
Query Biased Snippet Generation in XML Search

Yu Huang
Arizona State University

yu.huang.1@asu.edu

Ziyang Liu
Arizona State University
ziyang.liu@asu.edu

Yi Chen
Arizona State University

yi@asu.edu

ABSTRACT
Snippets are used by almost every text search engine to com-
plement ranking scheme in order to effectively handle user
searches, which are inherently ambiguous and whose rele-
vance semantics are difficult to assess. Despite the fact that
XML is a standard representation format of web data, re-
search on generating result snippets for XML search remains
untouched.

In this paper we present a system, eXtract, which ad-
dresses this important yet open problem. We identify that a
good XML result snippet should be a self-contained mean-
ingful information unit of a small size that effectively sum-
marizes this query result and differentiates it from others,
according to which users can quickly assess the relevance
of the query result. We have designed and implemented a
novel algorithm to satisfy these requirements and verified its
efficiency and effectiveness through experiments.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search Pro-
cess

General Terms
Algorithms, Design

Keywords
XML, snippets, keyword search

1. INTRODUCTION
The semantics of searches issued by web or scientific users,

especially when specified using keywords, are inherently am-
biguous. Various ranking schemes have been proposed to
assess the relevance of query results so that users can focus
on the ones that are deemed to be highly relevant. However,
due to the ambiguity of search semantics, it is impossible to
design a ranking scheme that always perfectly gauges query

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-102-6/08/06 ...$5.00.

result relevance with respect to users’ intentions. To com-
pensate the inaccuracy of ranking functions, result snippets
are used by almost every text search engine. The principle
of result snippets is orthogonal to that of ranking functions:
let users quickly judge the relevance of query results by pro-
viding a brief quotable passage of each query result, so that
users can choose and explore relevant ones among many re-
sults.

Despite the fact that XML is a standard representation
format of web data, the problem of generating result snip-
pets for XML search remains untouched. Compared with re-
sult snippets for text document search, XML presents better
opportunities for generating meaningful and helpful search
result snippets. In document search, due to the lack of
structure, a common strategy is to use document fragments
that contain keywords along with the surrounding words
as snippets in order to approximate a semantic summary
of the document. On the other hand, XML data is semi-
structured with mark-ups providing meaningful annotations
to data content, and therefore has a better hope to generate
semantically meaningful snippets.

In this paper we identify the specific goals that a semanti-
cally meaningful result snippet should meet. First, a result
snippet should be self-contained so that the users can un-
derstand it. Second, different result snippets should be dis-
tinguishable from each other, so that the users can differen-
tiate the results from their snippets with little effort. Third,
a snippet should be representative to the query result, thus
the users can grasp the essence of the result from its snippet.
At last, a result snippet should be small so that the users can
quickly browse several snippets. However, achieving these
goals is highly challenging.

To be self-contained, a result snippet should represent a
semantic unit. Suppose Figure 1 shows the fragments of a
result of query Texas apparel. If we choose the fragment
between keyword matches in the corresponding XML docu-
ment as the snippet of this query result, just as what a text
search engine does, the users will not be able to see that
both matches are nested in the tag retailer, and thus not
able to easily understand that this query result is about an
apparel retailer in Texas (rather than a book discussing the
popular apparel styles in Texas).

To illustrate other goals, let us look at a different query
Texas apparel retailer as the running example. As snip-
pet generation, whose inputs are the user query and a query
result, is independent of query result generation, we omit
the description of source data and the query result genera-
tion techniques in this paper, and only show the fragments



store1

state city

merchandises1

clothes1

fitting

men1

Texas1 Houston

store2

merchandises2

retailer

category

suit1

clothes2 clothes3 clothes4 clothes5

fitting

men2

situation

formal2

situationfitting

women3 casual3

category

outwear3

situationfitting

men4

category

outwear4

categoryfitting

women5 skirt5

name product

Brook 
Brothers

apparel

Houston:6
Austin: 1
Other cities (3): 3
Men: 600
Women: 360
Children: 40
Casual: 700
Formal: 300
Outwear: 220
Suit: 120
Skirt: 80
Sweaters: 70
Other categories (7): 580

city:

fitting:

situation:

category:

casual4

situation

casual1

name:  value:  number of occurrences

name

Galleria

state city

Texas2 Austin

name

West
Village

…… ……

…… ……

 

Figure 1: Part of a Query Result of Query Texas apparel retailer and Statistics about Value Occurrences.

of a sample query result in Figure 1. Some statistics of the
full query result are presented at the right portion in the fig-
ure, where for each distinct name-value pair, we record the
number of its occurrences in the query result. For instance,
“city: Houston: 6” indicates that there are 6 occurrences of
Houston as a value of node city in the query result. Values
with low occurrences are omitted.

The second goal of snippets is to allow users to easily dis-
tinguish different query results from each other. To achieve
this in text document search, result snippets often include
the document titles. Analogously, we propose to select the
unique identifier (aka. key) of a query result into its snippet
to identify this query result and highlight the fundamental
differences among results. However, it is not clear how to
identify the key of a query result. Intuitively, a node in a
query result is a key if the values of the nodes with the same
name are all distinct in all the query results. A plausible
solution would use such nodes as the key of a query result.
According to this, the name of a store could be considered
as a key of the results of query Texas apparel retailer.
Nevertheless, using the names of the stores as the key of a
query result is unlikely to be reasonable, as the user searches
for retailer, which can have hundreds of stores.

The third goal is to design snippets that provide a repre-
sentative summary of the query result by including the most
prominent features in the result. Intuitively, a prominent
feature is often reflected by a large number of occurrences of
such a feature in the result. Continuing our example, sup-
pose Brook Brothers has 1000 clothes of different styles,
among which 600 are for men and 40 for children. There-
fore including clothes of style men instead of children in the
snippet shows a prominent feature of this query result: this
retailer targets clothes for men. However, the relationship
between the prominence of a feature and the number of oc-
currences is not always reliable. In our example, the number
of occurrences of Houston: 6, is much less than that of chil-
dren: 40. However, considering that the majority of Brook
Brothers stores are in Houston in the query result, Houston
should be considered as a prominent feature. The challenge
is how to capture the prominent features from various data

store1

statecitymerchandises1

clothes1

fitting

men1

Texas1Houston

retailer

clothes3

fitting

women3

category

outwear3

name product

Brook 
Brothers

apparel

situation

casual3

category

suit1

Figure 2: A Snippet of the Query Result in Figure 1

values in an XML query result tree.
The three goals discussed above address the requirements

on the semantics of a result snippet. Clearly the larger a
snippet is, then the more information it has, the better it
can meet these goals. A trivial solution to generate snippets
that meet these goals could be using the query result itself as
a snippet. Nevertheless, this is obviously undesirable. The
last goal specifies a conflicting requirement: a snippet should
be small so that a user can quickly and efficiently browse and
understand snippets of several query results. Therefore the
challenge is how to provide as much information as possible
in a snippet to meet the first three goals within an upper
bound of the snippet size.

