
WISE: a Workflow Information Search Engine
Qihong Shao, Peng Sun, Yi Chen

Department of Computer Science and Engineering
Arizona State University P.O. Box 878809 Tempe, AZ 85287

{qihong.shao, peng.sun, yi}@asu.edu

Abstract— Workflows are widely used for representing business
processes, web services, scientific experiments, and activities in
daily life, like recipes. There is an increasing need for people
to search a workflow repository using keywords and retrieve
the relevant ones according to their interests. A workflow hier-
archy is a three dimensional object containing multi-resolution
abstraction views on the same workflow. This unique structure
poses a new set of challenges compared to keyword search on
tree or graph structures which are typically found in XML or
relational data. In this demonstration, we present an effective
workflow search engine, WISE, which returns informative and
concise search results, defined as the minimal views of the most
specific workflow hierarchies containing matching keywords.

I. INTRODUCTION

With the advance of technology, the number of workflows
is dramatically growing in scientific and business domains.
As a result, workflows are attracting more and more research
interest in the database community [3], [1].

A workflow hierarchy provides multi-resolution views of a
workflow. For example, Fig. 1(a) shows a workflow hierarchy
describing the recipe of curry chicken. A node in a workflow
represents a task, which can be a web service invocation, a
database query, a program run, an experiment step, or a step
in a recipe, etc. A directed solid edge between nodes represents
the dependency and dataflow among tasks, referred as dataflow
edge. For instance, in layer 1 of the recipe, after tasks make
chicken broth and preprocess chicken, their out-
puts are fed into the next task cook chicken. Then the
cooked chicken is served with rice pilaf. A task in the
hierarchy can be atomic or composite. A composite task can be
expanded/zoomed-in to reveal the detailed procedure of how
to perform the task, which is represented by a directed graph
consisting of a set of tasks and their dataflows shown in the
layer immediately beneath. In Fig. 1(a), each composite task
is connected to its expansion by two dotted lines, referred as
expansion edges. A composite task make chicken broth
(0.0), for example, is expanded into a graph as pictured in
the leftmost box in layer 2 which consists of three tasks. An
atomic task is represented as the leaf nodes in the workflow hi-
erarchy. We also define parent/child relationship on workflow
hierarchies in a similar way as the ones in trees 1.

It is very helpful if a user can search relevant workflows in a
workflow repository using keywords, and then re-use, include

1Typically the dataflow edges between atomic tasks are explicitly recorded
in a workflow hierarchy. Other dataflows need to be derived based on these
dataflow edges as well as the expansion edges. Fig. 1(a) is presented in the
current format to avoid clutter in presentation.

or revise them as needed when designing new workflows,
so that the design phase will be easier and be shortened
comparing with designing new ones from scratch. Suppose
that a user would like to make a dish using chicken breast and
coconut milk by sauting, but doesn’t have a recipe in mind.
She would issue a keyword query Q, “chicken breast, coconut
milk, saute” on a recipe repository to search for useful ones.

We can easily find the workflow hierarchies in the repository
that contain matches to query keywords. Suppose Fig. 1(a)
is one of such workflows in the repository, where keyword
matches are in red. Obviously, returning the whole workflow
hierarchy consisting of nested graphs as a query result is
lack of conciseness and hard to read, as too much irrelevant
information is exposed to the user.

The immediate question is how to define search results
when users issue keyword queries on a repository of work-
flow hierarchies. Recall that much research has been done
on keyword search on graph-structured data (e.g., relational
databases) or tree-structured data (e.g., XML), where a result
is defined as a smallest data tree that contains query key-
words. According to this definition, the result of processing
Q on Fig. 1(a) will express the relationship of tasks contain-
ing query keywords saute (0.1.1.2) and coconut milk
(0.2.2) using a path containing both dataflow edges and across-
layer expansion edges: saute until tender (0.1.1.2) -
> concoct (0.1.1) -> preprocess chicken (0.1) ->
cook chicken (0.2) -> stir in flour (0.2.0) -> add
coconut milk (0.2.2).

Unfortunately, such a query result definition is not appropri-
ate for workflow search for two reasons. First, the results fail
to be concise. The expansion relationships among tasks are
included in a query result, which are unlikely to be relevant
to the user. Indeed expansion edges are used to define multiple
possible views of a workflow which have different granularity
of abstraction. On the other hand, a user query indicates a
particular view of the workflow that s/he is interested in,
with other views considered as irrelevant. Secondly, the results
are not informative, as they can not guarantee to capture the
dependencies and dataflows among tasks that contain key-
word matches. For instance, the relationship among keywords
saute (0.1.1.2) and coconut milk (0.2.2) is obscure.

