ2 − ρ1)

c2
(
ρ1h2

1 − ρ2h2
2

)
]

ζ 2(ζ − a−)(ζ − a+)

(ζ − a∗)
, (16)

where a∗ is given by

a∗ = −h1h2(ρ1h1 + ρ2h2)

ρ1h2
1 − ρ2h2

2

, (17)

and a± are the two roots of a quadratic equation

ζ 2 + d1ζ + d2 = 0, (18)

with d1 and d2 defined by

d1 = −c2

g
− h1 + h2, d2 = h1h2

(
c2

c2
0

− 1

)
. (19)

From the fact that ζ is bounded and ζX
2 is non-negative, it can be shown

that the solitary wave can be of elevation for (h2/h1) < (ρ2/ρ1)1/2 and of
depression for (h2/h1) > (ρ2/ρ1)1/2. Notice that no solitary wave solution
exists at the critical depth ratio given by (h2/h1) = (ρ2/ρ1)1/2. From (18), the
solitary wave speed c can be written in terms of wave amplitude a as

c2

c2
0

= (h1 − a)(h2 + a)

h1h2 − (
c2

0

/
g
)
a

. (20)

The solitary wave profiles of the strongly nonlinear model are shown in
Figure 2(a). As wave amplitude increases, the solitary wave of the strongly
nonlinear model becomes much wider and slower than those of weakly
nonlinear models as shown in [3].
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Figure 2. (a) Solitary wave profiles with amplitude a = −0.31 (— - —) and a = −0.4885
(——–) for ρ2/ρ1 = 1.01 and h2/h1 = 2, (b) the velocity jump, �u, given by (21) for
solitary waves shown in (a).

From (15), notice that the interfacial solitary wave induces the horizontal
velocity discontinuity across the interface given by

�u ≡ ū1 − ū2 = −cζ

(
1

h1 − ζ
+ 1

h2 + ζ

)
. (21)

Although this discontinuity vanishes at both infinities, it reaches the maximum
at the peak as shown in Figure 2(b), which may be large enough to excite the
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Kelvin–Helmholtz-type instability. Because disturbances with small wavelength
are most dangerous in this instability mechanism [6], the slowly varying
velocity jump in (21) can be regarded as locally constant. Although a stability
analysis for non-uniform flow field induced by the solitary wave is a very
interesting problem, it is beyond the scope of this article and the local stability
analysis for a constant basic state is sufficient to determine the onset of
instability of solitary wave.

3.2. Local stability analysis

We consider small perturbations (u′
i , ζ

′) to a basic state as

ūi = ui + u′
i , ζ = a + ζ ′, (22)

where ui and a are constant.
We first study the case of a = 0 and �u �= 0 to understand the Kelvin–

Helmholtz instability of the system. For the instability of solitary wave, we
later consider the case of a �= 0 for which �u is a function of a given by (21).

By substituting (22) with a = 0 into (1)–(3) and linearizing with respect to
(u′

i , ζ
′), we can find the linear dispersion relation between wavenumber k and

wave frequency ω for a Fourier mode of ei(kx−ωt) as

a(k̄)ω̄2 − 2b(k̄)ω̄ + c(k̄) = 0, (23)

where k̄ = kh1, ω̄ = ω/
√

g/h1, and

a(k̄) = h(1 + ρh)k̄2 + 3(h + ρ),

b(k̄) = u1√
gh1

[h(1 + ρhu)k̄3 + 3(h + ρu)k̄], (24)

c(k̄) = u2
1

gh1
[h(1 + ρhu2)k̄4 + 3(ρu2 + h)k̄2] − 3h(ρ − 1)k̄2,

where the depth ratio h, the density ratio ρ, and the Froude number F are
defined as

h = h2/h1, ρ = ρ2/ρ1, u = u2/u1, F = (u2 − u1)/
√

gh1. (25)

A constant state becomes unstable when there exists a non-trivial imaginary
part of ω, in other words, when �(k̄, F) > 0 for fixed ρ and h, where