In this paper we present a system eXtract which addresses
the important yet open problem of generating effective snip-
pets for XML search results. We identify that a good XML
result snippet should be a self-contained information unit of
a bounded size that effectively summarizes the query result
and differentiates itself from others. To achieve this, we first
analyze the semantics of the query result. We discover enti-
ties in a query result, whose names can effectively describe
the snippet and thus make it self-contained. We then iden-



tify the key and dominant features of a query result, based
on which a snippet information list is generated, which con-
tains the most significant information in the query result
that should be selected into the snippet. Finally, we need to
select as many items in the information list as possible given
an upper bound of the snippet size. However, we show that
this problem is NP-complete. Finally a novel algorithm is
proposed that efficiently generates semantic snippets with a
given size bound for XML search.

As an illustration, the snippet for the query result in Fig-
ure 1 is shown in Figure 2. It captures the heart of the
query result in a small tree: the query result is about re-
tailer Brook Brothers, which has many stores in Houston

and features casual clothing for men and women, especially
suits and outwears.

The contributions of our work include:

• This is the first work that studies the problem of gen-
erating query result snippets for XML search.

• We identify four goals that a good query result snip-
pet should meet in order to help users quickly get the
essence of a query result and assess its relevance.

• To address the goals, we identify the significant infor-
mation in a query result to be selected into the snippet.

• We prove that the decision problem of whether we can
construct a snippet of a given size limit that contains
all the significant information is NP-complete.

• We design an efficient algorithm to generate snippets
that capture the identified significant information given
the snippet size limit.

• A system for generating snippet for XML search has
been implemented and tested for its efficiency and ef-
fectiveness through experimental studies.

The rest of paper is organized as follows: Section 2 presents
how to meet the first three goals in generating meaningful
snippets. Section 3 discusses the additional challenge for
meeting the fourth goal. Experimental studies are presented
in Section 4. Section 5 discusses related work and Section 6
concludes the paper.

2. IDENTIFYING SIGNIFICANT INFORMA-
TION IN QUERY RESULTS

We have discussed the four goals in generating result snip-
pets for XML search and the challenges to achieve them.
In this section we discuss how to tackle the challenges to
meet the first three goals, such that the most significant in-
formation in a query result to be selected in its snippet is
identified. We start with preliminaries on some notations.

2.1 Preliminaries
We model XML data D as a rooted, labeled, unordered

tree. Every internal node in the tree is labeled with a name,
and every leaf node is labeled with a data value. In Figure 1,
we use subscripts to distinguish nodes with the same label.

A query result R(Q,D) of a keyword query Q on XML
data D is an XML tree, whose nodes and edges are extracted
from D.

A snippet S(R,Q) of a query result R(Q,D) is an XML
tree, whose nodes and edges are extracted from R.

We define a snippet information list, denoted as IList(R,Q),
which contains the most significant information in a query
result that a snippet should include to meet the first three
goals. We initialize this list with the keywords, as shown
in the first step in Figure 3, since their matches should be
included in the snippet. In the next several subsections we
discuss what other items should be added to the list in or-
der to make the snippet self-contained, distinguishable, and
representative.

2.2 Self-contained Snippets
Goal 1: A query result snippet should be self-contained so

that the user can understand it.
In text search, due to the inherent ambiguity (multi-meaning)

of words, providing the context of the keyword matches helps
users to judge the relevance of query results. Users prefer
result snippets that are one or more “windows” on the docu-
ment containing the complete phrases/sentences where the
keyword matches appear because they are self-contained and
can be easily read [12].

Analogously, an XML result snippet should also be self-
contained. As discussed in Section 1, windows on an XML
document where the keyword matches appear are in gen-
eral not self-contained. XML data may not contain com-
plete phrases/sentences, but use a tree structure (i.e. nested
mark-ups) to provide the context information. It is not ob-
vious what is the counterpart in XML data for complete
phrase/sentences in text document, which functions as ba-
sic semantic units.

To identify basic semantic units, we analyze that an XML
database contains information about real-world entities with
associated attributes as well as their relationships. An en-
tity represents a basic semantic information unit. We adopt
the approach in [10] that leverages the XML data struc-
ture to classify XML nodes into three categories: entities,
attributes, and connection nodes. Other classification ap-
proaches can also be used.

Definition 2.1: A node represents an entity if it corre-
sponds to a *-node in DTD. If a node is not a *-node and
only has one child which is a data value, then this node,
together with its value child, represents an attribute 1. A
node is a connection node if it represents neither an entity
nor an attribute.
Definition 2.2: An attribute is associated with an entity
E, if E is the nearest ancestor entity of A.

For example, in the query result in Figure 1, retailer,
store and clothes are considered as entities (assuming each
is a *-node in the DTD of the XML data). fitting, situ-
ation and category, together with their values, are consid-
ered as attributes associated the clothes entity. merchan-

dises is a connection node.
A self-contained XML result snippet should contain the

names of the entities involved in the query result as con-
text information, even though names of such entities may
not necessarily appear between two keyword matches in the
XML document.

Example 2.1: In our sample query result in Figure 1, entity
names retailer, store and clothes should therefore be

1In the rest of the paper, attribute refers to the concept in
an Entity-Relationship model, rather than the one defined
in XML specification.



|                        step 1                       | |             step 2            | |             step 3      | |                                                  step 4                                                 |

IList:      Texas, apparel, reta iler, store, clothes, Brook Brothers, Houston, outwear, men, casual, suit, women
Weight:       1           1           1          1          1                 2-1                         2-2 2-3 2-4 2-5 2-6 2-7

keywords entity names 
goal 1

key of query result 
goal 2

dominant features
goal 3

 
Figure 3: IList of the Query Result in Figure 1

added to the snippet information list IList, as shown in
step 2 in Figure 3.

2.3 Distinguishable Snippets
Goal 2: A snippet should make the corresponding query

result distinguishable from (the snippets of) other query re-
sults such that the users can differentiate them with little
effort.

As discussed in Section 1, we propose to select the key of
a query result into its snippet, reminiscent to the document
title in result snippets in text document search, such that a
query result can be identified and differentiated from other
results.

However, it is not obvious how to identify the key of a
query result. If the values of the nodes with the same name
are all distinct in all the query results, then such node name
can be considered as a key. As we have discussed in Sec-
tion 2.2, a query result may contain several entities along
with their attributes. Therefore a key should be associated
with an entity. Then the question is which entities’ keys
should be considered as the key of the query result. To an-
swer this question, we observe that different entities play
different roles in a query result. Intuitively, each query has
a search goal. The search goal can be used to classify the
entities in a query result into two categories.

1. return entities are what the users are looking for when
issuing the query.

2. supporting entities are used to describe the return en-
tities in a query result.

For example, the goal of query Texas apparel retailer

is likely to be searching for the retailer of apparel in Texas

state. Therefore retailer should be considered as the re-
turn entity of this query. On the other hand, store and
clothes in the query result are likely to be supporting en-
tities, which are used to describe the return entities.

Since return entities are the core of a query result, their
keys can function as the key of the query result and can be
used to differentiate this query result from others. Indeed
there are often too many differences between two query re-
sults. The differences among their return entities best re-
flect the fundamental differences among query results with
respect to the users’ search goal. The keys of the return en-
tities identify the return entities, and thus can identify the
corresponding query result and highlight the semantic differ-
ences among query results concisely. In our example query
Texas apparel retailer, it is reasonable and concise to use
the key of the return entity: retailer’s name rather than
the keys of supporting entities, say store’s name, or other
attributes, to differentiate query results.

Now the remaining question is how to identify these two
types of entities in a query result. There could be many
heuristics, and we propose the one in Definition 2.3.

