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The effects of a sorption-controlled, monolayer-forming surfac-
tant on a drop deforming in an extensional flow are studied
numerically. Scaling arguments are presented for drops of 1 cm
and 1 pm, indicating the applicability of these results. For all
simulations, when mass transfer is slow compared to surface
convection, the insoluble limit is recovered; when mass transfer is
rapid, the drop behavior is the same as that for a surfactant-free
drop. For a surfactant which forms a monolayer, there is an upper
bound to the surface concentration, I',.. The surface tension re-
duction diverges as the surface concentration I" approaches this
limit, strongly altering the hydrodynamics.

The drop deformation is studied relative to a surfactant-free
drop in terms of the capillary number, Ca, the ratio of character-
istic viscous stresses to surface tension. In the insoluble limit, for I"
< I'_, droplets deform more than in the absence of surfactants at
a given Ca and break-up at lower Ca. When stable drop shapes are
attained, stagnant caps form at the drop tips. Finite surfactant
mass transfer rates eliminate these caps and diminish the defor-
mation.

For T' approaching I'.. in the insoluble limit, interfaces are
strongly stressed for perturbative surface concentration gradients;
I' remains nearly uniform throughout the deformation process.
Deformations are reduced at a given Ca. When stable drop shapes
are attained, the surface is completely stagnated. Marangoni
stresses force the surface velocity to zero to keep I' below its upper
bound. For soluble surfactants, as mass transfer rates increase, the
magnitude of these stresses diminishes. Deformations change non-
monotonically with mass transfer rates and are not bounded by the
limiting clean interface and insoluble limits.

The drop contribution to the volume averaged stress tensor X, is
also calculated. The axial component X, increases with the drop
length; the radial component 3, increases with the drop breadth.
Since the deformation is strongly influenced by the surfactant
concentration and the mass transfer rates, so too is 3. © 1998
Academic Press
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1. INTRODUCTION

Strong extensional flows are used to create a dispersion fr
two immiscible fluids. Surfactants are often added deliberate
or are present as impurities. In order to understand the effe
of surfactants on this process, the idealized flow field of
single, initially spherical droplet deforming in an extensione
flow is studied, as shown in Fig. 1. The flow creates viscol
stresses which deform the drop, causing it to elongate. Wh
the surface tension resisting the stretching is sufficient
strong, the drop attains some steady shape. If not, the droy
continues to stretch until it breaks into smaller droplets. .
thorough review of prior work in this problem is provided in
two review articles (1, 2). This work focuses on surfactat
effects in this flow; only related literature is reviewed below

If surfactant is present in the external fluid, it will adsorb t
some equilibrium surface concentratiby, and surface tension
Yeq If the surfactant remains uniformly distributedat, the
process is modified solely through the surface tension redi
tion, and larger deformations are realized when compared
the surfactant-free case. However, the surface concentrat
rarely remains at its equilibrium value; rather, surface conve
tion creates concentration gradients which alter the surfa
tension and therefore the stresses on the interface.

The viscous stresses scaleS, whereG is the strain rate
of the applied flow. The Laplace pressure resisting deformati
scales agy.{a, wherea is the initial drop radius. Their ratio
defines the capillary number Ca:

Ga
Ca= H .
yeq

(1]

By symmetry, the tangential flow is zero at the poles and
the ring located at the drop equator. Surface convection swe
surfactant toward the poles, where it accumulates if the me
transfer rates are slower than the surface convective flux. T
distribution of surfactant strongly influences the deformatior
realized. If the accumulation near the drop poles is pronounc
the surface tension there will be strongly reduced. Since t
normal stresses are balanced by the Laplace presddse,tBe
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Ve G again using a linear surface tension law. For soluble surfe
’ tants, this assumption restricts the adsorption isotherm to
linear. The mass transport mechanisms of bulk diffusion, st

face diffusion, surface convection, and adsorption—desorpti

n kinetic barriers were included in the analysis. Bulk convectic
¢ was neglected. A complex interplay of mass transfer and dr
deformation was found as a function of these parameters. |

7/ 0, example, drops with surfactants of strongly differing physicc
Tip \(\—/7/ chemical parameters and surface velocity profiles can have
same deformations at a given Ca. It was also demonstrated t

Equator in the limit of rapid mass transfer, the deformations and surfa

flows are identical to the clean interface limit. In the opposit
extreme, when mass transfer is severely retardedGnds
large, the surface velocity is strongly retarded.