In our example, it is more desirable to present Fig. 1(b) as
a query result, which is a query-driven view that visualizes
keyword matches shown in red dashed rectangles and their
dataflows. For example, after saute (the chicken)
until tender, we stir (it) in flour and then



������
�����	


�

�
�	������	
������
���

��	����	��������	

���

����������	

���

�	��	
��� �
�	����	�

���
�
���

����
��	�����������	�
�������

������
�
�����
�����


��������	
������
�����


�������������	

�����


����
����
�������


����	
�	���	�
������� �
��������


�������

�����

�������
�
���������
�����

�������

�������

������	

������


�����		
�
�	��	����
�
��

�������

����

�
����
�	
�	�
�������

����
�
���
�����	�
�������

�	
�	���	�
����

�
��
���
�����

��
����
�����

����
�����	
�
�
����
�����

������
�
�	�����
�	
�
�����

����
���
�����
�����

 

(a) Recipe Workflow Hierarchy

�

(b) Query Result for Q:{chicken breast, coconut milk, saute}

Fig. 1. Sample Workflow and Query Result of WISE

add coconut milk. Note that the dataflow paths among
these tasks are not explicitly shown in the workflow hierarchy
in Fig. 1(a), but are derived. Also, expansion edges that
represent irrelevant views are avoided.

As we can see, supporting keyword search on workflow hi-
erarchies poses new challenges compared with keyword search
on relational and XML data. First we need to define mean-
ingful query results. We propose that a query result should be
a smallest query-driven view of the workflow hierarchy that
contains all keyword matches, which is a graph containing all
matches and dataflow edges among them. Second, we must
design efficient techniques to generate such query results.

In this demonstration, we present WISE, a Workflow In-
formation Search Engine, which allows users to search in a
repository of workflow hierarchies using simple keywords, and
returns concise and informative query results. The screen shot
of the query result provided by WISE for the sample query is
shown in Fig. 1(b).

Our technical contributions include:

1) To the best of our knowledge, this is the first work
that supports keyword search on repositories of work-
flow hierarchies and returns query results capturing the
dataflows among tasks matching keywords.

2) We define keyword search results of hierarchical work-
flows as the minimal views of the most specific workflow
hierarchies that contain tasks matching keywords, as
presented in Section II.

3) We have developed WISE, available at
http://wise.asu.edu/, which efficiently and dynamically
synthesizes query results by exploiting indexes and
labeling schemes, discussed in Section III.

In this paper, we will use a simple recipe workflow hierarchy
as our running example. The technique that we propose is
applicable for all workflow hierarchies which are composed
of hierarchical nested graphs. Such a multi-resolution data
structure is a new generalization of graphs and trees, and is
widely used in diverse domains, such as business processes,
scientific experiments, web services, spatial and temporal data,

hierarchical plans, etc.

II. WORKFLOW RETRIEVAL

A. Query Result Definition

In this section we define query results for keyword search
on workflows that are informative and concise. We consider
the AND semantics of keyword search, which requires each
query result to contain at least one match to each keyword in
the query.

We first find workflow hierarchies in the repository that
contain matches to all keywords, referred as relevant work-
flow hierarchy. For example, consider our running example
Q, curry chicken workflow hierarchy contains matches:
0.1.0 to chicken breast, 0.2.2 to coconut milk and
0.1.1.2 to saute, and therefore it is a relevant workflow
hierarchy in the repository.

However, returning the whole relevant workflow hierarchy
to users is undesirable due to an excessive amount of unnec-
essary information about irrelevant views and the absence of
dataflows among keyword matches.

To define a query result, we first define the view of a
workflow hierarchy, which can be understood as a projection
of a three dimensional workflow hierarchy to a two dimen-
sional plane, flattening out the nested abstraction hierarchy,
and visualizing the dataflows among selected nodes. A view
V is defined by three conditions with respect to atomic tasks
(leaf nodes) and their dataflows in the workflow hierarchy H .
(1) A view can only have dataflow edges, but not expansion
edges; (2) the node set of a view covers all the leaf nodes in
H : every leaf node must have one of its ancestors or itself
appear in V ; (3) there is a dataflow edge from node u to v in
view V if and only if each of them has a descendant-or-self
leaf node, u′ and v′, respectively, such that there is a dataflow
edge from u′ to v′ in H .

Obviously a workflow hierarchy can have many views,
as a three dimensional object can have many projections
depending on the viewing planes. For example, the five nodes
in layer 1 in Fig. 1 (a) compose a view of the curry chicken



workflow hierarchy; Fig. 1(b) is another view of curry chicken,
consisting of nodes from different layers. On the other hand,
layer 2 in Fig. 1(a) is not a view of this workflow hierarchy,
as it does not contain any ancestor-or-self of leaf task serve
(0.4), violating condition (2); and misses dataflows, violating
condition (3).