Definition 2.3: An entity in a query result is a return
entity if its name matches a query keyword or its attribute
name matches a keyword. If there is no such entity, that is,
no keyword matches node names, then we use the highest
entity (i.e. entities that do not have ancestor entities) in the
query result as the default return entity.

For example, for query casual outwear, there is no key-
word matching a node name. Assuming a result of this query
is a smallest XML tree that contains both keywords, then
entity clothes is considered as the return entity.

Example 2.2: In our running example, for query Texas

apparel retailer, entity retailer matches a keyword, and
therefore is considered as a return entity, corresponding to
the user’s search goal. The key attribute of retailer: name

is considered the key of this query result, and is added to
the snippet information list. The current IList comprises
the first three steps in Figure 3.

The key of XML nodes can be directly obtained from the
schema of XML data, if available, specified as ID or Key
node. Otherwise, we find the most selective attribute of the
return entity and use it as the key. Specifically, for all query
results, we find the attribute of the return entity that has
the fewest duplicate values.

2.4 Representative Snippets
Goal 3: A snippet should be representative of the query

result, so that the users can grasp the essence of the result
from its snippet.

Similar to text document search, a snippet should provide
a summary of the query result. Since there can be a lot of
information in a query result, a good summary should be
concentrated on the most prominent ones referred as domi-
nant features.

We define a feature as a triplet (entity name e, attribute
name a, attribute value v). For example (store, city, Hous-
ton) is a feature. The pair (entity name e, attribute name a)
is referred as the type of a feature, and attribute value v is
referred as the value of a feature. Note that the entity name
is taken into account because different entities may share
the same attribute names. For example, both retailer and
store have attribute name. For presentation purpose, we
refer a feature by its value when there is no ambiguity.

As discussed in Section 1, a dominant feature of a query
result is often reflected by a large number of occurrences of
the feature in the result. For example, the fact that there
are more clothes for men than children in the query result
indicates that Brook Brothers is specialized for men instead
of children clothes.

However, the relationship between the dominance of a fea-
ture and the number of occurrences is not reliable due to
two reasons. First, different features have different domain
sizes. The domain size of a feature type (e, a) is defined
as the number of distinct values (e, a, v) of this type, de-



noted as D(e, a). The smaller size a domain has, the more
chances for a value to have more occurrences in the result.
For example, the number of occurrences of outwear: 220, is
less than that of women: 360. However, considering the do-
main sizes of their corresponding feature types in the query
result: D(clothes, category) = 11, D(clothes, fitting)
= 3, outwear could be more dominant than women in their
respective domains.

Second, due to the tree structure of XML data, different
features have different total number of occurrences in the
query result, denoted as N(e, a). The more occurrences of
a feature type, the more chances that a value of this feature
type to occur. For example, a value Houston only occurs
6 times, while children occurs 40 times in the query re-
sult. However, considering the number of occurrences of
their corresponding feature types: N(store, city) = 10,
N(clothes, fitting) = 1000, Houston is likely to be more
dominant than children.

As observed from these examples, comparing the number
of occurrences of values of different feature types may not
make sense in determining dominant features. To quantify
the above intuition, we propose to use normalized frequency,
called dominance score, to measure the significance of a fea-
ture in a query result.

Definition 2.4: We define dominance score of a feature
f = (e, a, v) as follows:

DS(f, r) =
N(e, a, v)

N(e,a)
D(e,a)

(1)

where R is a query result, N(x) denotes the number of
occurrences of x in R, D(e, a) denotes the domain size of
(e, a) in R.

A feature is dominant if its dominance score is larger than
1, in other words, its number of occurrences is more than
the average number of occurrences of the feature values of
the same type: N(e, a)/D(e, a). There is one exception: if
the domain size is 1, D(e, a) = 1, then there is only one
feature value of this type, which is trivially considered to be
dominant even though its dominance score is 1.

Definition 2.5: A feature f is dominant in a query result R
if one of the following holds: (a) DS(f, R) > 1 if D(e, a) > 1;
or (b) DS(f, R) = 1 if D(e, a) = 1.

We include dominant features into the snippet information
list in the decreasing order of their dominance scores.

Example 2.3: Continuing our example, we compute the
dominance scores for features in the query results. In the
following the corresponding feature types are omitted for
conciseness.
DS(Houston) = 6 / (10 / 5) = 3.0
DS(men) = 600 / (1000 / 3) = 1.8
DS(women) = 360 /(1000 / 3) = 1.08
Similarly, we get DS(casual) = 1.4, DS(outwear) = 2.2,
and DS(suit) = 1.2.

We add the dominant features into the snippet informa-
tion list, which now contains the items in all four steps in
Figure 3.

Since the dominant features of a query result provide a
good summary of the result, together with the key of the
result they can help user distinguish different query results.

2.5 Algorithm for Snippet Information List Con-
struction

As have been discussed, the snippet information list IList
contains the following four components in order. Each item
in the list is referred as an informative item.

1. Keywords;

2. The names of the entities in the query result, con-
tributing to self-contained snippets;

3. The key of the query result, reflected by the keys of the
return entities, contributing to distinguishable snip-
pets;

4. An ordered list of dominant features contributing to
representative snippets.

The snippet information list can be generated during a
pre-order traversal of the query result, as shown in Algo-
rithm 1. We use e, a and v to denote the last entity name,
attribute name and attribute value that have been encoun-
tered during the traversal, respectively. First, we add the
keywords into IList (line 3). For each node n visited in
the traversal, if n is an entity, we set e as n.name (line 6),
and add it to IList if it is not already in it (line 7-8). We
consider e as a return entity if e matches a keyword (line 9-
10). If n is an attribute name, we set a as n.name (line 12),
and increase the number of occurrences of feature type (e, a)
(line 13). If a matches a keyword, entity e is considered as a
return entity (line 14-15). If n is an attribute value, we set
v as n.value (line 17), increase the number of occurrences
of feature (e, a, v) (line 18) and increase the domain size of
feature type (e, a) if feature (e, a, v) has not appeared before
(line 19-20). Then we add the key attribute values of the
return entities as well as all dominant features into IList
(line 21-25). At last, we sort the dominant features in IList
according to their dominance scores (line 26).

Now we analyze the time complexity of Algorithm 1. A
hash index was built off-line on the XML data, which takes
an input of a node ID and returns the information about
this node, such as node type (entity, attribute, or connection
node) and key values (if exists). Hash indexes are also built
to access N(e, a), D(e, a) and N(e, a, v) in O(1). Therefore
the cost of traversing the query result (line 4-20) is bounded
by the size of the query result, O(|QR|). Since the num-
ber of dominant features is bounded by |QR|, computing
their dominance scores (line 22-23) also takes O(|QR|) time.
Sorting IList (Line 26) takes O(|L|log|L|), where |L| is the
size of IList. Therefore, the complexity of Algorithm 1 is
O(|QR| + |L|log|L|).

In the following section, we discuss how to extract data
nodes from the query result to capture the items in the list
as much as possible.

3. GENERATING SMALL AND MEANING-
FUL RESULT SNIPPETS

We have discussed how to identify the snippet information
list for a query result, which contributes to a self-contained,
representative and distinguishable snippet. Besides the re-
quirements on the semantics, we also need to meet a con-
flicting goal on snippet size.

