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The effects of a sorption-controlled, monolayer-forming surfac-
tant on a drop deforming in an extensional flow are studied
numerically. Scaling arguments are presented for drops of 1 cm
and 1 mm, indicating the applicability of these results. For all
simulations, when mass transfer is slow compared to surface
convection, the insoluble limit is recovered; when mass transfer is
rapid, the drop behavior is the same as that for a surfactant-free
drop. For a surfactant which forms a monolayer, there is an upper
bound to the surface concentration, G`. The surface tension re-
duction diverges as the surface concentration G approaches this
limit, strongly altering the hydrodynamics.

The drop deformation is studied relative to a surfactant-free
drop in terms of the capillary number, Ca, the ratio of character-
istic viscous stresses to surface tension. In the insoluble limit, for G

! G`, droplets deform more than in the absence of surfactants at
a given Ca and break-up at lower Ca. When stable drop shapes are
attained, stagnant caps form at the drop tips. Finite surfactant
mass transfer rates eliminate these caps and diminish the defor-
mation.

For G approaching G` in the insoluble limit, interfaces are
strongly stressed for perturbative surface concentration gradients;
G remains nearly uniform throughout the deformation process.
Deformations are reduced at a given Ca. When stable drop shapes
are attained, the surface is completely stagnated. Marangoni
stresses force the surface velocity to zero to keep G below its upper
bound. For soluble surfactants, as mass transfer rates increase, the
magnitude of these stresses diminishes. Deformations change non-
monotonically with mass transfer rates and are not bounded by the
limiting clean interface and insoluble limits.

The drop contribution to the volume averaged stress tensor S is
also calculated. The axial component Szz increases with the drop
length; the radial component Srr increases with the drop breadth.
Since the deformation is strongly influenced by the surfactant
concentration and the mass transfer rates, so too is S. © 1998
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1. INTRODUCTION

Strong extensional flows are used to create a dispersion from
two immiscible fluids. Surfactants are often added deliberately
or are present as impurities. In order to understand the effects
of surfactants on this process, the idealized flow field of a
single, initially spherical droplet deforming in an extensional
flow is studied, as shown in Fig. 1. The flow creates viscous
stresses which deform the drop, causing it to elongate. When
the surface tension resisting the stretching is sufficiently
strong, the drop attains some steady shape. If not, the droplet
continues to stretch until it breaks into smaller droplets. A
thorough review of prior work in this problem is provided in
two review articles (1, 2). This work focuses on surfactant
effects in this flow; only related literature is reviewed below.

If surfactant is present in the external fluid, it will adsorb to
some equilibrium surface concentrationGeqand surface tension
geq. If the surfactant remains uniformly distributed atGeq, the
process is modified solely through the surface tension reduc-
tion, and larger deformations are realized when compared to
the surfactant-free case. However, the surface concentration
rarely remains at its equilibrium value; rather, surface convec-
tion creates concentration gradients which alter the surface
tension and therefore the stresses on the interface.

The viscous stresses scale asmG, whereG is the strain rate
of the applied flow. The Laplace pressure resisting deformation
scales asgeq/a, wherea is the initial drop radius. Their ratio
defines the capillary number Ca:

Ca5
mGa

geq
. [1]

By symmetry, the tangential flow is zero at the poles and at
the ring located at the drop equator. Surface convection sweeps
surfactant toward the poles, where it accumulates if the mass
transfer rates are slower than the surface convective flux. The
distribution of surfactant strongly influences the deformations
realized. If the accumulation near the drop poles is pronounced,
the surface tension there will be strongly reduced. Since the
normal stresses are balanced by the Laplace pressure, 2Hg, the1 To whom correspondence should be addressed.
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poles will require a higher mean curvature 2H to resist a given
stress jump. The drop elongates, stretching the tip region to
develop this curvature. The drops are more highly deformed
than the clean drop for a given Ca. If surfactant remains
uniformly distributed and the surface stretches faster than mass
transfer can supply surfactant, the interface becomes diluted.
The surface tension becomes higher thangeq and smaller
deformations result for a given Ca.

These mechanisms were identified by Stone and Leal (3),
who studied insoluble surfactants in this flow. The distribution
of insoluble surfactant is determined by the surface convection,
which creates gradients inG, and surface diffusion, which
eliminates these gradients. In their study, the surface tensiong
was assumed linear inG (i.e., a 2-D ideal gas law was adopted)
with a dimensionless slopebG 5 RTGeq/g0, whereg0 is the
surface tension of the surfactant-free interface, andRT is the
product of the ideal gas constant and the temperature. Large
deformations were realized when surface diffusion andbG

were weak. Small deformations were found for strong surface
diffusion or large bG, which allowed strong Marangoni
stresses to retard the surface convective flux.

Milliken et al. (4) extended this work to address nonunity
viscosity ratios and relaxations of initially deformed drops.
While in most of this study the linear model was used, in one
simulation, the Frumkin equation (5), which accounts for non-
ideal surfactant interactions and monolayer saturation, was
adopted for the surface tension. However, the surface concen-
trations studied were too dilute for these nonlinear effects to
alter the surface tension; no change in deformation was found
when reported against a properly scaled Ca. Interactions were
studied using the Frumkin model by Pawar and Stebe (6), who
found that intermolecular attraction and repulsion can strongly
alter the surface tension and the Marangoni stresses realized.
Attraction strong enough to drive a surface phase transition
was also studied.

