
XSeek: A Semantic XML Search Engine Using Keywords

Ziyang Liu
Arizona State University

Ziyang.Liu@asu.edu

Jeffrey Walker
Arizona State University

Jeffrey.Walker@asu.edu

Yi Chen
Arizona State University

Yi@asu.edu

1. MOTIVATION
Keyword search provides a user-friendly information dis-

covery mechanism for web users to easily access XML data
without the need of learning a structured query language or
studying possibly complex and evolving data schemas. How-
ever, due to the lack of expressivity and inherent ambiguity,
there are two main challenges in performing keyword search
on XML data intelligently.

1. First, unlike XQuery, where the connection among data
nodes matching a query is specified precisely using
variable bindings and where clauses, we need to au-
tomatically connect the keyword matches in a mean-
ingful way.

2. Second, unlike XQuery, where the data nodes to be
returned are specified using a return clause, we should
effectively identify the desired return information.

Several attempts have been made to address the first chal-
lenge [3, 2, 9, 7] by selecting and connecting keyword matches
through a variant concept of lowest common ancestor, named
as VLCA (such as SLCA [9], MLCA [7], interconnection [2],
etc.). However, it is an open problem of how to automat-
ically and effectively infer return nodes, the names of the
data nodes that are the goal of user searches.

There are two baseline approaches for determining return
nodes adopted in the existing work. One is to return the
subtrees rooted at VLCA nodes [3, 9], named as Subtree
Return. Alternatively, we can return the paths in the XML
tree from each VLCA node to its descendants that match an
input keyword, as described in [1, 4], named as Path Return.
However, neither approach is effective in identifying return
information as the following examples show.

Let us look at the sample queries listed in Figure 2 on
XML data in Figure 1(a). For Q1, it is likely that a user is
interested in the information about Rockets. Both Subtree
Return and Path Return first compute the VLCA of keyword
matches, which is the match node itself: Rockets (0.2.0.0),
then output this node. However, to echo print the user

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

input without any additional information is not informative.
Ideally, we would like to return the subtree rooted at the
team node with ID 0.2 for information about Rockets.

Now let’s consider Q2 and Q3. By issuing Q2, the user is
likely to be interested in the information about the player
whose name is Mutombo and who is a center in a team.
Therefore the subtree rooted at the player node with ID
0.2.4.0 is desired output. In contrast, Q3 indicates that the
user is interested in a particular piece of information: the
position of Mutombo.

As we can see, the input keyword can specify a predicate
for the search, or specify desired return nodes. However,
existing approaches fail to differentiate these two types of
keywords. In particular, Path Return approach returns the
paths from the VLCA player node (0.2.4.0) to Mutombo and
to center for Q2, and the path from player (0.2.4.0) to
Mutombo and position for Q3, respectively. On the other
hand, since Q2 and Q3 have the same VLCA node, player
(0.2.4.0), Subtree Return outputs the subtree rooted at this
node for both queries, though the user indicates that only
position information is of interest in Q3.

Now let’s look at a more complex query Q4, intending to
find information about the player who is a center in the
team Rockets. The desired query result is shown in Fig-
ure 1(b). The Subtree Return approach outputs the whole
tree rooted at team (0.2), and requires the user him/herself
to search the relevant player information in this big tree. On
the other hand, the Path Return approach outputs the path
from team to Rockets and to center, without providing any
additional information about player (0.2.4.0).

As we can see from the above sample queries, existing
approaches fail to effectively identify relevant return nodes
and suffer a low precision and/or recall.

The only work that has considered the problem of identi-
fying return nodes is [5, 6]. Both require the schema infor-
mation, and require users and/or system administrators to
specify the schema of output information.

In this demo, we present an XML keyword search system
XSeek [8] that addresses the problem of identifying return
nodes for XML keyword search. It allows users to search
XML documents using keywords, and generates meaning-
ful return information as exemplified in the above examples
without schema or user preference solicitation.

2. CONTRIBUTIONS
The XSeek system has several significant features com-

pared with existing keyword search engines for XML data.

