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Abstract

For analyzing forced axisymmetric flow of a non-uniformly rotating, inviscid and incompressible fluid within a long tube
of slowly varying radius, a theoretical model called the forced Korteweg—de Vries (fKdV) equation with variable coefficients
is derived to calculate the amplitude function of the Stokes stream function. When the fluid system is placed under forcing by
axisymmetric disturbance steadily moving with a transcritical velocity, new numerical results of flow streamlines are presented
to show that well-defined axisymmetrical recirculating eddies can be periodically produced and sequentially emitted to radiate
upstream of the disturbance, becoming permanent in form as a procession of vortex solitons. The Rankine vortex and the
Burgers vortex are adopted as two primary flows to exemplify this phenomenon and it is shown that flow with a highly
centralized axial vorticity is more effective in producing upstream-radiating vortex solitons.

1. Introduction

The striking phenomena of weakly nonlinear and weakly dispersive waves generated by resonant forcing have
recently attracted much attention. One of their remarkable features is that a steadily moving transcritical distur-
bance can produce, continuously and periodically, a succession of solitons to be radiated upstream of the moving
disturbance. This phenomenon was identified first numerically by Wu and Wu [1] and subsequently validated ex-
perimentally by Lee et al. [2] for the upstream-radiating solitons generated in a layer of water by a surface pressure
distribution or a submerged topography moving with a constant transcritical velocity. Several theoretical models
have been used to simulate this phenomenon, among which the forced Korteweg~de Vries (fKdV) model is rela-
tively simple yet requires numerical methods for solution [2-5]. In connection with exploring the basic mechanism
underlying this phenomenon, the hydrodynamic instability of several forced steady solitons of the fKdV family has
been investigated by Camassa and Wu [6] and Yates and Wu [7].

Analogous phenomena have been found in various physical systems and are in fact deemed possible to occur in
all soliton-bearing systems under sustained resonant excitation. Studies have been made, e.g., for forced generation
of nonlinear waves in stratified fluids by Grimshaw and Smyth [8] and Zhu et al. [9].
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Recently, Grimshaw [10] and Hanazaki [ 1 1] investigated the problem of periodic production of upstream-radiating
solitary waves in a axisymmetric rotating fluid confined in a uniform circular cylinder while being resonantly excited
by a body moving along the axis, for which they derived a fKdV equation which has constant coefficients. Here
we extend their analyses to axisymmetric rotating flows of inviscid and incompressible fluid bounded by a tube of
gradually varying radius, for which a model is derived here to give a fKdV equation with variable coefficients. For
specific primary flow subject to sustained critical forcing by an axisymmetric slender body, a parametric domain
prevails in which vortex solitary waves can be periodically produced to radiate upstream of the forcing body.
Corresponding streamline patterns are important for viewing flow structure, but have not been evaluated in the
previous studies. Our new results for the flow streamlines exhibit the process of wave generation with a vivid flow
visualization of the upstream-radiating vortex solitons produced, which we call ‘vortons’. Each vorton assumes the
form of a recirculating eddy, closed and permanent in shape, just as that found by Benjamin [12] and Leibovich [13]
for the critical rotating flow in their studies of vortex breakdown. (For axisymmetric rotating flows, the critical state
is reached when the ratio of axial velocity to the swirl velocity is such that the axial long-wave velocity vanishes.)
In addition, an attempt is made here to explore the basic mechanism underlying the phenomenon in question and
further examine the effect of periodic production of vorton on the variation of vorticity distribution and its transport.

This paper first presents the basic equations in Section 2 and derives in Section 3 the fKdV equation for modeling
the weakly nonlinear and weakly dispersive long waves propagating in an axisymmetric rotating flow of inviscid
and incompressible fluid bounded by a non-uniform tube of slowly varying radius. The flow is sustained under
forcing by a slender body and/or a slender ring-shaped topography within the tube, or adjacent to the tube wall, each
moving with a transcritical velocity. The original tube non-uniformity is reflected by the variable coefficients of the
fKdV equation, much in analogy with the model equations for free gravity waves in open channels of gradually
varying depth [14-16] and for free waves in rotating flows bounded by a non-uniform tube [17]. In Section 5, the
Rankine vortex and the Burgers vortex are adopted as two primary flows here subjected to a sustained resonant
forcing. The Rankine vortex is distinguished in affording analytical results determined in closed form, which is of
value as a standard reference for assessing results from the Burgers vortex which can be acquired only by numerical
means. The corresponding wave resistance experienced by the forcing agency furnishes a very sensitive measure of
the periodicity and rate of growth of the unstable modes that maybe discerned only on a slow timescale.