Milliken and Leal (7) studied soluble surfactant in this flow,

again using a linear surface tension law. For soluble surfac-
tants, this assumption restricts the adsorption isotherm to be
linear. The mass transport mechanisms of bulk diffusion, sur-
face diffusion, surface convection, and adsorption–desorption
kinetic barriers were included in the analysis. Bulk convection
was neglected. A complex interplay of mass transfer and drop
deformation was found as a function of these parameters. For
example, drops with surfactants of strongly differing physico-
chemical parameters and surface velocity profiles can have the
same deformations at a given Ca. It was also demonstrated that,
in the limit of rapid mass transfer, the deformations and surface
flows are identical to the clean interface limit. In the opposite
extreme, when mass transfer is severely retarded andbG is
large, the surface velocity is strongly retarded.

The aim of this study is to understand an adsorption–de-
sorption-controlled surfactant which obeys monolayer satura-
tion. The major shortcoming of the commonly adopted linear
model is its failure to account for the limiting area/molecule in
monolayers. Eggletonet al. (8) recently studied the role of
monolayer saturation in this problem for insoluble surfactants.
Since surfactants have a limiting area per molecule, there is an
upper bound to the surface concentrationG` that can be ac-
commodated in a monolayer. This is captured in the Von
Szyckowski equation

p 5 g0 2 geq 5 2RTG`lnS1 2
Geq

G`
D , [2]

wherep is the surface pressure, shown in Fig. 2 as a function
of G`/Geq, the area per molecule scaled by its minimum area. In
Eq. [2], g0 denotes the surface tension of the surfactant-free
interface. (This equation can be derived using a mass action
model for adsorption to the interface and the Gibb’s adsorption
equation (5) or using an ideal solution model for the interface
(9)). There is a singularity in Eq. [2] asGeq approachesG`. As

FIG. 2. Surface pressurep vs normalized area per moleculeG`/G for the
Von Szyckowski model. As the minimum area/molecule is approached, the
surface pressure diverges.

FIG. 1. A neutrally buoyant drop is suspended in an immiscible fluid of
equal viscosity and subjected to a pure axisymmetric extensional flow.
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is the case for all simple thermodynamic models which account
for excluded area or volume effects (e.g., Van der Waal’s
equation), the existence of this singularity changes the re-
sponse of the system to prevent the singularity from occurring.
In this problem, forGeq nearG`, the highly nonlinear response
of the Marangoni stress regulates the surface concentration
profile so that the minimum area/molecule is not reached. For
real surfactant systems,Geq can be greater than 0.99G` while
the surface tension remains finite; this is possible because
typically, RT G` ! g0. For higher concentrations, the surfac-
tants form self-assembled structures such as micelles in the
bulk solution. These issues are not addressed in this study.

The Marangoni stresses corresponding to Eq. [2] are

¹sg 5
­g

­G
¹sG 5

RT

1 2 G/G`
¹sG, [3]

where¹s is the surface gradient operator. At dilute concentra-
tions (G ! G`), the coupling betweeng andG is weak. Strong
surface concentration gradients can be created by surface con-
vection before any Marangoni stresses develop opposing this
flow. In the insoluble limit, surfactant accumulates strongly at
the tip region, creating stagnant caps once the steady state
shape has been attained. At higher surface concentrations (G
approachingG` from below), the surface tension changes
strongly withG. Large Marangoni stresses result for perturba-
tive G gradients. Surfactant remains nearly uniformly distrib-
uted during the deformation, and the deformation is dilution
dominated. Furthermore, in the insoluble limit, the interfaces
are nearly stagnated at steady deformation for weak surface
diffusion and are strictly stagnant for zero surface diffusion.
Thus, the entire range of deformation behaviors is found as a
function of surface concentration.

In this paper, the work of Eggletonet al. is extended to
account for surfactant mass transfer with the bulk. Mass trans-
fer is considered in the adsorption–desorption-controlled limit.
The stagnant caps realized on stable, deformed drops at low
coverage, or stagnant surfaces found at elevated coverage,
form only when surface diffusion is negligible and the surfac-
tant is insoluble. In these circumstances, Marangoni stresses
alone regulate the surface concentration profile (surface diffu-
sion is typically weak). When the surfactant is soluble, it can
desorb from the drop tip rather than accumulate there. Thus,
mass transfer provides an additional mechanism to keepG less
than G`. As the mass transfer rates increase relative to the
surface convection rate, the Marangoni stress diminishes, until
the interfacial flow is restored, and the deformation of a sur-
factant-free drop is realized. The deformations tend monoton-
ically from the insoluble limit to the clean interface behavior.

At elevated surface concentration in the insoluble limit,
Eggletonet al. showed thatG varies only perturbatively from
a uniform distribution, but the interface is highly stressed. For
adsorption–desorption-controlled surfactants,G varies even

less along the interface, approachingGeq as mass transfer rates
increase. Deformations agree with the insoluble result for
extremely slow mass transfer and approach the clean result for
rapid transport. However, they vary nonmonotonically as mass
transfer rates increase and are not bounded by these two limits.

This flow field has been treated as a unit cell model for
understanding the rheology of dilute emulsions. In so doing, a
volume-averaged stress tensor is commonly calculated to un-
derstand the influence of the drop on the system rheology. The
drop contribution to this volume-averaged stress tensor is
found for this model. It is shown to be strongly influenced by
the deformation of the droplet and therefore by the mass
transfer rates and surface concentrations.