As we can see, the notion of a view effectively projects a
three dimensional workflow hierarchy into a two dimensional
plane and preserves the dataflows among the tasks in the view.
Thus a natural way of defining keyword search results on
workflows would be to return a view of each relevant workflow
hierarchy that contains all query keywords.

However, a relevant workflow hierarchy generally has mul-
tiple views that contain all query keywords. For example,
Fig. 1(b) is a view of curry chicken, containing all keywords
in Q. If we choose to replace make chicken broth (0.0)
with its three children, we get another view of curry chicken
that contains all keywords. In order for a query result to
be concise (which is also a philosophy of keyword search
processing on relational databases or XML, where a result is
defined as a minimal tree that contains all query keywords),
we opt to choose the minimal view of each relevant workflow
hierarchy that contains at least one match to each query
keyword to ensure maximum conciseness.

A query result of a keyword search Q on a repository of
workflow hierarchies R is defined as the minimal view of each
relevant workflow hierarchy that contains matches to all query
keywords. In the running example, the view shown in Fig. 1
(b) is the minimal view of the relevant workflow hierarchy in
(a).

Query results defined in this way are informative and
concise. A query result is informative, as it contains matches
to all query keywords as well as the dataflows among them. It
is concise as it only contains a single query-driven view of the
smallest size without other unnecessary views of the relevant
workflow hierarchy.

B. Query Result Construction

After we have defined the result of keyword search on
workflow hierarchies in Section II-A, now we give an overview
of how to efficiently generate the results. Note that the minimal
view that contains all query keywords generally does not
explicitly present in the workflow hierarchy, such as the one
in Fig. 1(b), but needs to be dynamically constructed. To
construct query results, we categorize the nodes in a relevant
workflow hierarchy into three categories with respect to the
query keywords, then process them accordingly to generate
query results.

1) Match nodes: nodes that contain matches to query key-
words themselves. Match nodes are explicitly specified
by users and therefore are directly output as part of
the query result. The properties of match nodes can be
displayed upon click.

2) Expansion nodes: non-match nodes that have match
nodes as their descendants. Since expansion nodes do
not directly provide the information specified in a user

query, we zoom in them recursively till their descendant
match nodes are exposed. 2.

3) Component nodes: the rest of the nodes in the workflow
hierarchy. Component nodes do not contain keyword
themselves; neither do their descendants. Since compo-
nent nodes are less likely to be interesting to the user,
their names are included in the query result only if they
are required, together with match nodes, to compose a
valid view, but their detailed information is hidden.

Now consider Q on the workflow hierarchy in Fig. 1(a).
Since this workflow hierarchy contains matches to all query
keywords, it is a relevant workflow hierarchy. Next we
show how to find its minimal query-driven view as a
query result. We process the nodes in the workflow hi-
erarchy in a top-down fashion. We start with zooming in
expansion node curry chicken (0). In layer 1, make
chicken broth (0.0) is a component node whose name
should be output in order to compose a valid view, but
its descendants will not be visited or output. Since node
preprocess chicken (0.1) is an expansion node, we
zoom in it and recursively process the nodes in the middle box
in layer 2. We output match node tenderize chicken
breast (0.1.0), and then recursively zoom in expansion
node concoct (0.1.1). When processing node put into
skillet (0.1.1.0), we notice that there is no explicit dataflow
edge between node tenderize chicken breast (0.1.0)
and put into skillet (0.1.1.0). However, based on
the ancestor-descendant relationship between node 0.1.1 and
0.1.1.0, this dataflow information can be inferred. Similarly,
later on the dataflow from node saute until tender
(0.1.1.2) to node stir in flour (0.2.0) is dynamically
derived. Continuing this process, we obtain all the nodes in
the minimal view, as shown in Fig. 1(b). The tasks input
and output in the query result are virtual nodes, connecting
the dynamically constructed dataflow edges.

III. SYSTEM ARCHITECTURE

WISEis implemented using Java, and all the data and
indexes are stored in DB2. The architecture of WISEis pre-
sented in Fig. III. Data Parser and Index Builder parse the
workflow hierarchies and build indexes, respectively. Upon
a user keyword query issued, Relevant Workflow Hierarchy
Finder retrieves the workflow hierarchies in the repository that
contain all query keywords, then Minimal View Constructor
projects each relevant workflow hierarchy to a two dimensional
viewing plane specified by the user query. Finally the Result
Graph Generator displays the minimal relevant views in a
graphical interface.

The Data Parser takes input workflow hierarchies in MoML
(Modeling Markup Language) [4], the standard format for
representing workflows. It parses the input data and assigns
labels to nodes and edges in the workflow hierarchy for effi-
cient query processing. Each node in the workflow hierarchy

2If two match nodes have an ancestor-descendant relationship, the ancestor
match node is treated as an expansion node with an annotation on its
descendant nodes.