2. Basic equations

To facilitate analyzing the axisymmetric motion of an inviscid and incompressible fluid in question, we adopt the
Stokes stream function v (x, r, t) with the cylindrical coordinates (x, r, 8). With the new variable y = r2, the axial
and radial velocity components (u, v) and the azimuthal velocity w are given by

u =2yy, rv = —y, 2.1
rw(x,y, t)y=I(x,y,1), 2.2)

where I'(x, y, t) is the circulation around the circle y = const., which is also the angular momentum density. With
the fluid assumed inviscid, ¥ and I” satisfy the inviscid vorticity equation and the #-momentum equation,

a /1 2
Dy, + 29, D>y — 203, (;Dzvf) + 5T =0, (2.3)
- 21/’)([‘}' + 21/fyrx =0, (2.4)
where
92 2
D* = + 4y (2.5)
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Concerning the boundary conditions, the case of interest is that of a forced motion produced by a slender body
on the axis, r = ro(x, 1), and a slender radial topography at the tube wall, r = ry(x, ), so that the inner and outer
boundary conditions are

bor 4+ 2¥yboy +2¥, =0 aty =r3 = bo(x,1), (2.6)
by — 2Yybyy + 20 =0 aty — 1 =r2 — 1 = —by(x,1). (2.7)

For resonant forcing, the slender bodies will be taken to move with a transcritical velocity in a stationary, non-
uniform, axisymmetric long tube (see Fig. 1).

Disregarding any tube radius variations for the moment, the primary flow field is assumed steady and uniform in
x and may have both the axial and azimuthal velocity components arbitrarily sheared in the radial direction

U(y) = (Uo(y). 0, Wo(y)). 2.8)

where Up(y) and Wy(y) are as specified and assumed to be sufficiently smooth and stable to axisymmetric dis-
turbances, i.e., they satisty the linear stability criterion of Howard and Gupta [18], I' [y > yztﬁfy in the present
notation. In connection with the manifest of the remarkable phenomenon of resonantly forced rotating flows, it
is actually necessary, as will be seen, that Wy/r be sheared because the nonlinear effects disappear, so does the
resonant forcing, when Wy/r is constant.

3. The model equation for forced nonlinear waves in rotating fluids

It is well known that weakly nonlinear and weakly dispersive long waves of a typical wavelength A and amplitude
a in a fluid rotating with typical speed Wy, within a tube of typical radius R are characterized by two important
small parameters:

e = R?/)2, « =a/R. (3.1)

This is clear if the radial length is scaled by R, axial length by A, velocity by Wy, and time by )./ Wr,. For waves of
the Boussinesq family in particular, we have ¢ = O(¢) < 1.

Guided by these parameters, it is however simpler if the lengths in all directions are scaled by R so as to provide
the following dimensioniess (primed) variables:

x=Rx, y=R?Y, 1=Ri'/Wn, ¥ =WnR>, I =WuyRI' (3.2)

in terms of which (2.3) and (2.4) remain unaltered in form, upon dropping the primes.

Fig. 1. Schematic view of the problem.
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To facilitate modeling evolution of uni-directional (left-going) long waves of the Boussinesq family as specified
above, we adopt the following multiscale coordinates [19]:

& =6'/2(x+cot), n:sl/zx, T =%, (3.3)

where £ is a slow axial coordinate fixed in the wave frame moving in the negative x-direction with the phase velocity
cp of infinitesimal long waves which depends on the primary flow field and is yet to be determined. The coordinate
n serves to account for the effects due to the fixed slow variations of the tube radius. Here, the various € factors
arise in accordance with the dispersion relationship and the condition ¢ = O(e).

To render the forcing resonant, the slender body and wall topography are assumed to move to the left with a
transcritical velocity U,

bo(x + Ut) = €2bo(x + U1), bo(x, 1) = €bs(x) + €2b1 (x + Ut) + O(e), (3.4)
with U possibly detuned from the critical speed cp by a margin of O(e),
U = co+ €8 + O(e?), 8§ =0(). (3.5)

Here el;s(x) indicates the radius variation and that the moving disturbances are void of O(e) terms is dictated by
the solvability condition for the solution as will be seen later.
The solutions for ¢ and I” are assumed to consist of two (steady and unsteady) parts,

¥ = o) +vYE Ty + Sy, (3.6)
FE ty) =)+ TVE 3y + M y), (3.7)
where
1 y
o=> / Uoy) dy.  Tb = rivo(y). (3.8)
0

and they can be expanded as
(Ve mn i) =e(pE o) + (W nnvimn)+oE. 39
(rY@mn. riom ) =e(rle s, rim ») + (€ o ») +0e. (10

In these expansions, the steady part ¥5(7; y) is needed to account for the effects due to small variations of the tube
radius and the unsteady component ¥V (¢, t; y) is due to the moving disturbances.