In most of the prior studies, the slope of the 2-D ideal gas
law, bG, was taken to be orders of magnitude larger than
would be realized in experiment. Thus, variations between tip
stretching and drop dilution were achieved by varying the
magnitude of this quantity in a manner that cannot be realized
experimentally. In Pawar and Stebe, the coupling between the
(nonlinear) surface tension and surface concentration was also
unrealistically strong. In Eggletonet al. and in this work, an
effort is made to choose parameters which might be realized in
experiment and to understand how surfactants with more real-
istic physicochemistry might effect this flow field. Results for
the exaggerated coupling and the more realistic value are
compared to place this prior work in context.

2. GOVERNING EQUATIONS

2.1. Mass Transfer to an Interface

A neutrally buoyant, spherical droplet of initial radiusa is
suspended in an initially quiescent surfactant solution of con-
centrationC`. The surfactant is immiscible in the drop phase.
Initially, the system is at equilibrium with surface concentra-
tion Geq. When the straining flow is initiated with strain rateG,
surfactant is redistributed by surface convection. This provokes
a Marangoni stress which retards the tangential surface veloc-
ity. On the interface, the surface concentration gradient is
modulated by surface diffusion. Surfactant mass transfer be-
tween the bulk and the interface also acts to restore equilib-
rium. The surface mass balance is given by

­G

­t
1 ¹s z ~Gvt! 1 2HvnG 2 Ds¹s

2G 5 j n, [4]

whereDs is the surface diffusivity,j n is the mass flux from the
bulk, the term containingvt indicates the tangential surface
convective flux, and the term withvn is the dilution of the
interface by dilatation. These components of the surface ve-
locity vs are defined,

vs 5 vt 1 vn 5 ~vs z t !t 1 ~vs z n!n, [5]
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andvt andvn are the magnitudes of these components,t is the
nonazimuthal unit tangent andn is the normal unit vector.

The flux from the bulk is controlled, in general, by both
diffusion and adsorption–desorption fluxes. For a monolayer-
forming surfactant, the kinetic expression for adsorption–de-
sorption is

j a/d 5 bCs~G` 2 G! 2 aG, [6]

whereb, a are the kinetic constants for adsorption/desorption
respectively, andCs is the concentration of surfactant in the
fluid immediately adjacent to the interface. At equilibrium, this
expression reduces to the Langmuir adsorption isotherm

x 5
Geq

G`
5

k

1 1 k
; k 5

bC`

a
, [7]

wherex is the fraction of surface covered by adsorbed surfac-
tant andk is the adsorption number, the ratio of characteristic
adsorption to desorption rates.

The sublayer concentration is determined by diffusion from
the bulk fluid,

j D 5 2Dn z ¹Cus, [8]

whereD is the bulk diffusion coefficient, and the concentration
gradient is evaluated at the interface. The concentrationC is
governed by the convective–diffusion equation

­C

­t
1 v z ¹C 5 D¹2C, [9]

which obeys the far-field conditions thatC tends toC` far
from the droplet, and the velocityv tends to the far-field
applied extension flow,v`. In general, both mechanisms con-
trol the flux to the interface, and so

j n 5 j a/d 5 j D . [10]

These equations are recast in dimensionless form, according to
the scales

G 5
G9

G9eq
; C 5

C9

C9̀
; j n 5

j 9n
G9eqG9

;

v 5
v9

G9a9
; x 5

x9

a9
; t 5 t9G9, [11]

where the primes indicate dimensional quantities, and the
position vector defined with respect to the center of mass of the
drop is denotedx.

The equations become

­G

­t
1 ¹s z ~Gvt! 1 2HvnG 2

1

Pes
¹2G 5 j n [12]

j a/d 5 Bi@Cs~1 1 k 2 kG! 2 G# [13]

j D 5 2
1

Peh
n z ¹Cus [14]

­C

­t
1 v z ¹C 5

1

Pe
¹2C. [15]

In these expressions, several dimensionless groups appear.
The surface Peclet and bulk Peclet numbers, respectively,

are defined,

Pes 5
Ga2

Ds
; Pe5

Ga2

D
, [16]

where Pe is the characteristic convective flux to diffusion flux
and Pes is the characteristic surface convective flux to surface
diffusion flux.

The dimensionless adsorption depth is defined:

h 5
Geq

C`

1

a
5

bG`

aa

1

1 1 k
. [17]

This is the characteristic depth beneath the interface diluted by
surfactant adsorption. Note that this depth decreases as con-
centration (k) increases.

Finally, the Biot number is the ratio of characteristic de-
sorptive to surface convective time scales:

Bi 5
a

G
. [18]

The surfactant distribution is adsorption–desorption con-
trolled when the desorption flux is slow compared to the
diffusion flux. This requires that the ratio Bi(Peh) ! 1. The
applicability of this result to drops of radius 1mm and 1 cm is
discussed along with the results.

In this limit, concentration gradients in the bulk become
negligible. The surface mass balance is modified to reflect that
C is unity everywhere:

­G

­t
1 ¹s z ~Gvt! 2

1

Pes
¹s

2G 1 2HGvn 5 Bi~1 1 k!~1 2 G!.