D(k̄, F) = (ρh3 F2)k̄4 − 3[h2(ρ − 1)(1 + ρh) − h(1 + h2)ρF2]k̄2

− 9[h(h + ρ)(ρ − 1) − ρhF2]. (26)

It is interesting to compare the linear dispersion relation (23) from the
longwave model (1)–(3) with that for the full linear problem. When we perturb
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the Euler equations about (22), ω is still determined by (23) with a(k̄), b(k̄),
and c(k̄) replaced by

a(k̄) =
[

ρ

k̄ tanh (hk̄)
+ 1

k̄ tanh (k̄)

]
,

b(k̄) = u1√
gh1

[
ρu

tanh (hk̄)
+ 1

tanh (k̄)

]
, (27)

c(k̄) = u2
1

gh1

[
ρk̄u2

tanh (hk̄)
+ 1

tanh (k̄)

]
+ ρ − 1.

Then D(k̄, F) is given, instead of (26), by

D(k̄, F) = F2ρ

tanh (hk̄) tanh (k̄)
− (ρ − 1)

[
ρ

k̄ tanh (hk̄)
+ 1

k̄ tanh (k̄)

]
. (28)

As shown in Figure 3(a), the constant state of the model, (22), is unstable
for large k corresponding to small wavelength and relatively stable for small k.
Because the constant state becomes unstable for high wavenumbers for any
Froude number, the strongly nonlinear system of (1)–(3) is ill-posed. For fixed
Froude number F, only perturbations with small wavenumbers are stable.

As expected from the fact that (27) is valid for arbitrary wavelength, it can
be shown that (24) can be obtained by expanding (27) for small k̄. On the other
hand, as wavenumber k̄ increases, the critical Froude number from the model
decreases like O(k̄−2), while that of the linear Euler equations decreases like
O(k̄−1/2).

The stability diagram depends more on the density ratio than the depth ratio
as shown in Figure 3(b). When we double the density ratio, the range of stable
region becomes much wider but it changes little with doubling the depth ratio.
This result can be understood from the fact that increasing the density ratio
stabilizes the system.

To examine the instability of solitary wave, we need to extend our analysis
for a = 0 to the case of non-zero a. To do this, we simply need to replace h1

and h2 in (26) by h1 − a and h2 + a, respectively. Then wave amplitude a is the
only free parameter because, from (21), the maximum velocity jump (and the
Froude number) depends only on a as shown in Figure 4(a). Our local stability
analysis is compared with the stability of our numerical code in Figure 4(b)
with wavenumber k defined by k = 2π/(2�x). Notice that our numerical
code becomes unstable near the neutral stability curve predicted by the local
analysis. This confirms the validity of our local analysis and numerical code.

Given the fact that the strongly nonlinear model, (1)–(3), is linearly unstable
for higher wave modes, we cannot test the convergence of our numerical
solutions for very small grid size. To test the accuracy of our numerical code,
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Figure 3. Neutral stability curve of �(k̄, F) = 0 between the Froude number F and wave
number k̄ = kh1: (a) the local analysis (——) given by (26) and the Kelvin–Helmholtz instability
(— - —) given by (28) with ρ2/ρ1 = 1.01 and h2/h1 = 2, (b) the local stability analysis
given by (26) for three different density and depth ratios: ρ2/ρ1 = 1.01 and h2/h1 = 2 (—);
ρ2/ρ1 =1.01 and h2/h1 = 4 (· · ·); ρ2/ρ1 = 2.02 and h2/h1 = 2 (— - —).

we calculate the error e with varying grid size, where e is defined as

e =
(

1

N

∑
|ζ − ζexact|2

) 1
2

, (29)
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Figure 4. (a) Froude number versus wave amplitude, (b) neutral stability curve for the
model (—) compared with numerically stable (∗) and numerically unstable (o) solutions with
ρ2/ρ1 = 1.01 and h2/h1 = 2.

where ζexact is the solution of (16). As shown in Table 1, e becomes smaller as
the grid size �x decreases, but the numerical code becomes unstable when
�x is too small, as expected.