Substituting (3.4)—(3.10) in (2.6) and (2.7) and expanding these functions into their Taylor series about y = 0
and y = 1 separately, we find the boundary conditions to the first order as

Yyl 100 =0, Y@:0)=0 aty=0, (.11)

YE T D=0, yim D =10bs aty=1, (3.12)
and to the second order,

Yo (€, 7:0) = —3(Uo(0) + co)bos (6. 1) aty =0, (3.13)

Y€, 75 1) = 5(Wo(D) + codbig (6, 7) + ik, (€. 1 Dby + ¥ (5. 1: Dby, aty =1, (3.14)

where bg, b1 and by are taken positive (or negative) when they decrease (or increase) the cross-sectional area of the
tube.
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Substituting (3.3) and (3.6)—(3.10) into (2.3) and (2.4) yields, for the unsteady component, the first-order equations
of the form

YrE. T y) = g1 (A& D), Y =ymAIE 1), (3.15)
200
= ) 3.16
" U() —+ C0¢)1 ( )
Loy =0, (3.17)
where
d? 1 nohy ,,]
L=— 44, y) = —Up" |, (3.18)
dy? 7o) 70) (Uo + <o) [(Uo Ty
and the prime means differentiation with respect to y. The boundary conditions (3.11)-(3.12) give
$1(0) =0, ¢1(1) =0, (3.19)

thel corresponding kinematic conditions being v(&, t; 0) = 0 and v(&, 7; 1) = 0. The system of homogeneous
equations (3.17) with (3.19) now constitute an eigenvalue problem for ¢; with the eigenvalue cg. According to
Chandrasekhar [20, Section 78b], there exist at least two eigenvalues, say con, and cop, such that

—com < min Ug(y), —cop > max Up(y), (3.20)
ye(0,1) ye(0,1)
provided the flow is stable. Consequently, the singularity of ¢(y) with Ug + co = 0 will not arise in the interval

(0, 1) of interest and the eigenvalue problem is therefore regular (in the Sturm-Liouville sense).
For wls, the leading order equation becomes

Ui y) = e (Mbs(n),  Lsg1 =0, (3.21)
e =0, (1) =1Uo(D), (3.22)
where
d? 1 [ Ioly
Lsz_— sty s = — —UN- 3.23
47 +gs(¥) gs(y) Us [onz 0 ] (3.23)

Since the differential operator Lg in (3.21) becomes identical to L in (3.17) when ¢y = 0, and the boundary
conditions (3.22) are inhomogeneous, we tacitly assume that ¢p = 0 is not an eigenvalue of (3.17) for the solution,
leaving the critical case of ¢p = 0 to be discussed in Section 4 as a special case. When ¢g = 0 at criticality, the
waves and all disturbances will become stationary in the incoming stream so there is no distinction between bs and
b1, which suggests how to recover the critical case from the non-critical case.

To find the evolution equation for A (§, t), it is necessary to find the solvability condition for the next higher-
order equations for the unsteady component lﬁg (&, T; ¥). On the other hand, the higher-order terms of the steady
part, i.e., 1//,? (n; ¥) (n > 1) need not be further pursued since they have no effects on the evolution equation for the
first-order amplitude function A;.

The second-order terms in (2.3) and (2.4) yield for Wéj the equation

sz% = fiMNP1 A + LT AIA1E + [L(DG1 Argee + fa(DbsALg + f5(0)bsyAl, (3.24)

where

uy
fiy = ) , 3.25)

i
2g +
Uo-l—co(q Uog+co
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2 1 nry \
) =~ 9+ >0 ) : (3.26)
Uy + co y4(Ug +co) \Up + co
f3(y) = —1/4y, (3.27)
2 , 1 FOPO')’
= -
B =g e ["S yz(Uo-f-Co)( v ) |9
2 C()F()I_'(; ,
- ) L L R 3.28
To + oo [(qs q)+y2UO(UO+CO)2]<p1¢1, (3.28)
2 , ry? Iy ( v )’
=— + +
SO =" g {q Y UoUs T e | ¥ Uo+ o) \Uat+ ) | 9'?
2 C()]—'()FOI ,
- —g) - ——— O . 3.29
Uo + <o [(" ) " 2o + e? | 91! G2

To obtain the solvability condition for (3.24), we take the inner product of (3.24) with ¢; which satisfies (3.17),
where for the inner product of two real functions f(y) and g(y),

|
(f.e)= /f(y)g(y) dy, (3.30)
0

by definition. Thus, the left-hand side of (3.24) gives

(b1, LY3)

1
1
= f¢1(a§ + ¥y dy = ($134, —mwé@{o + (Lo1, ¥3r) = —¢1, ¥ g
0

~ ~ 2/ ~
= —$Uo® + o)1, @bos — $ (Uo(D) + o)y Dbz = (#1(1) (BsAre + by )

= (i, 8D — (910) (Beie + byt say), (331)

on account of (3.17) and conditions (3.13), (3.14) and (3.19), so that, when combined with the contribution from
the right-hand side of (3.24), we obtain for A} the fKdV equation as

Al +c1A1Aig + 2Aieer + b A + cabgy (N A = F, (3.32)

(e o Btrd)

_ , _ , (3.33)
T e RN R
/ 2 2 ’ 2 2
&5 = [(ﬂ«m) +(¢1m) }/(fl, oD, = [(fs, ¢+ (41D) ]/(fl, oD, (3.34)
1 ’ 1 !
F ot eds o GO FSO© W) + g ) 535

(f1. 6% (f1. 8%
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In terms of the original physical variables x and ¢, we have for the amplitude function A = €A + O(e?) and the
forcing function F = € F the equation