[19]

For small Bi, the surfactant will behave as an insoluble layer.
For Bi sufficiently large, the interface can remain in equilib-
rium with the bulk.
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2.2. Hydrodynamics

The equations governing the flow field are stated here in
dimensionless form. In addition to the scales adopted in Eq.
[11], the following variables are defined,

pi 5
p9i

g9eq/a9
; T 5

T 9

m9G9
; g 5

g9

g9eq
, [20]

wherepi is the pressure in either the external (i 5 1) or drop
(i 5 2) phase, andT is the viscous stress tensor. The external
flow field v1 must agree with the applied flow field far from the
droplet:

¥

¡lim
x3`

v1 5 v` 5

21 0 0
0 21 0
0 0 2 ¥

¡
z x. [21]

At the interface, velocities are continuous and equal to the
surface velocity

v1 5 v2 5 vs. [22]

The kinematic condition at the interface is

dxs

dt
5 vn, [23]

where the vectorxs is the position of a Lagrangian point on the
interface. The stress balance requires

@@ p## 1 Ca@@n ? T ## 5 2
Ex

1 2 xG
¹sG 1 2Hgn, [24]

where [[ ]] indicates a jump condition at the interface, andg is
given by

g 5
g0

geq
1 E@ln~1 2 Gx!#; where

g0

geq
5 1 2 E ln~1 2 x!.

[25]

In this expression,

E 5
RTG`

geq
[26]

is the elasticity number, a measure of the sensitivity of the
surface tension to surfactant adsorption.

Assuming creeping flow, both the drop and external fluid
obey Stokes’ equations. For an axisymmetric flow, Stokes
equations can be recast as a line integral forvs,

vs~xs! 5 v`~xs! 2
1

8p E
s50

s51

M ~xs, z!

z ~2Hgn 1 ¹sg!~z!ds~z!, [27]

whereM is the axisymmetric Green’s function for Stokes’ flow
(10) andz is an integration variable along the interface (see
Fig. 1). Given the far-field velocity and the stress jump at any
location along the interface, the surface velocity can be found.

Using a quasi-static approach, Eq. [27] is solved for a given
surface concentration distribution. The interface location is then
updated according to Eq. [23], and its shape is used to find
curvatures, and the unit vectorsn and t. Given this information
and the velocity field, the surfactant is redistributed according to
Eq. [19], and the stress balance at the interface is updated using
Eqs. [24] and [25]. Equation [27] is then solved again. This
process continues untilvn tends to zero or no steady shape can be
attained. The details are discussed in Pawar and Stebe (6).

In order to isolate the strain rate in the capillary number,L
andB are defined,

Pes 5 CaL; Bi 5
B

Ca
, [28]

where

L 5
geqa

mDs
; B 5

ama

geq
. [29]

The groupsL andB are fixed for a given surfactant solution
and drop fluid. By studying the behavior of the drop at fixedB
andL as a function of Ca, the impact of increasing strain rate
on a drop of given physicochemistry can be understood. Recall,
however, that the impact of solubility is determined by the ratio
of the adsorption–desorption and the convective rate, Bi.

The governing equations are integrated using an arc-angle
formulation. The profiles forG, g, vt, etc., are all reported as
a function of arclengths, which varies from 0 tol , wherel is
a dimensionless contour length measured from one drop “tip”
to the other. Initially, the contour lengthl is equal top and
increases from this value as the drop elongates.

2.3. Parameter Values Adopted in the Numerical
Simulations

The elasticity numberE is a measure of the sensitivity of the
surface tension to the surface concentration. UsingG` of 2 3
10210 mol/cm2, g0 5 72 dyne/cm, andgCMC of 30 dyne/cm,
the range of values forE can be estimated at T5 22C to be
0.1–0.2; significantly less than unity. Here, as in Eggletonet
al., the value of 0.2 is adopted. AnE value of 8.0 was adopted
in Pawar and Stebe, overestimating this sensitivity. A similar
overestimation was made in the studies in which the linear
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adsorption isotherm was adopted. Expanding the surface ten-
sion, Eq. [25], in smallxG, and keeping only linear terms, the
2-D ideal gas law is recovered:

g 5
g0

geq
2 ExG 5 1 2

bG

1 2 bG
G. [30]

This approximation is valid only forx ! 1; therefore the slope
Ex 5 bG/(1 2 bG) ! 0.2. However, values forbG ranging
from 0.3 to 0.85 were adopted in studies by Leal and collab-
orators. In order to comment on the effects of this overestima-
tion on the results obtained, the deformation of a droplet as a
function of Ca andB for x 5 0.5 is compared for twoE values
(E 5 0.2 andE 5 8.0). For all of theother simulations,E
was held fixed at 0.2. The parameterB ranges from 1025 to 1.
The groupL can be estimated to be 63 104 for emulsion-sized
drops, 63 108 for drops with radius of 1 cm. In our study,L
is assumed to be 1000.