Goal 4: A query result snippet should be small so that the
user can quickly browse several snippets.



Algorithm 1 Construction of Snippet Information List

constructIList (QR, Q)

1: IList = ∅
2: returnEntity = ∅
3: IList = IList ∪ Q
4: for each node n in a pre-order traversal of QR do
5: if n is an entity then
6: e = n.name
7: if e /∈ IList then
8: IList = IList ∪ {e}
9: if e matches a keyword then
10: returnEntity = returnEntity ∪ {e}
11: else if n is an attribute name then
12: a = n.name
13: N(e, a) + +
14: if a matches a keyword then
15: returnEntity = returnEntity ∪ {e}
16: else if n is a value then
17: v = n.value
18: N(e, a, v) + +
19: if triplet (e, a, v) has not appeared before then
20: D(e, a) + +
21: IList = IList ∪ the set of key attribute values of

returnEntity
22: for each feature f = (e, a, v) do
23: calculate DS(f, QR) using Eq. (1)
24: for each dominant feature f do
25: IList = IList ∪ {f}
26: sort all features in IList by dominance score
27: return IList

root

E1 E2

A11 A12

a11 a12

… A21 A22

a21 a22

… Am1 Am2

am1 am2

Em…

…

 

Figure 4: Reduction from Set Cover

3.1 Problem Definition
The challenge is given an upper bound on the size, how

to include as many items in the snippet information list as
possible into the snippet to make it maximally informative.

Recall that an informative item in the list, such as a key-
word and a dominant feature value, can have multiple oc-
currences in the query result. Although the instances of
the same informative item are not distinguishable in terms
of semantics, different instances have different impacts on
the size of the snippet. To include an instance of an infor-
mative item in a tree-structured snippet, we need to add a
path to the snippet from its nearest ancestor in the query
result that is already in the snippet to this node. There-
fore we should carefully select instances such that they are
close to each other in order to capture as many informative
items as possible given the size limit of the snippet. For
example, considering the instance of Houston, to capture in-
formative item outwear, choosing instance outwear3 results
in a smaller snippet tree compared with outwear4.

However, the problem of maximizing the number of in-
formative items selected in a snippet given the snippet size
upper bound is hard. We prove that its decision problem is
NP-complete as follows.

Definition 3.1: For an XML tree T , let label(u) be the label
of node u ∈ T , and label(T ) =

⋃
(label(u) | u ∈ T ). The

tree size |T | is the number of edges in T . We use a boolean
cont(T, v) to denote whether tree T contains a label v.

Given an XML tree T , an integer c, and a set P of labels
v, v ∈ label(T ), the instance selection problem is to find T ’s
subtree T ′, such that |T ′| 6 c, and ∀v ∈ P , cont(T, v) =
true.

The problem can be illustrated as: given a tree T , a set
of labels P and a size bound c, whether it is possible to find
a subtree T ′ of T , such that T ′ contain every label in P and
has a size no more than c.

Theorem 3.1: Instance selection problem is NP-Complete.

Proof. It is easy to see that this problem is in NP. Given
a T ’s subtree T ′, we can check in polynomial time whether
|T ′| 6 c, and ∀v ∈ P , cont(T, v) = true.

Now we prove that it is NP-Complete by reducing the set
cover problem to it, Set Cover ≤P Instance Selection. Recall
the set cover is the following problem: given a universe U =
{a1, a2, . . . , an}, a collection C of m subsets si ⊆ U(1 6 i 6

m) and an integer k, can we select a collection C′ of at most
k subset in C, whose union is U , i.e.,

⋃
(s | s ∈ C′) = U?

For any instance of set cover, we construct a tree as shown
in Figure 4. For each si ∈ C, we construct a node Ei, whose
parent is root. Let the j-th element in si be aij . For each
aij , we create a node Aij with value aij as a child of Ei.
Except leaf nodes, no node label is the same as an element
in U . For every ai ∈ U , we have a corresponding label ai and
let P denote the set of such labels. Let c = k + 2|U |. This
transformation takes polynomial time. Next we show that
this transformation is a reduction: the set cover problem can
be answered if and only if this constructed instance selection
problem can be answered.

Given an answer to set cover, we obtain T ’s subtree T ′ as
follows: ∀si ∈ C′, we select Ei and a subset of its children,
such that every element ai ∈ U has exactly one leaf node
in T with value ai selected. Such leaves along with their
ancestors up to the root compose T ′. Now we have ∀a ∈ P ,
cont(T ′, a) = true, and |T ′| 6 k + 2|U | = c. T ′ is an answer
to the instance selection problem.

Given an answer to the instance selection problem T ′,
|T ′| 6 c and ∀a ∈ P , cont(T ′, a) = true. Let R denote
the set of nodes Ei in T ′. 2|U | + |R| 6 |T ′| 6 c, therefore
|R| 6 c − 2|U | = k. Let C′ be the collection of set si, such
that Ei ∈ R. The union of si is U and |C′| = |R| 6 k,
therefore C′ is an answer to the set cover problem.

3.2 Algorithm for Instance Selection
As has been shown, the decision problem of instance se-

lection is NP-complete. However, snippet generation must
be efficient as web users are often impatient. We propose
a greedy algorithm that efficiently selects instances of in-
formative items in generating a meaningful and informative
snippet for each query result given an upper bound on size.

There are several challenges in instance selection. First,
XML nodes interact with each other. Selecting each individ-
ual node in isolation can result in a large snippet. Second,
the cost associated with a node, measured by the number
of edges to be added to the snippet if this node is selected,
changes dynamically during the selection procedure. Third,
due to dynamic costs of node selection, we are not able to



determine the number of informative items that can be cov-
ered till the very end.

Next we discuss how to address these challenges, by effec-
tively determining the data unit for selection, measuring the
benefit and cost of each selection, and designing an efficient
instance selection algorithm.

Since informative items in the information list have differ-
ent priorities, we assign weights to these items. Though we
know that the items will be selected in the order of their ap-
pearance in the information list until the snippet size limit is
reached, we are not able to determine the number of items
to be selected beforehand. Note that an item in the list
should not be considered before all its precedents are chosen
to be in the snippet, otherwise the dominance of different
features of the query result can not be faithfully reflected
in the snippet. Based on this, we assign the weights to the
items in the list to reflect the higher importance of the items
that appear earlier in the list. Specifically, the weight of an
item is half of the weight of its previous one. For the first
several items that are keywords or names of the entities in-
volved in the query result, each is assigned a weight of 1.
It is easy to see that such a weighting scheme satisfies the
requirement: an item is more important to be selected than
all the items after it in the list combined together, as an item
must be included in the snippet before any of its successors
is included.

Example 3.2: The weight of each item in the snippet in-
formation list for the example is annotated below the items
in Figure 3. Note that all keywords and entity names have
the highest weight of 1.

Entity Path Based Selection. For an instance of an in-
formative item to be selected into the snippet, we need to
include the path from the closest ancestor of this node that
is in the current snippet to the node. We thus make the
selections based on paths instead of nodes, which makes the
selection procedure more efficient as fewer data units need
to be considered for selection. One solution would consider
each root-to-leaf path in the query result tree as a data unit
for selection in determining which one to be included in the
snippet. However, each path often only contains an instance
of a single informative item, as most of the informative items
are feature values, which are leaf nodes. Therefore each se-
lection is still based on individual informative item covering
without considering possible interaction among them.