Ar — c(X)Ax + 1 AA; + 2Axxx — (ca/c3) (X)A = Fe(x + UD), (3.36)

where c(x) = cg — c3bs(x) is the local wave velocity.
For free waves (F = 0), Eq. (3.36) agrees with the model equation of Leibovich and Randall [17]. Furthermore,
for free waves in uniform tube (b5 = 0), (3.22) has the classical solitary wave solution

A(x, f) = a sech? [1 il W (co - —C—) z)] , (3.37)
2V 3¢ 3

which is a one-parameter family in wave amplitude a, and has also the cnoidal wave solution as waves of permanent

form. In particular, when wave amplitude reaches the critical value at which the stagnation point appears on the

axis of rotation, the stream surfaces of the free solitary wave take the recirculating formation of an axisymmetrical

vortex eddy enclosed by a stream surface [12,13].

For waves in rotating fluids within non-uniform tubes, however, this model has a drawback in not conserving mass
because it can admit uni-directional waves but not the reflected ones. Nevertheless, it is known that, like for gravity
waves in gradually varying non-uniform water channels, wave energy is adiabatically invariant (see, e.g., [16,21]).
To achieve both mass and energy conservation, models of the Boussinesq type as often used in studies of open
channel flows would be desirable in this case.

4. The critical case

For the critical case with ¢g = 0 in the presence of an axial velocity, the evolution equation (3.36) becomes the
fKdV equation of constant coefficients with b = 0, just as that first derived by Grimshaw [10]. In this case, finite
amplitude waves of O(e) are generated by disturbances of O(e?) (by and b)) since the nonlinear effects become
significant.

The fKdV equation can also be expressed with respect to the body frame defined by X = x + U, T =, in
which the steadily moving disturbance appears stationary, so that

Ar + (U —cp)Ax + c1AAx + rAxxx = Fx(X), “.1)
where
F(X) = cabo(X) + cwbi (X), 4.2)

where ¢ is the linear long wave velocity in the fixed frame (in which the forcing disturbances are moving with
velocity U). From this expression it is obvious that | U — ¢p |< O(e) is required to conform with the order estimate
of the other terms of (4.1), thus qualifying the transcritical range.

A body moving in a rotating fluid experiences a resistance due to generation and radiation of waves, which can
be determined as follows. First, we assume for the pressure p, non-dimensionalized by p W2, the same asymptotic
expansion as (3.6), (3.7), and (3.9), (3.10) (notice that no steady part is necessary for the solution in the critical
case),

p(X,y,T) = Po(y) +ep1(X, ¥, T) + € pp(X, y, T) + O(e?). (4.3)

With (3.6), (3.7), (3.9), (3.10), (4.3) and 3(-)/8 X = O(e'/?), we derive from the Euler equation the expressions for
Py and p in terms of their derivatives as
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Poy = I /2y°, (4.4)
Pix = —2((60 + Uo)l/fllfvx - Uéllflux), 4.5)
piy =Y /y* (4.6)

The equations for the first-order pressure p) can be easily integrated, by use of (3.15)—(3.17), to give
p1=2{Ugp1 — (Uo + co)¢ JA(X, T). 4.7

The wave resistance Dy, non-dimensionalized by mp Wr%l R?, is given by

fo's]
Dy = — f (rwerPrl - rOrOXPro) dX. 4.8)

-
In view of by = rg =0(e?)and b =1 — r‘% = O(e?), the wave resistance D,, can be written as

o0

Dy = / {bix(p)y=1 + box(p)y=0} dX +O(e*. (4.9)

—00

Using (3.19), (4.2) and (4.7), the wave resistance Dy, is given, to the leading order, by
oc
Dy = 4(f1, ¢}) / Fx(X)A(X, T)dX. (4.10)
—0o0

On physical ground that the fKdV model equation derived here is generic in analogy with the fKdV equation
previously obtained for the critical open channel flows, we expect that a process of periodic generation of forward-
radiating vortex eddies must be possible in rotating fluids under resonant forcing just as that found theoretically and
experimentally for gravity waves in shallow water [2], which is found true.

5. Two forced primary flows

To exemplify the phenomenon of generation of upstream-radiating vortex solitons and their evolution, we choose
two relatively simple primary flows, namely the Rankine vortex and the Burgers vortex. The Rankine vortex is
perhaps the simplest of the mathematical models with a swirl velocity non-uniform in the radial direction, while still
is a good approximation of more realistic vortex flows. Although the preceding analysis cannot be directly applied
to the Rankine vortex flow without modification to overcome the difficulties due to the vorticity discontinuity in the
basic flow, the model nevertheless has merits that the coefficients of the evolution equation (3.22) can be determined
in closed form which can serve as a basic standard for comparison. The other basic flow is the Burgers vortex whose
velocity profile well represents what are observed in experiments of swirling flows [22].