3. RESULTS AND DISCUSSION

3.1. Low Concentration Results

The surface concentration, surface tension, Marangoni stress,
and tangential velocity profiles for a stable droplet at Ca of
0.04 are presented in Figs. 3– 6, respectively. Consider first
the case of an insoluble surfactant present on the interface at
low concentrations (i.e., the fractional coverage of the in-
terface x 5 0.1). Initially, the system is at rest and the
surfactant is uniformly distributed on the drop interface. The
flow is initiated and surfactant is swept along the interface.
According to Eq. [24], the Marangoni stresses resisting this
flux are weak. Strong surface concentration gradients de-
velop, until a Marangoni stress develops resisting further
accumulation the region of the drop tip. At steady state for

infinite L (i.e., negligible surface diffusion), the steady state
mass balance is

¹s z ~Gvt! 5 Bi~1 1 k!~1 2 G!. [31]

For insoluble surfactants, Bi5 0; Eq. [31] requires thatGvt 5
0, i.e., the droplet interface is divided into surfactant-rich,
stagnated regions and surfactant-free, mobile regions. The Ma-
rangoni stress determines theG profile, and therefore the divi-
sion between mobile and stagnant regions. For finite, largeL,
the sharp demarcation of surfactant-free and surfactant-rich
regions is modulated by surface diffusion. The surface velocity
remains significantly retarded near the drop tips and faster near
the equator. For a soluble surfactant, Bi5 B/Ca is finite, and
the mass balance no longer dictates stagnant cap formation.
Mass transfer with the bulk diminishes the surface concentra-
tion gradients realized. For Bi sufficiently large, the surface
concentration profile approaches its equilibrium value, and the
surface velocity is restored to that of a surfactant-free droplet.

The droplet deformation Df5 (L 2 b)/(L 1 b), whereL

FIG. 3. The surface concentration profileG at Ca5 0.04 for x 5 0.1.
Results are presented forB 5 0 (insoluble), 1023, 1022, and 0.1. All results
for L 5 103.

FIG. 4. The surface tension profileg at Ca5 0.04 forx 5 0.1. Results are
presented forB 5 0 (insoluble), 1023, 1022, and 0.1. All results forL 5 103.

FIG. 5. The Marangoni stress profile at Ca5 0.04 forx 5 0.1. Results are
presented forB 5 0 (insoluble), 1023, 1022, and 0.1. All results forL 5 103.
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is the drop length andb is the breadth, is reported in Fig. 7. For
insoluble surfactant, B5 0, the surface tension is strongly
reduced in the region of the drop tip. The stable drop shape is
more highly deformed than the surfactant-free drop. ForB
small enough, the deformations superpose with those realized
for an insoluble surfactant. AsB increases, mass transfer
eliminates the strong local reduction ing, and the tip stretching
diminishes, until, at elevatedB, the deformation realized for a
clean droplet is recovered. The deformations are bounded
above by the insoluble results and below by the clean interface
results, tending monotonically from one limit to the other asB
increases. The droplet becomes unstable for Ca lower than the
clean interface result; this destabilization decreases asB in-
creases.

Forx 5 0.1, theadsorption numberk is roughly 0.1 as well.
Initially, G is uniform and there are no Marangoni stresses at
the interface. When the straining flow is initiated, the Ma-

rangoni stress is of magnitudeEx¹sG/(1 2 x) 5 0.02E¹sG.
The elimination of theG gradients by mass transfer allows the
clean interface behavior to be recovered. This occurs forB 5
0.1, forwhich the Biot number Bi5 B/Ca ranges from 10 to
1.66;kBi ranges from 1 to 0.166. Recall that Bi is the ratio of
the desorption rate to the surface convection rate;kBi is the
ratio of the adsorption rate to the surface convection rate. At
this low surface concentrations, these values are rapid enough
to force gradients inG to be sufficiently small that the Ma-
rangoni stresses do not alter the deformation.

3.2. Elevated Concentration Results

TheG, g, Marangoni stress, and surface velocity profiles for
stable drop shapes at Ca5 0.04 are presented in Figs. 8–11,
respectively, for a fractional surface coveragex 5 0.99. For
soluble surfactants, this corresponds to an elevated bulk con-
centration, for whichk is roughly 100.

FIG. 6. The tangential surface velocityvt profile at Ca5 0.04 for x 5
0.1.Results are presented for a clean interface,B 5 0 (insoluble), 1023, 1022,
and 0.1 forL 5 103; the insoluble result is also shown for conditions that
correspond to stagnant cap formation, (i.e.,L 5 ` or Ds 5 0).

FIG. 7. The deformations Df as a function of Ca forx 5 0.1. Results are
presented for a clean interface,B 5 0 (insoluble), 1023, 1022, and 0.1. All
results forL 5 103.

FIG. 8. The surface concentration profileG at Ca5 0.04 for x 5 0.99.
Results are presented forB 5 0 (insoluble), 1025, 1022, 0.1, and 1. All results
for L 5 103. The bold dots indicate results obtained using the approximate
mass balance forB 5 0.01, Eq.[33].

FIG. 9. The surface tension profileg at Ca5 0.04 forx 5 0.99.Results
are presented forB 5 0 (insoluble), 1025, 1022, 0.1, and 1. All results forL
5 103. The bold dots indicate results obtained using the approximate mass
balance forB 5 0.01, Eq.[33].

74 EGGLETON AND STEBE



Consider first the insoluble results. ForB 5 0, Eq. [31]
requires that steady statevt be zero ifG is nonzero. According
to Eq. [24], the Marangoni stresses are significant even for
perturbative surface concentration gradients. Thus,G remains
nearly uniform, and yet the surface is highly stressed. The
tangential velocity is strictly zero for infiniteL and is nearly
stagnated forL of 1000. The interface dilutes as the drop
deforms causing the surface tensiong to increase above its
equilibrium value. Smaller deformations result at a given Ca.

