-----------------------------------------------------------


Fluid Dynamics Seminar


Monday, March 8, 2010, 4:00 PM
Cullimore Lecture Hall, Room 611
New Jersey Institute of Technology

-----------------------------------------------------------



Molecular shuttles, smart dust biosensors and active self-assembly powered by kinesin motors


Henry Hess

 

Department of Biomedical Engineering, Columbia University



Abstract

 

Biomolecular motors, such as the motor protein kinesin, can serve as biological components in engineered nanosystems. Initially, a nanoscale transport system termed molecular shuttle has been explored by others and us as a model system. The development of this system has revealed a number of challenges in engineering at the nanoscale, particularly in the guiding, activation, and loading of these shuttles. Overcoming these challenges requires the integration of a diverse set of technologies, and continues to illustrate the complexity of biophysical mechanisms. A proof-of-principle application of the developed technologies is a smart dust biosensor for the remote detection of biological and chemical agents, which is enabled by the integration of recognition, transport and detection into a submillimeter-sized microfabricated device. Finally, the application of nanoscale forces introduces an interesting element into self-assembly processes by accelerating transport, reducing unwanted connections, and enabling the formation of non-equilibrium structures. The formation of nanowires and nanospools from microtubules transported by kinesin motors strikingly illustrates these aspects of motor-driven self-assembly.