5.1. The Rankine vortex

The Rankine-vortex primary flow can be written, for the convenience in this section, in terms of the original
coordinate r instead of y as

Up(r) = Up(= constant), (5.1
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/e for0=<r <r,
WO(r)_{rC/r forre <r <1, (5.2)

where . is the radius of a vortex core of solid-body rotation, which is enclosed by an irrotational potential vortex.
Here we use the tube radius R and the maximum swirl velocity §2r. to scale all the physical variables as before.

We note that the vortex surface originally at r = r, being free to move, may take a displacement £ when set in
motion. Inside the vortex core (the inner region, 0 < r < r. + {) the stream function ¥ and the circulation I” still
satisfy Egs. (2.3) and (2.4), now with r as the independent variable. In the irrotational flow region (the outer region,
re + ¢ < r < 1), the stream function ¥ satisfies the irrotationality equation:

R R 2 1/
—_ s 27—
ax2 ar? r or

and the circulation r Wy is constant (equal to r.) in the outer region.

The boundary conditions at the interface (» = r¢ + ¢) require the continuity of axial, radial and swirl velocities
which can be written as

(5.3)

k]

=¥ Y=Y, I'=r atr=r.+(x,1). 5.4)

Under these conditions the surface of discontinuity in vorticity will remain a material surface and the pressure will
be continuous across it. With the same forcing excitation as before, the boundary conditions at the body surface
(r = rg(x + Ut)) and at the tube wall (r = ry(x,t) = 1 — ry(x) — ri(x + Ut)) read

(Urog+ ¥ )rox + ¥ =0 atr = rg(x + Ut), (5.5)
Fawrwr + Wrrwy + ¥, =0 atr = ry(x, t). (5.6)

We adopt again the coordinates (3.3) and the expansions (3.6)~(3.10) for ¢, I'", and assume that ¥ and ¢ can be
expanded as

v =) + UG T o), 5.7)

@V, 0% = e(wE, . Wi n) + (8P €. 1 w0 0) + 0D, (5:8)
where ¥y(r) = 1Uyr? and

€U = (el €0 i) + (e 0. i) + 0, (5.9)
now with rg, |rs| and |r| assumed to be of O(e), O(e) and O(e?), respectively, for the same reason as stated before.

Substituting (5.7) and (5.8) into (5.3) and using (3.15)—~(3.17), we have for FlU, 1//1U and lIIIU the first-order equations
in the form

P =nAiE ), ¥l =anAIE D, P =o1(nAIE, 1), (5.10)
2
=—" 4. L=¢ =0, LTd; =0, 5.11
Y1 rc(U0+Co)¢1' h 1 (5.11)
2 19 4 a2 19
o et o1 5.12
arl  ror + r2(Uo + cg)? art  ror (512)

Substituting (3.6)—(3.10) and (5.7)—(5.9) into (5.4)—(5.6) yields the boundary conditions to the first order as
$1(0) =0, ®i(1) =0, (5.13)
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P1(re) — Pi(re) =0, ¢y (re) — @1 (re) =0, (5.14)

and, by (5.4), the displacement of interface g']U is given by

o = —In@r)AIE, ). (5.15)
From (5.10)—(5.12) with boundary conditions (5.13) and (5.15), we find the first-order unsteady solutions as
vP =rh(BrAIG. ), (5.16)
¥ =0 (? - DAI, 1), (5.17)
rf = ——2———r11 (Br)Ai (€, ©), (5.18)
re(Up + co)
Y = —[J]'O(f_rz;Al(s, 7). (5.19)

where J, denotes the nth order Bessel function and Br. = |2/(Uy + cp)|- Two unknowns, o and 8 (or cp), can be
determined by making use of (5.14), giving

J1(Bre) _ l _ i
(Bro)Jo(Bre) 2 (1 rg) ’ (5.20)
o = 3BJo(Bre). 521)

For given r, (5.20) has an infinite number of roots for 8r., with each Sr. lying between jp , and j; ,, the nth zeros
of Jy and Jj, respectively. By choosing the first root Sr. for which the eigenfunction has no zeroin 0 < r < 1,

Jo,1(= 2.4048) < Brc < ji,1(= 3.8317), (5.22)

|Up + co|, non-dimensionalized by £2r, lies in
2 2
— (= 0.5220) < [Uy + cg| < — (= 0.8317). (5.23)
JL1 Jo.1

In a similar way, the first-order steady solutions satisfying the non-homogeneous boundary condition (3.22) at the
tube wall can be obtained as

U = OBt P = [y = 1) + Uo/2]bsn, (5.24)
S _ 26 s__@s-]l(ﬂsrc)
e N L N e v XU (5.25)
where
2
bs(n) = 2rs(n), Bs = » (5.26)
reUp
o — (B/Bs)Jo(Bre) 527

- rcz(ﬁJO(ﬂrc)Jl (Bsre) — BsJo(Bsre) N1 (,Brc)) ’

05 = 1085 Jo(Bsre). (5.28)

The above &; and o will assure that the flow velocity remains continuous at » = rc.
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As delineated before, the differential equation for the amplitude function A (£, ) is obtained from the solvability
condition for the next higher-order problem which gives again (3.36). In the present case, the coefficients in (3.36)
can be determined as described before or by directly substituting (5.16)—(5.19) and (5.24), (5.25) into (3.33)~(3.35)
(with the second derivative of I" represented by a Dirac 8-function at r = r¢), so that