For given �x , solitary wave becomes stable or unstable depending on wave
amplitude. For example, solitary wave with a = −0.4885 is unstable, while
smaller solitary waves are stable, as shown in Figure 5.
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Table 1
Comparison between Exact Solitary Wave Solutions and Numerical Solutions

of the Model Given by (1)–(3) with Varying Grid Size

�x amp = −0.08 amp = −0.15 amp = −0.31

1.0 8.87E−05 2.72E−04 4.46E−04
0.5 4.21E−05 1.27E−04 9.98E−05
0.25 3.18E−05 9.31E−05 Unstable
0.125 2.87E−05 Unstable Unstable
0.0625 Unstable Unstable Unstable

For numerical simulations presented in the following sections, we choose
�x being as small as possible, for which our code runs stably.

4. Interactions between two solitary waves

To identify higher order nonlinear effects present in the model on the evolution
of large amplitude waves, we simulate the head-on and overtaking collisions
between two solitary waves and compare our numerical solutions of the model
with weakly nonlinear solutions.

4.1. Overtaking collision

When a larger solitary wave overtakes a smaller wave propagating in the same
direction, it is well-known, from the KdV theory [7], that two weakly nonlinear
solitary waves emerging after the collision remain unchanged in form. The
larger wave experiences a forward phase shift, while the smaller wave shifts
backward.

For a fixed amplitude ratio, the phase shift is known to be inversely
proportional to

√
ai as

�x1 = − 1

γ1
log

(
γ2 + γ1

γ2 − γ1

)2

, �x2 = 1

γ2
log

(
γ2 + γ1

γ2 − γ1

)2

, γ 2
i = c1

3c2
ai ,

(30)

where ai (i = 1, 2) is the wave amplitude with a2 > a1 (γ2 > γ1 > 0), and
�x1 and �x2 are the phase shifts for smaller and larger waves, respectively.

For two different amplitude ratios, numerical solutions of our model are
compared with weakly nonlinear solutions. For large amplitude ratio, the larger
solitary wave takes over the smaller wave as shown in Figure 6 but, for small
amplitude ratio, two waves just change their roles as shown in Figure 7. A
similar observation has been made for weakly nonlinear waves based on the
KdV theory [8].
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Figure 5. Numerical solutions for a solitary wave for h2/h1 = 2 and ρ2/ρ1 = 1.01 in a frame
moving with solitary wave speed: (a) stable solitary wave of amplitude a = −0.31, (b) unstable
solitary wave of amplitude a = −0.4885.
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Figure 6. Overtaking collision between two solitary waves of a1 = −0.4 and a2 = −0.08 for
h2/h1 = 2 and ρ2/ρ1 = 1.01: (a) numerical solutions of the strongly nonlinear model given
by (1)–(3) in a frame moving with the speed of solitary wave of a2 = −0.08, (b) comparison
of numerical solutions of the strongly nonlinear model (—) with those of the weakly nonlinear
model (- - -) given by (8)–(9) at t = 4000, 7500, 9000, 13000.
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Figure 7. Overtaking collision between two solitary waves of a1 = −0.4 and a2 = −0.2 with
h2/h1 = 2 and ρ2/ρ1 = 1.01: (a) numerical solutions of the strongly nonlinear model given
by (1)–(3) in a frame moving with the speed of solitary wave of a2 = −0.2, (b) comparison of
numerical solutions of the strongly nonlinear model (—) with those of the weakly nonlinear
model (- - -) given by (8)–(9) at t = 6400, 16000, 25600, 35200.
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Figure 8. Phase shift after the overtaking collision between two solitary waves with h2/h1 = 2
and ρ2/ρ1 = 1.01. Numerical solutions of the strongly nonlinear solitary model (symbols) are
compared with the weakly nonlinear analysis (— - —) given by (30): (a) the amplitude ratio is
fixed as a1/a2 = 4, (b) the amplitude of the smaller wave is fixed as a2 = −0.051.