We consider entity-based paths as data units for selection.
We use leaf entity to refer to the entities that do not have
descendant entities. An entity path consists of a path from
the closest ancestor of a leaf entity in the query result that
is currently included in the snippet, to the leaf entity, along
with all the attributes of the entities on the path. If a node
instance of an informative item itself or its associated entity
is on an entity path, then we say this informative item is
covered by the path.

Example 3.3: To concisely illustrate our algorithm, here
we only present how to choose from the paths in the query
result fragment shown in Figure 1, although there are many
paths in the query result, based on which the IList in Fig-
ure 3 is computed. There are five leaf entities in the figure,
all of which are clothes entity. Therefore there are five
entity paths, each of which is from retailer to a clothes

node. We use p1 - p5 to denote the path from retailer to

Algorithm 2 Instance Selection of Snippet Information List

selectInstance (QR, IList, sizeLimit)

1: init(QR)
2: snippet = ∅
3: sizeLimitExceeded = false
4: currSize = 0
5: repeat
6: v = the next item in IList to be included in snippet
7: if v is already covered then
8: add the covered instance of v to snippet if it is not in

snippet yet
9: currSize += number of edges added to snippet
10: else
11: find the path p with the highest (benefit/cost) that cov-

ers v
12: add the shortest prefix p′ of p to snippet, such that p′

covers v
13: currSize += number of edges added to snippet
14: if p′ = p then
15: p.benefit = 0
16: for each path p′′ that share a prefix with p′ do
17: p′′.cost -= length of common prefix of p′ and p′′

18: for each item v′ in IList covered by p′ do
19: put a mark on v′ to denote that v′ has been covered
20: for each path p′′ that covers v′ do
21: p′′.benefit -= weight of v′ in IList
22: if currSize > sizeLimit then
23: remove all nodes added to snippet in this iteration
24: sizeLimitExceeded = true
25: until all items in IList are selected in snippet or

sizeLimitExceeded = true
26: return snippet

init (QR)

1: QRroot.ancCover = the informative items covered by the
root of QR if it is an entity

2: for each entity n in the depth-first traversal of QR do
3: n′ = the nearest ancestor entity of n in QR, and if it does

not exist, QRroot
4: n.ancCover = n′.ancCover∪ the informative items covered

by n
5: if n is a leaf entity then
6: p = the path from QRroot to n
7: p.benefit = the sum of weights of the items in

n.ancCover
8: p.cost = number of edges on the path from QRroot to n

clothes1 - clothes5 respectively.

Benefit-Cost of an Entity Path. To decide which path to
select, we choose the one that has the maximal benefit-cost
ratio. The cost of selecting a path p p.cost, is the number
of edges to be added into the snippet tree when selecting p.
Initially, p.cost is the number of nodes on p.

The benefit of selecting path p, p.benefit, is the sum-
mation of the weights of all the informative items covered
by this path. p.benefit is initialized during a depth first
traversal of the query result, as presented in procedure init
in Algorithm 2. For each node n in the query result, we
use n.ancCover to denote the set of the informative items
covered if n is selected. Note that if n is selected, then all its
ancestors in path p will be included in the snippet, therefore
n.ancCover = n′.ancCover ∪ V , where n′ is the parent of
n, and V is the set of informative items that are covered
by n’s label and its attributes (if exists). We set p.cover =
n.ancCover, where n is the leaf entity of p.

Example 3.4: Take the path p1 from retailer to clothes1

for example. p1 covers informative items Texas, apparel,



retailer, store, clothes, Brook Brothers, Houston,

men, casual, and suit, thus p1.benefit is the summation
of their weights, 1 + 1 + 1 + 1 +1 + 2−1 + 2−2 + 2−4 +
2−5 + 2−6 ≈ 5.86. Similarly, benefit of the paths p2, p3, p4

and p5 are initialized to be 5.81, 5.91, 5.72, 5.51 respectively.
The cost of all paths is 3 initially.

Path Selections and Benefit-Cost Updates. The al-
gorithm for selecting informative items is presented in pro-
cedure selectInstance in Algorithm 2. For an input query,
each of its query results QR, an upper bound of the snippet
size sizeLimit and its information list IList, we generate
a snippet. Initially, the snippet is empty. We process the
informative items in IList one by one in order, and select
an entity path in the query result that can cover this item
with maximal benefit-cost into a snippet, till all the items
are covered in the snippet or the upper bound of snippet
size is reached.

At each step, let v be the current informative item being
considered. If a node instance of v is already included in the
snippet, nothing needs to be done. If its associated entity
is included in the snippet, then it can be easily added into
the snippet by adding the path from the associated entity
to itself to the snippet (line 6-8). For example, if we want
to include an instance of item outwear in the snippet, and
entity clothes3 is already in the snippet, then, we simply
add the path from clothes3 to outwear3 without choosing
another entity path that covers outwear, and therefore has
a minimal cost.

Otherwise, we need to choose a new entity path to cover
the current informative item v. For all entity paths cover-
ing v, we choose the one p that has the best cost-benefit
p.benefit/p.cost to the snippet (line 11). Notice that for a
chosen entity path, we only need to add its shortest prefix p′

to cover the current informative item. If p′ is a proper prefix
of p, then p will not be removed from the entity path lists,
but has its cost adjusted, as to be discussed soon; otherwise
p can be disregarded.

Example 3.5: The running example is continued here. We
start with the first informative item in the list Texas. Since
all five entity paths cover it, we choose the one with the
highest benefit/cost, which is p3. In fact, we only need to
add a prefix of p3, from entity retailer to entity store1,
together with their associated attributes into the snippet to
cover Texas.

After an entity path p′ is added to the snippet, we need to
update the information list, the cost and benefit of affected
paths, according to the following.

First, for each item in IList that is covered by p′, we put
a mark on it, denoting that it has been covered (line 19).
If one of these items is encountered in future, it has a node
instance that can be added to the snippet with the low cost
(i.e., the number of nodes from this instance to its associated
entity, or zero if it is already in the snippet), without the
need of choosing another entity path.

Second, we update the costs of the affected entity paths.
For each entity path p′′ that has a common prefix with p′,
including p itself, its cost is decreased by the length of the
common prefix.

To efficiently calculate the length, we assign each XML
node a Dewey label [18] as a unique ID. A Dewey ID is
composed of integers concatenated by dots. The Dewey ID
of a node contains in order the Dewey ID of its parent, a

dot, and one more integer denoting the position of this node
among its siblings. The Dewey ID of the root is 0. For
example, the nodes on the path from retailer to Texas1

in Figure 1 should have Dewey IDs 0, 0.2, 0.2.0, 0.2.0.0,
respectively.

The length of the common prefix of two entity paths can
now be easily calculated as the length of the common prefix
of the Dewey IDs of the leaf entities of p′ and p′′ (line 17).
To efficiently identify these affected paths, we sort all entity
paths by the Dewey ID of their leaf entities in a list. For the
first node n in path p′, we find the first and the last path in
the entity path list whose leaf entity is a descendant of n,
using a binary search. Each of the paths in the entity path
list between them has a common prefix with p′.

At last, we need to update the benefits of the affected
entity paths. For each entity path p′′ that covers an item
which is already covered by p′, its benefit p′′.benefit is de-
creased by the weight of the corresponding item, for all the
commonly covered items of p′′ and p′ (line 20-21).