In the insoluble limit, Marangoni stresses are the sole mech-
anism to forceG to remain less thanG` at the drop tip.
However, asB increases from zero, mass transfer competes to
regulateG. Surfactant desorbs from the drop tips and is sup-
plied at the drop equator to restore surface equilibrium. The
Marangoni stresses diminish. The dilution of the interface
becomes less pronounced, andG remains not only nearly
uniform, but approaches its equilibrium value.

The deformations Df as a function ofB are shown in Fig. 12.
For slow mass transfer, the deformations are smaller than the
clean drop. AsB increases, the adsorption rate relative to
surface convection (which goes askBi) is faster than the
desorption rate to surface convection ratio (which goes as Bi).
Surfactant is supplied to the equator faster than it is removed
from the drop tips. AG profile develops with accumulation
near the tips, but little depletion near the equator. Therefore,
the drop deforms more than the clean interface case at mod-
erateB. Finally, for largeB, G becomes uniform at its equi-
librium value. The Marangoni stresses are eliminated, and the
clean interface result is recovered. Therefore, the drop defor-
mation varies nonmonotonically asB increases, and these
deformations are not bounded by the insoluble and clean in-
terface results.

Finally, surfactant adsorption can either stabilize or destabi-
lize the drop against break-up, depending upon the rate of
surfactant mass transfer. For mass transfer rates that are suffi-
ciently slow (e.g.,B 5 1025) the drop is stabilized against
break-up. However, forB fast enough (B $ 0.1) thedrop was
destabilized; i.e., the critical Ca was less than that of the clean
drop.

For x 5 0.99, theadsorption numberk is roughly 100. The
droplet initially has no Marangoni stresses, andG is initially
uniform. When the straining flow is initiated, the Marangoni
stress is of magnitudeEx¹sG/(1 2 x), or 20¹sG. The sensi-
tivity of the interface to¹sG is orders of magnitude higher than
in the low coverage case. Thus,¹sG must be smaller and mass
transfer more rapid in order that clean interface deformations
be recovered. This occurs forB 5 1, for which the Biot
number Bi5 B/Ca ranges from 100 to 16.6;kBi ranges from
104 to 1.663 103. Thus, adsorption and desorption must be
orders of magnitude more rapid at high coverage to eliminate
Marangoni stresses than for low coverage.

FIG. 10. The Marangoni stress profile at Ca5 0.04 forx 5 0.99.Results
are presented forB 5 0 (insoluble), 1025, 1022, 0.1, and 1. All results forL
5 103. The bold dots indicate results obtained using the approximate mass
balance forB 5 0.01, Eq.[33].

FIG. 11. The tangential surface velocityvt profile at Ca5 0.04 forx 5
0.99. Results are presented for a clean interface,B 5 0 (insoluble), 1025,
1022, 0.1, and 1. All results forL 5 103. The bold dots indicate results
obtained using the approximate mass balance forB 5 0.01, Eq.[33].

FIG. 12. The deformations Df as a function of Ca forx 5 0.99; C
indicates the surfactant-free case. Results are presented forB 5 0 (insoluble),
1025, 1022, 0.1, and 1. All results forL 5 103. Approximate mass balance
results (obtained forB 5 0.01) superpose with the full solution.
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3.3. Volume-Averaged Stress Tensor

The drop contribution to the volume-averaged stress tensor
(11) is

S 5 E
A

x~2Hgn 2 ¹sg!dS. [32]

The radial componentSrr and axial componentSzz are shown
in Figs. 13 and 14 for low concentrations (x 5 0.1) andhigh
concentrations (x 5 0.99),respectively. In dimensional form,
the magnitude ofS for x 5 0.99 isless than that forx 5 0.1
because of the reduction in surface tension. SinceS is made
dimensionless withgeq/a, the differences not caused by this
simple reduction in tension are made apparent.

Forx 5 0.1, asB increases,Srr increases andSzzdecreases
monotonically from the insoluble to the clean interface limit.
This can be understood in terms of the deformation and the
Marangoni stresses. The greater the deformation, the longer the
length of the drop and the smaller its cross section. Since

deformation decreases withB, cross sections increase, increas-
ing the radial contribution; lengths and Marangoni stresses
decrease, decreasing the axial contribution. Forx 5 0.5,
similar trends are observed.

For x 5 0.99, however, the variation ofSrr is more
complex; it first decreases withB from the insoluble limit to a
value less than the clean drop result, then increases to reach the
clean drop limit. These trends are also well explained by the
variations in the breadth of the drop withB. The axial com-
ponentSzz varies monotonically, however, even though the
length varies nonmonotonically. This can be understood in
terms of the Marangoni stresses, which resist the flow in the
axial direction, and which decrease monotonically withB.

3.4. Approximate Mass Balance

For x near unity,G develops only perturbative gradients.
This observation was used to simplify the mass balance in the
insoluble limit, neglecting all fluxes associated with gradients
in G. The results presented in Fig. 8 suggest that this approx-

FIG. 13. The volume-averaged stress tensor forx 5 0.1. (a)Srr ; (b) Szz. (The results forB 5 0 andB 5 0.001 superpose.)

FIG. 14. The volume-averaged stress tensor forx 5 0.99. (a)Srr ; (b) Szz.
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imation is also valid for soluble surfactants at elevated surface
coverage. The mass balance is approximated:

1

G

­G

­t
1 ¹s z ~vt! 1 2Hvn 5 Bi~1 1 k!