In Figure 8, we compare phase shift measured from our numerical solutions
with the weakly nonlinear prediction given by (30). While two results agree
well for small wave amplitude, the phase shift is almost constant for large
wave amplitude, which cannot be explained by the weakly nonlinear theory.
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4.2. Head-on collision

Because the weakly nonlinear model for internal waves given by (8)–(9) is
similar to the Boussinesq equations for surface waves except a term of ζ ζx in
(9), the weakly nonlinear analysis of Wu [8] for the head-on collision of two
solitary waves at the free surface can be adopted here.

After introducing the slow variables (ξ±, τ ) defined by

ξ± = ε1/2(x ∓ c0t), τ = ε3/2t, (31)

for ε � 1, we substitute into (8)–(9) the following expansion for f = (ζ, ū1),

f = ε f1 + ε2 f2 + O(ε3). (32)

After collecting terms of O(ε), one can show that ζ1 can be decomposed into
the right- and left-going waves

ζ1 = ζ+(ξ+, τ ) + ζ−(ξ−, τ ), (33)

where ζ±(ξ±, τ ) is governed by the KdV equation in the form of

∂τ ζ± ± c1ζ±∂±ζ± ± c2∂
3
±ζ± = 0, ∂τ = ∂

∂τ
, ∂± = ∂

∂ξ±
. (34)

The solitary wave solution of (34) is given by

ζ± = a±sech2θ±, θ± =
√

c1a±
12c2

(
ξ± − c1

3
a±τ − s±

)
. (35)

At O(ε2), ζ2 representing the nonlinear interaction between two counter-
propagating waves is found to be

ζ2 = αζ+ζ− + β(φ−∂+ζ+ − φ−∂−ζ−), (36)

where α, β, and φ± are defined as

α = −q1 + q3h1/q2

2h1
, β = −q1 + q3h1/q2

4c0
, ∂±φ± = ∓

√−q2

h1
ζ± .

(37)
From (32), (33) and (36), ζ can be rewritten, correct up to O(ε2), as

ζ = ζ+(ξ+ + βφ−, τ ) + ζ−(ξ− − βφ+, τ ) + αζ+(ξ+, τ )ζ−(ξ−, τ ) + O(ε3),

(38)
and the phase shift can be computed as

�x± = ∓β[φ∓(t = ∞) − φ∓(t = −∞)] = ±2βq2a∓
c0

√
12c2

c1a∓
. (39)

As shown in Figure 9, there is little difference in phase shift between our
numerical solutions of the strongly nonlinear model and the weakly nonlinear
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Figure 9. Head-on collision between two counter-propagating solitary waves of a1 = −0.4
(for the right-going wave) and a2 = −0.2 (for the left-going wave) for h2/h1 = 2 and
ρ2/ρ1 = 1.01: (a) numerical solutions of the strongly nonlinear model given by (1)–(3), (b)
comparison of numerical solutions of the strongly (—) and weakly (- - -) nonlinear models at
t = 160, 320, 480, 640.
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Figure 10. Peak location versus time for the head-on collision shown in Figure 9. Dotted
lines represent the peak location without interaction.

analysis given by (39). Because two solitary waves move to the opposite
directions, their interaction time is much shorter than that for the overtaking
collision, yielding too small phase shift to measure accurately, as shown in
Figure 10.

5. Evolution over non-uniform topography

Before presenting numerical solutions of the strongly nonlinear model, we
briefly summarize the weakly nonlinear analysis.

For slowly varying bottom topography ĥ2(x) = h2 − b(x), the weakly
nonlinear model (8)–(9) can be reduced to the KdV equation with variable
coefficients for ζ as shown by Djordjevic and Redekopp [9]:

ζt + c0(x)ζx + c1(x)ζ ζx + c2(x)ζxxx + 1
2 c′

0(x)ζ = 0, (40)

where the coefficients are given by (13) replacing h2 by ĥ2 and we
have assumed that ĥ′

2(x) = O(ε3/2). By introducing the following stretched
coordinates:

ξ = ε1/2

(∫ x dσ

c0(σ )
− t

)
, X = ε3/2

∫ x c2(x)

[c0(x)]4
dx, (41)

and making the following transformation for ζ

ζ = − 6c2

c1c2
0

ψ(X, ξ ), (42)
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we can show, from (40), that ψ satisfies