After an instance of the current informative item v in
IList is included into the snippet, we need to check whether
the snippet exceeds the size limit. If so, we must remove the
nodes that were added into the snippet in this iteration (line
23), and set the flag that no more nodes need to be added
into the snippet as its size limit is reached (line 24).

Example 3.6: Continuing the running example, after se-
lecting the highest benefit-cost entity path p3 to cover item
Texas, we include its prefix from retailer to store1 to the
snippet, and perform the following updates. First, we anno-
tate in the IList that the informative items Apparel, re-

tailer, store, Brook Brothers and Houston are covered.
Second, we update the costs of affected path. Since paths
p1, p2 and p3 have a common prefix with the path included
in the snippet, their costs are decreased by the length of this
common prefix. Now the costs of the updated entity paths
p1, p2, and p3 are all 2.

We also update the benefits of the affected paths. Since
Texas, apparel, retailer, store, Brook Brothers and
Houston are all considered to be covered by the first selected
path, the benefits of the paths that cover these informa-
tive items need to be subtracted accordingly. Specifically,
since p1, p2 and p3 originally cover the above six items, each
of their benefits is subtracted by the sum of these items’
weights: 4.75. p4 and p5 cover the first five items in the
above list, and each has its benefit subtracted by 4.5.

Now, the next uncovered item in IList is clothes. We
choose the path that covers it and has the highest benefit-
cost, hence p3, which is from merchandises1 to clothes3.
Now p3 is removed from the entity path list, as the entire
path is included in the snippet. Now besides clothes, item
outwear, casual and women in IList are also marked as cov-
ered. The cost of p1 and p2 is now reduced to 1. For each
path that covers clothes, i.e., p1, p2, p4 and p5, its benefit
is reduced by the weight of clothes: 1. For the paths that
cover outwear: p4, we subtract its benefit by 2−3. We also
subtract the weight of casual from the benefits of p1 and
p4, and subtract the weight of women from the benefit of p5.

We cover the items in IList one by one in this manner.
Suppose the size limit of the snippet allows us to include all
the items in the IList in Figure 3 into the snippet, the final
snippet is presented in Figure 2.

To efficiently select the entity path to cover the current



Film
QF1 films, Hitchcock, Paramount
QF2 films, Hitchcock
QF3 EasyVirtue, 1927
QF4 Lifeboat, 1943
QF5 Dram, films
QF6 1922, GB, Famous
QF7 Hitchcock, Paramount
QF8 30m, films
Retailer
QR1 Store, formal
QR2 Store
QR3 retailer, Texas, men
QR4 Store, Texas
QR5 retailer, California, sportswear
QR6 Store, Houston
QR7 Store, Texas, men
QR8 Retailer, apparel, Store, Philadelphia, formal

Figure 5: Data and Query Sets

item in the snippet information list and to perform updates
after a selection, we build a bitmap index for a query result
during a traversal. The path dimension has all the paths
sorted by the Dewey ID of their leaf entities. The value
dimension has all the distinct informative items in the order
of their appearance in the query result. Each entry B(p, v)
in the index records whether an item v is covered by p, and
if so, which node on p covers it. For each path p, we also
record its benefit p.benefit and cost p.cost.

Now we analyze the complexity of the algorithm. Let QR
be the query result, P the set of all entity paths in QR, d the
document depth, and |L| the size of IList. To include one
item v in the information list IList into the snippet, the
algorithm searches for the path with the best benefit-cost
that covers v (line 11 in selectInstance) by traversing all the
entries B(p, v), which entails a cost O(|P |). After selecting
the entity path p′, we update the cost of all the paths that
share a prefix with p′ (line 16-17). Finding such a path using
binary search on the path list has a cost O(log|P |). Each of
such paths has the cost updated according to Dewey label
prefix computation, which is bounded by d. The complexity
of performing cost updates is O(|P |d), as in the worst case
all paths need to be updated. We also update the benefits
of the affected paths. For each item v′ covered by p′, we
reduce the benefits of the paths that cover v′ by traversing all
entries B(p′′, v′) (line 20-21). The complexity of performing
benefit updates is O(|L||P |). The total number of iterations
is bounded by |L|, and the cost of adding nodes into the
snippet is O(|P |d). Therefore, the total time complexity for
instance selection is max{|L||P |d, |L|2|P |}.

4. EXPERIMENTS
We have developed an effective and efficient snippet gen-

eration system for XML search: eXtract, which is available
online at http://extract.asu.edu.2 We have evaluated eX-
tract on three metrics: quality of the snippets, processing
time of snippet generation and scalability over the increase
of query result size, as well as the upper bound of snippet
size in terms of the number of edges in a tree.

The experiments were performed on a 3.6 GHz Pentium 4
machine, running Windows XP, with 2GB memory and 160

2The web site also shows the snippets generated by Google
Desktop as a reference.

 

0

1

2

3

4

5

Google Optimal Greedy

s
c
o
r
e

Figure 6: Average Scores of Google Desktop, Op-

timal Algorithm and Greedy Algorithm over All

Queries

GB hard disk.
We have tested two data sets. Film is an XML data set

about the movie and director information.3 retailer is a
synthetic data set that has the same schema and similar
domains for node values as the one in Figure 1, while the
value of a node is randomly selected from its correspond-
ing domain. For each data set we have tested eight queries,
as shown in Figure 5. For each query, a snippet size limit
is randomly selected ranging from 6 to 11. The query re-
sults are generated using one of the existing keyword search
approaches [20].

Since there is no existing snippet generation system de-
signed for XML search in the literature, we compared our
system with a popular text document search engine, Google
Desktop. To focus the comparison on snippet generation
instead of query result generation, we store each keyword
query result generated by [20] as an XML file. Then we issue
the test query using Google Desktop on the corresponding
XML file to obtain its result snippet.

To evaluate our approach, we also implemented an algo-
rithm which generates result snippets that maximally cover
the items in the information list within a upper bound of the
snippet size, referred as Optimal algorithm. The Optimal al-
gorithm enumerates all possible combinations of instances of
each item in the list with some pruning of the search space
in order to find the optimal solution. In contrast, our ap-
proach uses Algorithm 2 for instance selection and is referred
as Greedy algorithm. Both Optimal algorithm and Greedy
algorithm use Algorithm 1 to generate the snippet informa-
tion list for a query result.

4.1 Snippet Quality
As there is no benchmark for evaluating the snippet qual-

ity for XML keyword search, we performed a user study. The
quality test involves two parts: scoring snippets generated
using three different approaches by users, and measuring the
precision and recall of snippets based on the ground truth
set by users. Ten graduate students majoring in computer
science who were not involved in our project were invited to
participate in the user study in assessing the snippet quality.

Assessment of Snippets by Scoring Them. For each
query result of the sixteen queries in Figure 5, we use three
approaches, Greedy algorithm, Optimal algorithm and Google
Desktop, to generate snippets. Since a query result may be
large, the users are given the statistical information of each

3http://infolab.stanford.edu/pub/movies



query result (like the one shown in Figure 1) together with
its snippet. Each user is asked to give a score for each snip-
pet generated by each approach, respectively, on a scale of
5. The snippets are arranged in a random order for each
query result without the information about its generation
system. The evaluation result is shown in Figure 6. The
score for each algorithm shown in the figure is the average
score of all the queries provided by all the users. As we
can see, the score of our approach is close to that of the
Optimal approach, and is much better than that of Google
Desktop. For most queries, our approach either generates
the same snippet as the Optimal approach, or misses one
or two items in the snippet information list compared with
the Optimal algorithm, thus their scores are close. Google
Desktop is a search engine designed for text documents. It
does not generate the snippets as tree structures, but simply
concatenates the values in the XML document and outputs
a fragment of it. Since Google Desktop has a low score for
snippet generation on XML documents, we do not further
compare with it in the experiments.