1. To the best of our knowledge, XSeek is the first XML



 

(a) (b)

Figure 1: Sample XML Document(a) and Search Result for Q4(b)

keyword search engine that automatically infers desir-
able return node information to form query results.

2. XSeek identifies and generates return nodes of two
types: explicit return nodes that are optionally speci-
fied in the keywords; implicit return nodes that are not
part of the input keywords, but can be inferred from
XML data.

3. To determine explicit return nodes, XSeek analyzes
the input keyword patterns and classifies keywords into
two categories: the ones that specify search predicates,
and the ones that indicate the return information that
the user is seeking for.

4. To infer implicit return nodes, XSeek analyzes the
structure of XML data and differentiates three types
of information: entities in the real world, attributes of
entities, and connection nodes.

5. Data nodes that match predicates or inferred return
nodes are output as query results.

6. Experimental results show that XSeek generates search
results with significantly improved precision and recall
compared with Subtree Return and Path Return ap-
proaches with good scalability.

3. INFERRING KEYWORD SEARCH SE-
MANTICS

Identifying and Connecting Keyword Matches. XSeek
adopts the approach proposed in [9] for defining VLCA nodes
and connecting keyword matches through their VLCA nodes.
1 An XML node is named as a VLCA node if its subtree
contains matches to every keyword in the query, and none

1Alternatively, other approaches to compute VLCA nodes
such as MLCA [7], Interconnection [2] can be incorporated
seamlessly into XSeek for identifying and connecting rele-
vant keyword matches.

Q1 Rockets
Q2 Mutombo, center
Q3 Mutombo, position
Q4 team, Rockets, center

Figure 2: Sample Keyword Searches

of its descendants contains every keyword in its subtree.
Keyword matches in a subtree rooted at a VLCA node are
considered as closely related and are connected through the
VLCA node; while the matches that are not descendants of
any VLCA node are determined as irrelevant and discarded.

For example, consider Q3 on XML data in Figure 1(a).
There is one match to keyword Mutombo: 0.2.4.0.0.0, and two
matches to position: 0.2.4.0.1 and 0.2.4.1.1. According to
definition, player (0.2.4.0) is the only VLCA node, which
connects closely related matches: Mutombo (0.2.4.0.0.0) and
position (0.2.4.0.1). Note that though players (0.2.4) has
matches to both keywords in its subtree, it is not a VLCA
node, and position (0.2.4.0.1) is considered as irrelevant.

As illustrated in Section 1, outputting match nodes and
their connection or the whole subtrees rooted at VLCA
nodes are not desirable in many cases. Next we discuss how
to infer meaningful return nodes for XML keyword search.

Analyzing XML Data Structure. XSeek analyzes the
structure of XML data, differentiates nodes representing
entities from nodes representing attributes, similar as the
Entity-Relationship model in relational databases. We be-
lieve that by issuing a query a user would like to find out
information about entities along with their relationships in
a document. Therefore the entities related to the input key-
words are considered in determining return nodes.

For example, for the XML data in Figure 1(a), conceptu-
ally we can recognize two types of entities: team and player.
Entity team has name, division, arena and founded as
attributes. player has attributes name, position and
nationality. The relationships between entities are repre-
sented by the paths connecting them. For example, a team



 

Figure 3: Architecture of XSeek

has one or more players. By issuing Q1 Rockets, it is likely
that the user would like to find out the information about
the real world entity that Rockets corresponds to.

However, since XML data may be designed and generated
by autonomous sources, the entity and attribute information
may not be directly available. We use the following inference
for data node categories.

1. If a node has siblings of the same name, then this
indicates a many-to-one relationship with its parent
node, and is considered to represent an entity.

2. If a node does not have siblings of the same name, and
it has one child, which is a value, then it is considered
to represent an attribute.

3. A node is a connection node if it represents neither an
entity nor an attribute.

The node relationship and node categories can be detected
according to the schema (if available) or the structural sum-
mary of the data.

For the XML data in Figure 1(a), since team has a many-
to-one relationship with its parent node league, we infer
that team represents an entity that has a relationship with
league. Its children name, division, arena, and founded

are considered as attributes of a team entity. On the other
hand, players is considered as a connection node.