 

 
 

������
��	
����

��
�
���� �
�����
���
�	��������
�	�����

��
�
���� �
�	���

������������

����
��
������

����������

�����
 ������

!��������

"�����
����
��

����������	
���

�����
���
�����	�����

Fig. 2. Architecture of WISE

is assigned a Dewey label as its unique identifer, as shown in
Fig. 1(a). Each edge is also assigned with a label such that
the dataflows that involve composite tasks can be efficiently
identified.

The Index Builder constructs an inverted full-text index that
maps keywords to nodes in the workflow hierarchy. Another
index is built to retrieve the information of a node according
to its identifier.

The Relevant Workflow Hierarchy Finder retrieves the most
specific workflow hierarchy in the repository that contains
matches to all the keywords in the user query. It can be
efficiently identified by the LCA (Least Common Ancestor)
of keyword matches using their Dewey labels. In our running
example, node with Dewey lable 0.1.0 matches chicken
breast, node 0.2.2 matches coconut milk and node
0.1.1.2 matches saute. Then the most specific workflow
hierarchy that contains all matches in Fig. 1(a) is the one
named as curry chicken, which has a Dewey label 0.

The Minimal View Constructor dynamically generates the
minimal view of the retrieved relevant workflow hierarchy
driven by query specification, as discussed in Section II-B.
This process can be performed during a single traversal of the
relevant workflow hierarchy.

The Result Graph Generator provides a friendly graphical
interface to the end users which takes user keywords as input
and presents the query results. Users can feel free to drag and
drop nodes in the graph.

IV. DEMONSTRATION

What will be shown in the demo? We present WISE, a
workflow information search engine, which enables effective
workflow retrieval and hence facilitates the workflow design
and analysis.

WISE has a web-based user interface (http://wise.asu.edu/)
which allows users to input keyword searches for retrieving
relevant workflows in a repository. The sample workflow
repository includes scientific workflows in various domains
like biology, chemistry, ecology, provided by Kepler [2],
Taverna [6] and myGrid [5], as well as some recipes.

Query results are displayed graphically, similar as shown
in Fig. 1(b). Tasks that match keywords are highlighted in
the query result, surrounded by a red dashed rectangle. A
user can drag and drop tasks on the screen to display the
workflow according to his/her preferences. To inform users

the dataflows that are dynamically synthesized across multiple
layers in the workflow hierarchies, virtual nodes named as
input and output are included in the query result.

Besides the demonstration of the implementation of WISE,
we will discuss and justify in more detail about the design
choices that we have made on query definition, indexes
and query processing algorithms. In addition, performance
evaluation on search quality with respect to user studies and
on search efficiency over a comprehensive test set will be
exhibited.
Significance in database technology. This paper ventures into
a quickly expending domain with increasingly substantial data
management requirements: workflow management. While the
application domain is new, the problem space is not outside
of the scope of database research. In particular, database
community has extensively investigated techniques for storing,
indexing and querying data graphs (e.g. RDBMS) and trees
(e.g. XML). This domain, on the other hand, has storing,
indexing and querying requirements on a three dimensional
data structure consisting of multiple nested graphs. This data
structure is a generalization of graphs and trees, which pro-
poses unique technical challenges on data management and
call for new solutions.

In this work, we have addressed an open problem of sup-
porting effective keyword search on this type of data structure
and tackled several database challenges, including:

• Proposing keyword search result definitions, com-
plementing the keyword search results defined for
graph/tree-structured data which are widely adopted in
database research.

• Dynamically constructing a query result that is a pro-
jection of a relevant workflow hierarchy to the two
dimensional viewing plane driven by the user query. Un-
like keyword search on graph/tree-structured data which
only requires information retrieval, we need to perform
information synthesis to capture dataflows.

• Exploiting labeling schemes and developing indexes to
speed up query processing.

The proposed techniques in WISE are general for this type
of data structure. We believe studying fundamental database
management issues (storage, indexes, labeling schemes, query
processing, etc.) on this data structure opens up many oppor-
tunities for diverse application domains.

ACKNOWLEDGMENT

We are grateful to K. Selçuk Candan for his constructive and
valuable feedback on this work. This research was supported
in part by the NSF grant IIS-0740129.

REFERENCES

[1] S. B. Davidson and J. Freire. Provenance and scientific workflows:
challenges and opportunities. In SIGMOD, 2008.

[2] Kepler. http://kepler-project.org/.
[3] B. Ludäscher and C. Goble. Guest editors’ introduction to the special

section on scientific workflows. SIGMOD Rec., 34(3):3–4, 2005.
[4] MoML. http://ptolemy.eecs.berkeley.edu.
[5] myGrid project. http://www.mygrid.org.uk/.
[6] Taverna. http://taverna.sourceforge.net/.