2J3(Bre) 2
o= =L A= JF(Bro) + T (Bre) — ——Jo(Bro) 1 (Bre) (5.29)
rcA Bre
3[ 2522 = 1,4 _3
(e Wote [ o0 —gri—tnre =} +r3} (530)
8 A
Oy s 4co 2c0(3Uo + o) (Uo + co) JE(Bre)
3= rCZ—A |:(2rc)11(ﬂsrC)Jl (Bre) — U_()Kl + —Ug—_Kz] + 2 Arcz s (5.31)
N 2 co(5Up + ¢o) co(3Up + co) (Uo + co) Jg(Bre)
C4 = rCZ—A [(2VC)J] (ﬁsrc)Jl (Bre) — U& K+ Ug K ] + 5 Arg , (5.32)
re re
K Zle (.Bsr)lf(ﬂr) dr, K =fﬂr11(ﬁsr)10(ﬁr)fl(ﬂr) dr, (5.33)
0 0
2 1 2 Jo(Bre)
F = cabg 4+ cwb) = carg +cw(2r1), ca= —r—éFZ. Cw = ~r§ﬂ3 ) < (5.34)

where I'y(r) = (r2/rc)H(rC —r)+rcH(r —r.), H(x) being the Heaviside function.

As an example, we choose for the core radius r. = %, % and % to first obtain 8 from (5.20) by applying the
method of Newton—Rapson then determine o from (5.21) and hence all the coefficients of the evolution equation
(3.36) from (5.29)—(5.34). We also choose the uniform axial velocity Up = 0.3 to evaluate c3 and ¢4.

The results are shown in Tables 1 and 2. In the following numerical calculations, r¢ = % is chosen as a represen-
tative case.

Table 1
The coefficients of the evolution equation associated with the unsteady components for core radius r¢ = % % and %

re Bre o Uo + co) cl 2 Ca Cw

172 2.6411 —.3061 0.7573 1.4636 —.0204 —0.8207 0.0951
173 2.5025 —.1862 0.7992 2.7334 —-.0146 —1.4252 0.0707
1/4 2.4584 —.1352 0.8135 3.8744 —.0106 —-1.9997 0.0550
Table 2

The coefficients of the evolution equation associated with the steady components for core radius re = %, % and % and uniform axial
velocity Uy = 0.3

re ﬂg)‘c @s Os c3 ¢4
12 6.6667 0.1106 0.2078 0.3563 0.2120
173 6.6667 0.0601 0.1711 0.2219 0.1527

1/4 6.6667 0.0429 0.1612 0.1839 0.1349
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Without external disturbance (F = 0 and bs = 0), we may have the classical free solitary wave as a solution
(3.37). The r-dependence of the first-order stream function and axial velocity is shown in Fig. 2. To have the
streamlines form a recirculating eddy at the axis of rotation, we first find the minimum amplitude of solitary wave
a by requiring that the axial velocity at the axis vanish, which gives

Up +¢o
la] > |—————| (= 0.158). (5.35)
B—(1/3)
The streamlines of a free solitary wave with amplitude a = —0.2 in a moving frame in which the eddy appears

stationary are shown in Fig. 3 and such an eddy has been interpreted as a mild axisymmetric vortex breakdown [12].

In the critical case (F # 0 and bs = 0), the fKdV equation (4.1) has the following symmetry. As the coefficients
¢1, ¢3 and ¢y, in (5.29) and (5.34) are independent of the sign of (Up + ¢g) (the direction of propagation), we see
from (5.30) that if A(X, T) is a solution of the fKdV equation (4.1) for U > 0 and (U +cp) > 0, then —A(—X, T)
is also a solution when both U and (Uy + cg) change sign. Therefore we need only consider the case of U > 0 and
(Up + cp) > 0 (the left-going waves) in this section.

For the forcing disturbance, we consider a slender cosine-shaped body moving along the tube axis, with the body
radius

b4 L L
X) =rmeos? [ Zx]| for -~ <x <3 5.36
ro(X) = ry cos 7 or 7 =X=3 ( )
and ro(X) = 0 elsewhere. We could choose a typical blunt body (like a sphere) as forcing agent which might be
more effective in generating upstream-progressing solitons, but the additional jump discontinuities in body slope
at the leading and trailing edges would require special consideration as such singularities of body geometry are not

u/20

0.2 0.4 \ 0.6 0.8
T

-0.05¢1

-0.1

Fig. 2. The eigenfunction of stream function (1) and axial velocity (u) for the Rankine vortex with the core radius r¢ = 0.5 with a uniform
tube of radius R = 1.