Analyzing Keyword Patterns. XSeek also analyzes key-
word patterns to determine return information. It classifies
input keywords into two categories: predicates and return
nodes. Some keywords indicate predicates that restrict the
search, corresponding to the where clause in XQuery. Others
specify the desired output type, referred as explicit return
nodes, corresponding to the return clause in XQuery.

Recall Q2 and Q3 in Figure 2, where the keyword matches
are connected in the same way. However, different pat-
terns of these two queries imply different user intensions.
Q2 searches information about Mutombo and center. Q3

searches the position information of Mutombo. Intuitively,
both Mutombo and center are considered to be predicates,
while position in Q3 indicates a return node.

The immediate question is how to infer predicates and
return nodes in the input keywords. Recall that in a struc-
tured query language such as XQuery or SQL, typically
a predicate consists of a pair of name and value, while a
return clause only specifies names without value informa-
tion (which is expected to be query results). For example,
consider an SQL query: select position from DB where

name = "Mutombo". Based on this observation, we make the
following inference for keyword categories.

1. If an input keyword k1 matches a node name u, and
there does not exist an input keyword k2 matching a
node value v, such that u is an ancestor of v, then we
consider k1 as an (explicit) return node.

2. A keyword that is not a return node is treated as a
predicate.

For example, in Q2, center is considered as a predicate
since it matches a value (0.2.4.0.1.0). Similarly, Mutombo

in both Q2 and Q3 are considered as a predicate. team in
Q4 is also inferred as a predicate since it matches a name
node (0.2) which has a descendant value node (0.2.0.0) that
matches another keyword Rockets. On the other hand,
position in Q3 is considered as a return node since it matches
the name of two nodes (0.2.4.0.1, 0.2.4.1.1), neither of which
has any descendant value node matching another keyword
in Q3.

Generating Search Results. Once we have identified in-
herent entities and attributes in the data and possible predi-
cates and explicit return nodes in the input keywords, XSeek
determines the return nodes and outputs data nodes that
match search predicates and return nodes as query results.

As we have seen, return nodes can be explicitly inferred
from the input keywords for some queries, such as position
in Q3. For queries where all the input keywords are consid-
ered as predicates, no return nodes can be inferred from the
keywords themselves, such as Q2. In this case, we believe
that the user is interested in the general information about
the entities related to the search. We define relevant entities
as the entities in the data that are on the path from a VLCA
node to each match node, as well as the lowest ancestor en-
tity of a VLCA. Relevant entities are considered as implicit
return nodes when the input keywords do not have return
nodes specified, whose attribute information will be output.

In Q2, since both Mutombo and center are inferred as pred-
icates, there is no return nodes specified in the keywords.
We first identify the player node (0.2.4.0) as the VLCA
node, which is then determined to be the only relevant en-
tity and the implicit return node. The name and attributes
of player (0.2.4.0) are output as query results. Similarly,
for Q1, we infer team as an implicit return node since it is a
relevant entity and no explicit return nodes can be inferred
from the query. For Q4, relevant entities team (0.2) and
player (0.2.4.0) are considered to be implicit return nodes,
and their names and attributes are returned as query result.

4. SYSTEM ARCHITECTURE AND IMPLE-
MENTATION



0

20

40

60

80

100

� =0.5 � =1.0 � =2.0

Subtree Return Path Return XSeek
 

Figure 4: F-measure of Test Queries

We have implemented XSeek in C++. It takes keywords
as input, and returns the information in the XML documents
that matches the predicates and inferred return nodes.

