Positive Solutions for Classes of $n \times n$ Nonlinear Positone Elliptic Systems

Ratnasingham Shivaji

Department of Mathematics and Statistics Center for Computational Sciences Mississippi State University

Abstract

We study the existence and multiplicity of positive solutions to $n \times n$ systems of the form

$-\Delta u_1 = \lambda f_1(u_2)$	in Ω
$-\Delta u_2 = \lambda f_2(u_3)$	in Ω
$\vdots = \vdots$	
$-\Delta u_{n-1} = \lambda f_{n-1}(u_n)$	in Ω
$-\Delta u_n = \lambda f_n(u_1)$	in Ω
$u_1 = u_2 = \dots = u_n = 0$	on $\partial \Omega$.

Here Δ is the Laplacian operator, λ is a non-negative parameter and Ω is a bounded domain in \mathbb{R}^N with smooth boundary $\partial\Omega$. The nonlinearities $f_i \in C^1([0,\infty)), \ i \in \{1,2,\cdots,n\}$ are strictly increasing functions such that $f_i(0) \geq 0, \ i \in \{1,\cdots,l-1,l+1,\cdots,n\}$ and $f_l(0) > 0$ for some $l \in \{1,\cdots,n\}$ (positone systems), and satisfy a combined sublinear condition at ∞ . We establish our results by the method of sub and supersolutions. We also discuss our results in the case when one of the nonlinearities, say f_k , is given by $f_k(z) = e^{\frac{\alpha z}{\alpha + z}}; \ \alpha > 0$ which arises in the theory of combustion.