1.0

»
o
o Q
D‘ T T T
-10.0 -5.0 0.0 5.0 10.0
x
Fig. 3. The streamlines of a free solitary vortex wave solution of amplitude @ = —0.2 in the Rankine vortex with the core radius r. = 0.5

within a uniform tube of radius R = 1.
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Fig. 4. (a) The numerical solution of the fKdV equation for the amplitude function A(X, T) due to a body rg specified in (5.36) at the
central axis with 7, = 0.1 and L = 2 moving at the critical speed (8 = 0). The primary flow is the Rankine vortex with the core radius

re = 0.5 and tube radius R = 1. (b) The streamlines corresponding to the solution in (a) at several time instants as specified.
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consistent with our original assumptions. For the class of smooth body geometry as given by (5.36), with rox /ro =
O(e'/?) uniformly bounded say, we choose a typical maximum body radius r, = 0.1 and a body length L = 2.
The fKdV equation (4.1) is solved numerically using the scheme of Zabusky and Kruskal [23], i.e., the leap-frog
method in time and the central difference in space. Fig. 4(a) shows a typical result of the time sequence of evolution
of —A(X, T) starting from rest, here with the detuning parameter § = 0. Typical of the generation of solitary waves
by sustained resonant forcing, it shows that after a certain growth period a solitary wave emerges in front of the
disturbance, breaking away to radiate ahead of the disturbance as a free wave and is followed by another new solitary
wave similarly produced and radiated. This whole process of generation of upstream solitons seems to continue
periodically and indefinitely while a uniform depression in vorticity amplitude just behind the disturbance is being
prolonged and followed by a train of cnoidal-like trailing waves. Fig 4(b) shows the corresponding streamlines in a
moving coordinate (X, T') at several time instants up to when two isolated recirculating vortons have been generated
and radiated upstream. More numerical results of the fKdV equation will be discussed over a range of pertinent
parameters in Section 5.2.

The present theory based on the fKdV model is expected to provide good approximations to real physical solutions
since, in modeling axisymmetric free solitary wave phenomena, the KdV model has been shown [24] to be in good
qualitative agreement with the exact numerical solutions of the Euler equations even for finite amplitudes.

5.2. The Burgers vortex

The Burgers vortex is well-established as a realistic model of non-uniformly rotating fluid in a long cylindrical
tube for studying various vortex generation mechanisms [22]. Here we take the following Burgers vortex as a
primary flow,

Uo(y) = Ume™ "1, (5.37)
Iy(y) = Im(1 —e™#2%), (5.38)

which is linearly stable with respect to axisymmetrical perturbation by the criterion of Howard and Gupta [18].
Here all the variables are non-dimensionalized with length scaled by the tube radius and velocity by the maxi-
mum azimuthal velocity at y = 1.2565/u, (or r = 1.1209/,/;17), making this flow a three parameter family in
(Um, i1, pu2). Noting that Uy, is the ratio of the maximum axial velocity to the maximum azimuthal velocity, and
for given u> which is a measure of the axial vorticity distribution, I, is scaled out. Substituting (5.37) and (5.38)
into (3.15)—(3.18) and solving the resulting eigenvalue problem numerically, we can determine the first eigenvalue
co and the corresponding eigenfunction ¢;, which can be normalized. Since this eigenvalue problem has a regular
singular point at y = 0, we may obtain a series solution about y = 0 with a suitable normalization and find ¢; and
@] at y = yp < 1. Taking these as initial values, we find the solution using the 4th order Runge—Kutta method and
the corresponding eigenvalue using the secant method. Subsequently, all the coefficients in the fKdV equation can
be determined by using (3.33)—(3.35).

For numerical computations, we take | = 5, uo = 12 and Up, = 0.6, for which the velocity profiles of the
primary flow are shown in Fig 5. Since the basic axial velocity is not uniform, the right-going (RG) and the left-going
(LG) waves are not symmetric with respect to each other. The absolute values of cj, ¢, and cy, are found to depend
on the choice of normalization constant for the eigenfunction but the final values of the stream function are invariant.
Here, the value of ¢] = 1 at y = 0 is used and the corresponding eigenfunction of the stream function and axial
velocity is shown in Fig 6. The coefficients of the fKdV equations are given in Table 3.

Numerical solutions of the fKdV equation are obtained for the same axisymmetric forcing as (5.36). With rp, =
0.1, L = 2, and with the detuning parameter § = 0, the resulting perspective view of A(X, T) and the drag Dy,
given by (4.10) are shown in Fig. 7(a) and (b) with the corresponding streamlines shown in Fig. 8(a) and (b). The
distance traversed by the body, denoted by &, in units of the tube radius is & = cot. At = 12 (&, = 5.35 for
LG waves accompanying the left-going body and &, = 17.89 for RG waves with the right-going body), the first



W. Choi, T.Y. Wu/Wave Motion 24 (1996) 243262 257

1
0.84
Wo(r)
0.6+
0.4+ Uo(r)
0.2+
0.2 0.4 0.6 0.8 1

Fig. 5. The velocity profiles of Ug(r) and Wy(r) of the Burgers vortex, (5.37) and (5.38), with u; = 5, up = 12 and Uy, = 0.6.

forward-radiating eddy has just emerged free of the body forcing effect; and by + = 30 (&, = 13.37 for LG waves
and &, = 44.72 for RG waves), the first three identical forward-radiating vortons have already been generated and
the periodicity, as evidenced in the wave resistance data, is remarkably uniform. As can be seen, the LG vortons,
which propagate opposite in direction to the basic axial velocity, are generated in much shorter traveling distance
of the body as compared with that of the RG ones. More details of numerical solutions for a broad range of the
parameters in the fKdV equation can be found in [2] for the analogous shallow water problem. Generally, as the
velocity of the disturbance relative to linear long wave speed increases, the amplitude and the generation period of
upstream-advancing solitons will both increase.