Assessment of Snippets by Comparing with Ground

Truth. To make a deep analysis of our approach, we have
conducted user surveys to define ground truth for the snip-
pet of a given query result. We found that it is extremely
difficult for users, who may not have experience or back-
ground in XML, to decide which subtree in the query result
should be the desired snippet. Therefore, we asked the users
to focus on the content, instead of the tree structure, in a
query result. For each query result, each user is asked to
provide a set of top k most important items in the query
result, which they think should be included in the snippet.
Since this part of the user study requires a lot of effort from
the users, we randomly choose four queries in Figure 5 to
perform this study. After collecting the set of items provided
by each user, in order to get the ordered snippet information
list, we combine the top-k items from all the users together
to form a universal set. Then we rank the items according to
the numbers of their occurrences in the universal set, i.e., the
number of users who think that the item should be selected
in the snippet. The list obtained in this way is considered as
the ground truth of the snippet information list. Since the
Optimal algorithm guarantees to find the optimal snippet
with respect to a given snippet information list, we invoked
the instance selection part of the Optimal algorithm on each
ground truth information list, whose result is considered as
the ground truth snippet for the corresponding query result.

Based on the ground truth of the snippets, we assess the
relevance of the snippets generated by Greedy algorithm and
Optimal algorithm, both of which invokes Algorithm 1 to
generate the same snippet information list, where the num-
ber of dominant features is set to be k.

Figure 7 shows the quality assessment of the snippets pro-
duced by each approach. Precision measures the percentage
of the informative items output by an algorithm that are in
the ground truth snippet. Recall measures the percentage
of the informative items in the ground truth snippet that
are output by an algorithm.

The first observation is that both approaches have a good
precision and recall, which confirms the intuition of our ap-
proach. This is because the snippet information list that our
algorithm generates is similar as the one given by the user
study, especially the items that appear earlier in our list.
Therefore the snippets generated according to our informa-

tion list, by Optimal algorithm or Greedy algorithm, has a
high quality.

On the other hand, the precisions and recalls of both al-
gorithms are not perfect, mainly because the information
list that we generate are often not the same as the ground
truth. The main reason of these differences is that the user
may care about interesting features of an entity, instead
of/besides dominant features. Take QR1 (Store, formal)
for example. This query looks for the information of the
stores selling formal clothes. To summarize a query result,
our approach selects the most dominant features, such as the
“fitting:men” of the clothes, which is an attribute of most of
the clothes sold by this store. However, users sometimes pre-
fer having attributes of their own interest to be included in
the snippet, even though their values may not be a dominant
feature. For example, users may choose “brand:Adidas” as
an interesting feature to be included in the snippet, which
might only appear in a few of the clothes.

Finally, we compare the Optimal algorithm with the Greedy
algorithm. For test queries QR1, QR4, QF3, the precisions
and recalls of these two algorithms are the same. In fact,
the snippets generated by both algorithms for these queries
are the same. Recall that the Optimal algorithm maximizes
the number of items in the information list to be selected
in the snippet. When the snippet size is small, the Greedy
algorithm can cover the same set of informative items. In-
deed, the upper bounds of the snippet size for the results
of the above three queries, are 7, 8 and 6, respectively. On
the other hand, for QF5, which has an upper bound of 11 of
the snippet size, the Optimal approach selects more items
in the information list into snippets and therefore achieves a
better recall. In practice, when the snippet size is small, the
Greedy algorithm can achieve similar quality as the Optimal
algorithm.

4.2 Processing Time
To evaluate the efficiency of our approach for generating

result snippets, we test the processing times of the queries
listed in Figure 5. The processing times, comprising the time
of generating IList and selecting instances, of the Greedy
algorithm and the Optimal algorithm are shown in Figure 8.
The sizes of the query results vary from 1KB to 13KB, and
the snippet size limits vary from 6 to 11 edges. As we can
see, the Greedy algorithm is much faster than the Optimal
algorithm.

Both algorithms need to traverse the query result and con-
struct an ordered snippet information list, in the same way.
The difference lies in the cost of selecting instances of infor-
mative items in the list. The Optimal algorithm searches
for the optimal solution by enumerating possible combina-
tions of instances to each item in the snippet information
list, which leads to a cost exponential to the size of the in-
formation list. When the query result size or the snippet
size limit is small (e.g. QF3 whose query result size is 2KB
and snippet size limit is 6, and QF7 whose result size is 1KB
and snippet size limit is 6), the processing times of both al-
gorithms are small. However, when the query result size is
relatively large, indicating a potentially large number of in-
stances of each informative item, the difference between the
processing times of these two approaches becomes significant
(e.g. QR5 whose result size is 4K and snippet size limit is
8, and QF8 whose result size is 2K and snippet size is 11).



0

50

100

QR1 QR4 QF3 QF5

Greedy Optimal

 

0

50

100

QR1 QR4 QF3 QF5

Greedy Optimal

 
(a)Precision Measurement (b)Recall Measurement

Figure 7: Precision and Recall Measurements

4.3 Scalability
We test the scalability of our system on the Film data set

over two parameters: query result size and snippet size.

Query Result Size. The scalability test with respect to
query result size is shown in Figure 9 (a). A query result
of QF1 is replicated between 1 and 6 times to make the size
of query result increasingly larger each time. The upper
bound for the snippet size is fixed to be 9. We have tested
the performances of the Optimal algorithm and the Greed
algorithm on these query results. As we can see, the pro-
cessing time of the Optimal algorithm grows very rapidly as
the complexity of the Optimal algorithm is high-order poly-
nomial to the size of query result, the order of which is the
size of the snippet information list. On the other hand, the
processing time of the Greedy algorithm grows slowly. For
query result of 90KB, it only requires 0.4 second for snippet
generation.

Snippet Size. In this test we evaluate the performance
of the Greedy algorithm and the Optimal algorithm with
respect to the increase of snippet size upper bound, while
keeping the query result size to be 4KB. Recall that when the
snippet size increases, more items in the snippet information
list can be included in the snippet, thus more nodes in the
query result need to be processed in order to cover those
items. The result in Figure 9 (b) shows that the processing
time of the Greedy algorithm increases much slower than
that of the Optimal algorithm, where the later has a time
complexity exponential to the number of informative items
to be output.

In summary, experimental evaluation shows that the snip-
pets generated by our algorithm for XML search has high
quality, as reflected by a high score in user evaluations, and
high precision and recall with respect to the user defined
ground truth. The snippet generation is efficient for various
queries, and scales well when the query result size and snip-
pet size increase. Compared with the Optimal algorithm,
our algorithm based on a greedy approach has a close qual-
ity in practice, and is much more efficient.