ψX − 6ψψξ + ψξξξ + ν(X )ψ = 0, (43)

where ν(X ) is given by

ν(X ) = J ĥ′
2(X ),

J = 1

ĥ2

(
2 − 3

4

ρ2h1

ρ1ĥ2 + ρ2h1

+ ρ2ĥ2

ρ1h1 + ρ2ĥ2

− 2ρ1ĥ2
2

ρ1ĥ2
2 − ρ2h2

1

)
. (44)

It is well known [10] that, when ν < 0 in (44), a KdV solitary wave is
disintegrated into a number of solitary waves. The number of solitary waves N
to be disintegrated is determined by

N (N − 1) ≤ 2

µ
≤ N (N + 1) (45)

where µ is given by

µ =
(

ĥ2

h2

)5/4(
ρ1ĥ2 + ρ2h1

ρ1h2 + ρ2h1

)3/4(
ρ1h1 + ρ2ĥ2

ρ1h1 + ρ2h2

)∣∣ρ1h2
2 − ρ2h2

1

∣∣∣∣ρ1ĥ2
2 − ρ2h2

1

∣∣ , (46)

and the final depth at x = ∞ is substituted for ĥ2. As shown in Figure 11,
depending on the depth and density ratios, the sign of J in (44) can be either
positive or negative. Therefore, for ν < 0, the bottom topography needs to
vary upward (ĥ′

2(x) < 0) or downward (ĥ′
2(x) > 0).

Figure 11. Condition of disintegration of a solitary wave propagating over non-uniform topogra-
phy: (a) h′

2(x) < 0, (b) h′
2(x) > 0, (c) h′

2(x) > 0.
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Figure 12. Transformation of a solitary wave of a = 0.072 climbing over a shelf, whose shape
is given by (47) with b0 = 0.1. The density and depth ratios are ρ2/ρ1 = 1.01 and h2/h1 = 0.8,
respectively. (a) Numerical solutions of the strongly nonlinear model given by (1)–(3),
(b) comparison of numerical solutions between the weakly and strongly nonlinear models with
the same wave amplitude at t = 0, 20000, 30000, 50000.
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Figure 13. Transformation of a solitary wave of a = 0.072 climbing over a shelf, whose shape
is given by (47) with b0 = 0.35. The density and depth ratios are ρ2/ρ1 = 1.01 and h2/h1 =
0.8, respectively. (a) Numerical solutions of the strongly nonlinear model given by (1)–(3),
(b) comparison of numerical solutions between the weakly and strongly nonlinear models with
the same wave amplitude at t = 0, 20000, 30000, 50000.
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To compare our numerical solutions of the strongly nonlinear model (1)–(3)
with (45), we adopt the following bottom topography:

b(x) = 1
2 b0 tanh (x/10). (47)

For small b0 (= 0.1) (Figure 12), as predicted by (45), two solitary waves are
generated from a single solitary wave of amplitude a = 0.072 and our numerical
solutions of the strongly nonlinear model are close to those of the weakly
nonlinear model (8)–(9). As b0 increases, the weakly nonlinear prediction no
longer remains valid. As shown in Figure 13, when b0 = 0.35, numerical
solutions of the strongly nonlinear model have generated four solitary waves
while the weakly nonlinear analysis predicts only three solitary waves.

6. Conclusion

We have investigated the dynamics of large amplitude internal solitary waves
by using a new strongly nonlinear model. The local stability analysis reveals
that the model suffers the Kelvin–Helmholtz instability due to the presence of
horizontal velocity jump across the interface induced by internal solitary wave.
Even with simulations limited by this instability, we are able to demonstrate
strong nonlinear effects on the interactions between large amplitude internal
solitary waves. Our numerical solutions also show that the evolution of a large
amplitude internal solitary wave over non-uniform topography is different
from the weakly nonlinear prediction as wave amplitude increases. To improve
the model and eliminate the instability, it might be crucial to take into
consideration other physical effects such as viscosity, surface tension, or
continuous stratification. For further validation of the model, it might be useful
to compare our numerical solutions with exact solutions of the Euler system to
be found numerically.
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