To examine the effects of basic axial vorticity on the process of generation of vortons, let us consider for simplicity
the case with Up = 0 and a body held along the axis. Pertinent numerical results for the Burgers vortex flow show
that the process of generating forward-radiating vortons becomes more effective when the axial vorticity is more
concentrated near the axis of rotation since the absolute value of ¢, increases with increasing g2 which increases
with the concentration of axial vorticity. (This also can be seen from Table 1 for the Rankine vortex as the core
radius r¢ decreases.) Due to the presence of a body held on the axis, a vortexline near the axis becomes displaced
radially outward to create vorticity in a radial direction and, in turn, a negative azimuthal vorticity is generated
since a material point on the vortexline moves around the axis more slowly than around the same vortexline on the
upstream side due to the conservation of circulation [25]. Then, from the linear vorticity equation for the radial and
azimuthal vorticity components (w,, wg), which reads

1) Jw
5 = (DJWo)us, 7:—9— = —2(Wo/r)w, , (5.39)

Table 3
The coefficients of the fKdV equation associated with the Burgers vortex

3 n2 Um co | © Ca Cw

LG 5.0 12.0 0.6 0.4457 0.7316 —0.0137 —11.5056 0.1530
RG 50 12.0 0.6 —1.4906 0.7790 0.0195 —15.4165 1.0225
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Fig. 6. The eigenfunction of stream function (y) and axial velocity («) for the Burgers vortex with ) = 5, o = 12and Uy, =0.6ina
uniform tube of radius R = 1, pertaining to: (a) the left-going waves; (b) the right-going waves.

it can be seen that the azimuthal vorticity wg can be generated more effectively as the basic axial vorticity (D, Wp)
is more highly sheared.

Also, as can be seen in Table 3, a moving body at the tube axis can be more effective than a tube wall constriction
(of the same magnitude) in generating vortons, especially with a highly concentrated vortical flow near the axis,
since the absolute value of ¢, is much greater than that of ¢,,. Although a tube wall constriction of O(e?) can generate
upstream-radiating waves of O(e), the power of concentrated axial vorticity makes a comparable body at the axis
the more effective of the two forcing agents in producing waves of large amplitude.

6. Discussion

To explore the basic mechanism underlying the phenomenon of periodic production of upstream-radiating solitary
waves, the hydrodynamic stability analysis of several forced steady solitons of the fKdV equation which has been
developed by Camassa and Wu [6] can be directly applied to our problem. For convenience, we transform the present
fKdV equation (4.1) into one for open channel flow using the following new variables:
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Fig. 7. The numerical solution of the fKdV equation for the amplitude function A(X, T') and the wave resistance Dy, induced by the body
rg in (5.36) moving along the central axis, with r; = 0.1, L = 2 and with the critical speed (8§ = 0). The primary flow is the Burgers
vortex with iy = 5, u» = 12 and Uy, = 0.6: (a) the left-going waves; (b) the right-going waves.
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i=nT, i=nX, n=yA, (6.1)

I cg 2 ¢
Y1 = coy2, )’22 =6 V3= e (6.2)

where co/cy is always negative as shown in Table 1 or Table 3. Then the fKdV equation can be written as (after
dropping the hat)

M+ (Fr — Dy — %me - %nxxx = Py, (6.3)
where
U 2¢
==, P=-2F (6.4)
o 3¢

The stationary solutions of (6.3) that vanish at infinity satisfy the following equation:
(Fr = )n — 37 = 1 = P(x). (6.5)

which is the first integral of (6.3). One solution of (6.5) whose instability has been investigated in detail in [6] is
ms(0) = §sechkn), P00 = 342 (Fr — 1= 382 sech?(kx) (6.6)

where the Froude number F, and wave number k (of order O(e /%) characterizing the length of disturbance) are two
parameters. By considering small and finite perturbations of this particular steady solution, Camassa and Wu [6]
showed how instability near the critical speed gives rise to the phenomena of periodic generation of upstream-
advancing solitons when the eigenvalues are complex with a positive real part.

Another question of hydrodynamic stability is in regard to that of free solitary waves after they have left the area
of axisymmetric forcing since the physical significance of these axisymmetric vortons naturally relies on how stable
they are. But the stability of such free solitary waves of the KdV family has been shown by Benjamin [26] to be
robust. We may therefore draw the conclusion that the vortex soliton is stable under axisymmetric perturbations
although the stability characteristics under non-axisymmetrical perturbations is still an open question which will be
addressed in a forthcoming publication.
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