~1 2 G!

G
. [33]

This balance was adopted for Bi5 0.01 and compared to the
full results. The deformations superpose with the full sim-
ulation results in Fig. 12, agreeing to within 0.005% for the
lowest Ca studied, and within 1% at the highest Ca studied.
The approximateG, g, Marangoni stress, andvt profiles
show similar agreement; they are shown as bold dots in the
figures. The implications of this result at steady state are
clear: the tangential flux of surfactant at steady state is
balanced by mass transfer from the bulk. The faster is this
rate of supply, the greater the tangential mobility of the
interface. For the unsteady deformation, the evolutions of
the tangential and normal velocity profiles also obey this
balance (see Fig. 15).

3.5. Moderate Surface Coverage Results: Overestimating E

In Figs. 16–20, the results forx 5 0.5 are presented forE 5
0.2 andE 5 8.0. First consider the insoluble results. Accord-
ing to Eq. [24], the Marangoni stresses are of magnitude
Ex¹sG/(1 2 x), or E¹sG. For E 5 0.2, these stresses are
initially weak. The resulting profiles show strongG gradients
and weakvt. The drop deformation is dominated by tip stretch-
ing, and larger Df result when compared to the clean interface
result.

For E 5 8.0, theinitial Marangoni stresses are strong even
for small G gradients. The velocity is strongly reduced from
early in the deformation process. This exaggeration of the
coupling between the Marangoni stress and the surface con-
centration profile strongly alters the drop behavior. The result-
ing profiles show weakG gradients and weakvt. The drop
dilutes as the interface stretches, and smaller Df result when
compared to the clean interface result.

Solubility acts to monotonically decrease the deformation for
E 5 0.2 from the insoluble to the clean interface limit; the

FIG. 15. Comparison of the full and approximate solution of the surface mass balance forB 5 0.01 for thetransient velocities (a)vt and (b)vn.

FIG. 16. The surface concentration profileG at Ca5 0.04 forx 5 0.5. All results forL 5 103. (a) E 5 0.2, B 5 0 (insoluble), 1022, and 1021; (b) E 5
8.0, B 5 0 (insoluble), 1022, 5 3 1022, 7.5 3 1022, 1, and 5. Notice that the scales on the figures differ.
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deformations realized are bounded by these limits. ForE 5 8.0,
however, the deformations realized are dilution dominated for
smallB, tip stretching dominated for moderateB, and finally, the
same as the clean result for largeB. (This simulation also shows
nonunique Df for strongly differingB; the Df curves forB 5 0.05
and B 5 5 superpose, and differ only slightly from the clean
interface result. However, theG, g, Marangoni stress profiles, and
vt profiles differ strongly forB 5 0.05 andB 5 5. This non-
uniqueness of Df as a function of the surfactant material param-
eters can occur for any drop whose deformation is dilution dom-
inated in the insoluble limit.)

The adoption of largeE (or bG for the 2-D ideal gas law
studies) strongly alters the system behavior. The large Ma-
rangoni stresses that develop for smallG gradients precluded
the accumulation of surfactant at the tips in the simulations of
Leal and collaborators and the work of Pawar and Stebe, even
at low concentrations. This biasing ofG toward a uniform
distribution also forces the drop deformation away from tip
stretching in the insoluble limit and allows for the highly
nonmonotonic deformation behavior observed with increasing

B. Faster mass transfer rates (higherB) are required to recover
the clean interface result. Clearly, by altering the deformation
behavior, the drop contribution to the system rheology was also
influenced.

3.7. Calculation of Controlling Mass Transfer Mechanisms

Most surfactants in aqueous media have diffusivitiesD of
roughly 5 3 1026 cm2/s. The differences in their behavior
occur because of differing tendencies to adsorb and the rates of
adsorption–desorption. Here, the controlling mechanisms for
monomeric surfactant transport up to the critical micelle con-
centration (CMC) are described. Thereafter, the role of mi-
celles in controlling the system behavior is briefly discussed.
Langmuir adsorption parameters for a variety of nonionic
surfactants are given in Table 1 of Chang and Franses (12).
From this table, characteristic magnitudes forG` of 2 3 10210

mol/cm2, geq of 30 dyne/cm,b/a of 1010 cm3/mol, and CMC
of 1027 mol/cm3 are adopted. The viscosities of the dispersed
and continuous phases are assumed to be 1 cp. In recent

FIG. 17. The surface tension profileg at Ca5 0.04 forx 5 0.5. All results forL 5 103. (a) E 5 0.2, B 5 0 (insoluble), 1022, and 1021; (b) E 5 8.0,
B 5 0 (insoluble), 1022, 5 3 1022, 7.5 3 1022, 1, and 5. Notice that the scales on the figures differ.

FIG. 18. The Marangoni stress profile at Ca5 0.04 forx 5 0.5. All results forL 5 103. (a) E 5 0.2, B 5 0 (insoluble), 1022, and 1021; (b) E 5 8.0,
B 5 0 (insoluble), 1022, 5 3 1022, 7.5 3 1022, 1, and 5.

78 EGGLETON AND STEBE



pendant bubble retraction studies (13), characteristic magni-
tudes for the desorption coefficienta have been shown to be as
slow as 1024 to 1022 s21 for poly-ethoxylated surfactants.
Below the range of applicability of the insoluble and sorption
controlled analysis is discussed for drops of radius of 1 cm and
1 mm (emulsion-sized drops).