5. RELATED WORK
To the best of our knowledge, the research on result snip-

pet generation is within the scope of keyword search on text
documents. Early search engines generated query-independent
snippets, consisting of the first several bytes of the result
document. Such an approach is efficient but often ineffec-
tive. Selecting sentences for inclusion in the summary based
on the degree to which they match the keywords has become
the state-of-the-art of query-biased result snippet generation
for text documents [14, 16, 19, 17]. Commonly used metrics

for sentence selection include whether the sentence is a head-
ing or the first line of the document, the number of keywords
and distinct keywords that appear in the sentence, etc. Snip-
pet generation considering implicit evidence observed from
users’ behaviors has also been studied [19]. Approaches for
improving efficiency have been investigated [17]. However,
snippet generation techniques designed for text documents
are unable to leverage the hierarchical structure of XML
data, and therefore do not perform well, as observed in the
user studies.

There are many works on generating meaningful query
results for XML keyword search by inferring the semantics
from various perspectives. Some works focus on identifying
relevant keyword matches [20, 6, 4, 8, 2, 9, 15], some inves-
tigate in how to display query results [7, 10]. As we have
discussed, our work addresses the problem of result snippet
generation, which takes as input the query results that can
be produced by any of the existing XML keyword search
engines, and generates meaningful yet small snippets.

There are also many proposals on designing effective rank-
ing schemes on XML search, including [4, 2, 7, 1]. Factors
including the distance between keyword matches, term fre-
quency, document frequency, links in the XML documents
are explored. Ranking for keyword search on relational
databases and graphs have also been investigated [5, 11].
[3] discusses how to order the attributes in a tuple to re-
flect its influence on the rank of this tuple. Result snippet
generation is orthogonal to ranking functions. Due to the
ambiguity of keyword search, no ranking scheme can be ab-
solutely perfect and fit all users. The design principles of
snippets are therefore independent to those of the ranking
scheme, such that the users can make their own relevance
judgement based on the snippets without being biased by
the relevance assessment made by ranking schemes. Rank-
ing and snippets complement each other to help users find
relevant results.

XML data summarization has also been investigated [13],
which uses a small amount of space to store the XML data
while still achieving accurate results as much as possible
for query processing. Techniques are thus developed for
data compression, e.g., storing one instance of each distinct
tag name with its number of occurrences, recording the fre-
quency that a node name is nested in another node name,
and the distribution of values using histograms, wavelets,
etc. The goal of data summarization is for query processing
efficiency and the data summary is often not user readable,
while the goal of snippet generation is to provide meaning-
ful snippets such that users can easily assess the relevance
of the corresponding query results.



0.001

0.01

0.1

1

QR1QR2QR3QR4QR5QR6QR7QR8

T
i
m
e(

s)

Greedy Optimal

 

0.001

0.01

0.1

1

QF1 QF2 QF3 QF4 QF5 QF6 QF7 QF8

T
i
m
e(

s)

Greedy Optimal

 
(a)Queries on Retailer Data Set (b)Queries on Film Data Set

Figure 8: Processing Time on Retailer and Film Data Sets

0

10

20

30

15k 30k 45k 60k 75k 90k

T
i
m
e(

s)

Greedy Optimal

 

0

5

10

8 9 10 11 12 13

T
i
m
e(

s)

Greedy Optimal

 
(a)Size of Query Result (KB) (b)Number of Edges in Snippet

Figure 9: Scalability Test on Size of Query Result and Number of Edges

6. CONCLUSIONS
To the best of our knowledge, this is the first work that

addresses the problem of generating result snippets for XML
search. We identify four features of a good XML result
snippet: self-contained, distinguishable, representative and
small. To meet the first three requirements in generating se-
mantically meaningful snippets, we identify the most signif-
icant information in the query result that should be selected
into a snippet in a snippet information list. To satisfy the
fourth requirements, we need to generate the snippet that
is maximally informative with respect to this list given an
upper bound of the snippet size. However, its decision prob-
lem is proven to be NP-complete. Finally, we have designed
and implemented a novel algorithm to efficiently generate
informative yet small snippets. We verified the effectiveness
and efficiency of our approach through experiments.

7. ACKNOWLEDGMENTS
This research was supported in part by NSF grant IIS-

0740129 and IIS-0612273.

8. REPEATABILITY ASSESSMENT RESULT
All results except user study (Figure 6 and 7) in this paper

have been verified by the SIGMOD repeatability committee.

9. REFERENCES
[1] M. Barg and R. K. Wong. Structural Proximity Searching

for Large Collections of Semi-structured data. In
Proceedings of CIKM, pages 175–182, 2001.

[2] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSEarch: A
Semantic Search Engine for XML. In VLDB, 2003.

[3] G. Das, V. Hristidis, N. Kapoor, and S. Sudarshan.
Ordering the Attributes of Query Results. In SIGMOD,
2006.

[4] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram.
XRANK: Ranked Keyword Search over XML Documents.
In SIGMOD, 2003.

[5] H. He, H. Wang, J. Yang, and P. S. Yu. BLINKS: Ranked
Keyword Searches on Graphs. In SIGMOD, 2007.

[6] V. Hristidis, N. Koudas, Y. Papakonstantinou, and
D. Srivastava. Keyword Proximity Search in XML Trees.
IEEE Transactions on Knowledge and Data Engineering,
18(4), 2006.

[7] V. Hristidis, Y. Papakonstantinou, and A. Balmin.
Keyword Proximity Search on XML Graphs. In ICDE,
2003.

[8] G. Li, J. Feng, J. Wang, and L. Zhou. Effective Keyword
Search for Valuable LCAs over XML Documents. In CIKM,
2007.

[9] Y. Li, C. Yu, and H. V. Jagadish. Schema-Free XQuery. In
VLDB, 2004.

[10] Z. Liu and Y. Chen. Identifying Meaningful Return
Information for XML Keyword Search. In SIGMOD, 2007.

[11] Y. Luo, X. Lin, W. Wang, and X. Zhou. SPARK: Top-k
Keyword Query in Relational Databases. In SIGMOD,
2007.

[12] C. D. Manning, P. Raghavan, and H. Sch́lźtze. Introduction
to Information Retrieval. Cambridge University Press,
2008.

[13] N. Polyzotis and M. Garofalakis. XCluster Synopses for
Structured XML Content. In ICDE, 2006.

[14] H. G. Silber and K. F. McCoy. Efficiently Computed
Lexical Chains As an Intermediate Representation for
Automatic Text Summarization. In Comput. Linguist.,
volume 28(4), 2002.

[15] C. Sun, C.-Y. Chan, and A. Goenka. Multiway SLCA-based
Keyword Search in XML Data. In WWW, 2007.

[16] A. Tombros and M. Sanderson. Advantages of Query Biased
Summaries in Information Retrieval. In SIGIR, 1998.

[17] A. Turpin, Y. Tsegay, D. Hawking, and H. E. Williams.
Fast Generation of Result Snippets in Web Search. In
SIGIR, 2007.

[18] V. Vesper. Let’s Do Dewey.
http://www.mtsu.edu/ vvesper/dewey.html.

[19] R. W. White, I. Ruthven, and J. M. Jose. Finding Relevant
Documents using Top Ranking Sentences : An Evaluation
of Two Alternative Schemes. In SIGIR, 2002.

[20] Y. Xu and Y. Papakonstantinou. Efficient Keyword Search
for Smallest LCAs in XML Databases. In SIGMOD, 2005.