The system architecture of XSeek is presented in Figure 3.
The Index Builder parses the input XML data, infers the in-
herent entities and attributes in the data, and builds indexes
for retrieving the information about node category, parent,
and children. Once a user issues a query, Keyword Matcher
accesses the indexes and efficiently retrieves data matches to
each keyword. Match Grouper connects closely related key-
word matches together as a group according to their VLCA
nodes [9]. Then, for every group of keyword matches, Key-
word Pattern Recognizer analyzes the matches and catego-
rizes input keywords as predicates or explicit return nodes.
The Return Node Constructor generates return nodes for the
query, which can be explicit return nodes inferred from input
keywords, or implicit return nodes inferred from keyword
matches and entities in the data indexes. Finally, the Re-
sult Generator outputs the search result by returning XML
subtrees rooted at the lowest entity ancestors of the VLCA
nodes, which contain the data nodes that match query pred-
icates and return nodes.

We have empirically evaluated XSeek compared with two
approaches Subtree Return and Path Return, introduced in
Section 1. Figure 4 shows the average F-measure of three
approaches across 24 keyword search queries over three dif-
ferent data sets, with different weights on precision and re-
call. Figure 5 shows the processing time of three approaches
on XMark (http://monetdb.cwi.nl/xml/) data set of size
25MB. As we can see, XSeek significantly outperforms the
subtree return and path return approaches in search quality,
with reasonable processing time.

5. DEMONSTRATION
What is the goal of the demo? Through the demo,
we present one challenge of XML keyword search that has
been neglected in the literature: how should we identify
the desired return nodes, analogous to inferring a “return”
clause in XQuery from input keywords. The development
and demonstration of XSeek show a promising step in iden-
tifying return nodes for XML keyword search, which effec-
tively improves the search quality compared with existing
approaches.

What will be shown in the demo? XSeek has a web-
based user interface (http://XSeek.asu.edu/) which allows
users to specify an XML document and keyword searches
for retrieval. We also provide several sample XML docu-
ments, including geographical data (Mondial), course infor-
mation(WSU), DBLP, Sigmod Record data, Shakespeare’s

 

Figure 5: Processing Time on Benchmark Data

plays, with some sample queries. Rather than outputting
the whole subtrees or the paths that contain the keyword
matches, XSeek intelligently infers desired return nodes
by analyzing XML documents and input keyword patterns
without eliciting user preference.

In the demonstration, we will also present the search re-
sults produced by Subtree Return and Path Return, as well as
the original XML document fragments related to the search
for comparison purpose. The user can provide feedback to
the system by scoring the results returned by each approach
and/or specify the desired search results. The user feedback
will be collected and analyzed for improving the effective-
ness of XSeek. Furthermore, statistics information such as
the input document size, search result size, and the process-
ing time will also be available.

Besides the demonstration of the implementation of XSeek,
we will discuss and justify in more detail the structures and
algorithms we employ in the system. In addition, perfor-
mance evaluation compared with Subtree Return and Path
Return approaches over a comprehensive test set will be ex-
hibited.

6. REFERENCES
[1] G. Bhalotia, C. Nakhe, A. Hulgeri, S. Chakrabarti, and

S. Sudarshan. Keyword Searching and Browsing in
Databases using BANKS. In ICDE, 2002.

[2] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv.
XSEarch: A semantic Search Engine for XML, 2003.

[3] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram.
XRANK: Ranked Keyword Search over XML
Documents. In Proceedings of SIGMOD, pages 16–27,
2003.

[4] V. Hristidis, N. Koudas, Y. Papakonstantinou, and
D. Srivastava. Keyword Proximity Search in XML
Trees. IEEE Transactions on Knowledge and Data
Engineering, 18(4), 2006.

[5] V. Hristidis, Y. Papakonstantinou, and A. Balmin.
Keyword Proximity Search on XML Graphs, 2003. In
ICDE.

[6] G. Koutrika, A. Simitsis, and Y. E. Ioannidis. Précis:
The essence of a query answer. In ICDE, page 69, 2006.

[7] Y. Li, C. Yu, and H. V. Jagadish. Schema-Free
XQuery. In VLDB, 2004.

[8] Z. Liu and Y. Chen. Identifying Meaningful Return
Information for XML Keyword Search. In Proceedings
of SIGMOD, 2007.

[9] Y. Xu and Y. Papakonstantinou. Efficient Keyword
Search for Smallest LCAs in XML Databases. In
Proceedings of SIGMOD, pages 527–538, 2005.