Surfactants behave as if they were insoluble when the mass
transfer between the interface and the bulk is slow compared to
the surface convective flux. Either the time scales for adsorp-
tion–desorption are inherently slow, i.e., Bi! 1, or the time
scales for diffusion flux from the bulk to the interface are slow
compared to the surface convective flux, i.e., (Peh)21 ! 1. In
order for adsorption–desorption to control the surfactant trans-
port, the rate of sorptive exchange must be slow compared to
bulk diffusion, i.e., Bi(Peh) ! 1.

Consider a drop of radiusa 5 1 mm. For this small length
scale, strong extensional flows must be applied for Ca to be
large enough to deform the drop, i.e., for Ca$ 0.01,G $ 105

s21 are required. At these strain rates, Bi ranges from 1029 to

1027. The group 1/hPe ranges from 1027 for extremely dilute
solutions to 1024 at the CMC. The group Bi(hPe) is also small,
so that adsorption–desorptive exchange controls the mass
transfer. Note that the extremely small Bi indicate that the mass
flux from the bulk is extremely slow compared to the surface
convective flux, and the insoluble approximation is valid for
drops of this size subject to strong strain rates.

Consider the behavior of larger drops witha 5 1 cm. In
order to attain relevant Ca values,G must be$30 s21. For
these strain rates, Bi ranges from 33 1026 to 3 3 1024. The
Peclet number Pe is 63 106. For such large bulk Peclet
numbers, diffusion boundary layers develop near the drop
interface, of thicknessaPe21/2; the diffusion flux scaling is
modified:

j D 5 2
1

Pe1/ 2h
n z ¹Cus. [34]

(This boundary layer thickness applies only if the interface

FIG. 19. The tangential surface velocityvt profile g at Ca5 0.04 forx 5 0.5. All results forL 5 103. (a) E 5 0.2, B 5 0 (insoluble), 1022, and 1021;
(b) E 5 8.0, B 5 0 (insoluble), 1022, 5 3 1022, 7.5 3 1022, 1, and 5. Notice that the scales on the figures differ.

FIG. 20. The deformations Df as a function of Ca forx 5 0.5. C indicates the surfactant-free case. All results forL 5 103. (a)E 5 0.2, B 5 0 (insoluble),
1022, and 1021; (b) E 5 8.0, B 5 0 (insoluble), 1022, 5 3 1022, 7.5 3 1022, 1, and 5.
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is mobile; for immobile interfaces, the exponent on Pe changes
to 21

3
, and the argument which follows must be modified

appropriately.) The group (Pe1/2h)21 ranges in magnitude
from roughly 2.03 1024 for trace surfactant concentration
to 0.2 at the CMC. (This variation occurs because the adsorp-
tion depth decreases as the bulk concentration increases.)
Therefore, for concentrations up to an order of magnitude
below the CMC, both diffusion and adsorption–desorption
are slow enough that the insoluble limit is valid. In order
for adsorption–desorption to control the surfactant transport,
the group Bi(Pe1/2h) must be small; indeed, at the CMC for
a of 1024 this group is 1025; for a of 1022 this group is
1023. Therefore, for elevated concentrations of monomeric
surfactant, the mass transfer is sorption controlled for drops of
radius 1 cm.

The scaling arguments for the diffusion flux above are based
upon monomeric flux of surfactant. However, most surfactants
form micelles, which act as reservoirs of monomer, dissociat-
ing if the local concentration is depleted below the CMC. If
this timescale is rapid, the monomer concentration will be
equal to the CMC. Diffusion is eliminated as a controlling
timescale, and the surfactant is adsorption–desorption con-
trolled. (This has been shown to be the case experimentally for
a capillary slug flow (14).)

4. CONCLUSIONS AND IMPLICATIONS

The drop behavior is strongly influenced both by the surfac-
tant mass transfer rate and the concentration of surfactant
present. At low concentrations, the deformation decreases
monotonically with increasing mass transfer rates as the accu-
mulation of surfactant near the tips is eliminated. At high
concentrations, deformations vary nonmonotonically as the
mass transfer rates increase. The nonmonotonic behavior oc-
curs because adsorption supplies the depleted equatorial region
faster than desorption removes surfactant accumulated at the
tips. This alleviates any dilution of the drop while still allowing
low surface tensions at the tips. Deformations increase from

values below the clean case to values greater than the clean
case at moderate mass transfer rates.

The drop contribution to the volume averaged stress tensor
is strongly influenced by the deformation; drops with greater
cross sectional areas have greater radial components to this
tensor. The axial components are influenced by both drop
length and the magnitude of Marangoni stresses.

At elevated coverage, only perturbativeG gradients are
realized. For insoluble surfactants, Marangoni stresses regulate
G, forcing it to remain nearly uniform to prevent the local
surface concentration from approaching its upper bound. As
the mass transfer rates increase, smaller Marangoni stresses are
required to keepG uniform. Finally, for rapid enough mass
transfer, theG remains uniform and in equilibrium with the
surrounding surfactant solution. The Marangoni stresses ap-
proach zero. This suggests a simplified framework for the
study of surfactant covered interfaces in the elevated concen-
tration limit in which the Marangoni stress generated is deter-
mined by the constraint that it maintain a uniform surface
concentration.
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