The aim of this study is to understand an adsorption—d
orption-controlled surfactant which obeys monolayer satu
tion. The major shortcoming of the commonly adopted line:
model is its failure to account for the limiting area/molecule i
poles will require a higher mean curvaturd 2o resist a given monolayers. Eggletort al. (8) recently studied the role of
stress jump. The drop elongates, stretching the tip regionrmnolayer saturation in this problem for insoluble surfactant
develop this curvature. The drops are more highly deform&ince surfactants have a limiting area per molecule, there is
than the clean drop for a given Ca. If surfactant remaingpper bound to the surface concentrationthat can be ac-
uniformly distributed and the surface stretches faster than massnmodated in a monolayer. This is captured in the Vc
transfer can supply surfactant, the interface becomes dilut&tyckowski equation
The surface tension becomes higher thag and smaller
deformations result for a given Ca. eq

These mechanisms were identified by Stone and Leal (3), T = Yo~ Yeq = —RTFwIn<1 - 1}) ) (2]

who studied insoluble surfactants in this flow. The distribution

of insoluble surfactant is determined by the surface convectiQpere «r is the surface pressure, shown in Fig. 2 as a functi
which creates gradients ifi, and surface diffusion, which I'./T 4 the area per molecule scaled by its minimum area.
eliminates thes_e gradle_nts. In the|_r study, the surface tensloEq. 2], v, denotes the surface tension of the surfactant-fr
was assumed linear in(i.e., a 2-D ideal gas law was adopted)iertace. (This equation can be derived using a mass act
with a dimensionless slopBs = RTle(/yo, Whereyo is the 446 for adsorption to the interface and the Gibb’s adsorpti
surface tension of the surfactant-free interface, Rids the equation (5) or using an ideal solution model for the interfac

product of the ideal gas constant and the temperature. La@%_ There is a singularity in Eq. [2] 8., approache§... As
deformations were realized when surface diffusion gl a
were weak. Small deformations were found for strong surface
diffusion or large Bg, which allowed strong Marangoni
stresses to retard the surface convective flux. 7r
Milliken et al. (4) extended this work to address nonunity
viscosity ratios and relaxations of initially deformed drops.
While in most of this study the linear model was used, in one st
simulation, the Frumkin equation (5), which accounts for non-
ideal surfactant interactions and monolayer saturation, wasrm, *
adopted for the surface tension. However, the surface concen- af
trations studied were too dilute for these nonlinear effects to
alter the surface tension; no change in deformation was found
when reported against a properly scaled Ca. Interactions were 1t
studied using the Frumkin model by Pawar and Stebe (6), who S
found that intermolecular attraction and repulsion can strongly o 11 12 1s 14 15 16 17 18 19 20
alter the surface tension and the Marangoni stresses realized. ?
Attraction Stro_ng enough to drive a surface phase tranSItIOI’}:IG. 2. Surface pressure vs normalized area per molecdle/I" for the
was also studied. Von Szyckowski model. As the minimum area/molecule is approached, t
Milliken and Leal (7) studied soluble surfactant in this flowsurface pressure diverges.

FIG. 1. A neutrally buoyant drop is suspended in an immiscible fluid og
equal viscosity and subjected to a pure axisymmetric extensional flow.
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is the case for all simple thermodynamic models which accouats along the interface, approaching, as mass transfer rates
for excluded area or volume effects (e.g., Van der Waaliscrease. Deformations agree with the insoluble result f
equation), the existence of this singularity changes the mxtremely slow mass transfer and approach the clean result
sponse of the system to prevent the singularity from occurrimgpid transport. However, they vary nonmonotonically as ma
In this problem, forl’¢, nearl’,., the highly nonlinear responsetransfer rates increase and are not bounded by these two lirr
of the Marangoni stress regulates the surface concentratioMhis flow field has been treated as a unit cell model fc
profile so that the minimum area/molecule is not reached. Fanderstanding the rheology of dilute emulsions. In so doing,
real surfactant systemk,, can be greater than 0.99, while  volume-averaged stress tensor is commonly calculated to |
the surface tension remains finite; this is possible becawtsrstand the influence of the drop on the system rheology. 1
typically, RTI',, < vy,. For higher concentrations, the surfacdrop contribution to this volume-averaged stress tensor
tants form self-assembled structures such as micelles in tband for this model. It is shown to be strongly influenced b
bulk solution. These issues are not addressed in this studythe deformation of the droplet and therefore by the ma
The Marangoni stresses corresponding to Eq. [2] are  transfer rates and surface concentrations.
In most of the prior studies, the slope of the 2-D ideal ge
RT law, Bs, was taken to be orders of magnitude larger the
1=TIT. v, [3] would be realized in experiment. Thus, variations between |
- stretching and drop dilution were achieved by varying th
magnitude of this quantity in a manner that cannot be realiz
whereV. is the surface gradient operator. At dilute concentraxperimentally. In Pawar and Stebe, the coupling between 1
tions C < TI'.), the coupling betweeny andI’ is weak. Strong (nonlinear) surface tension and surface concentration was &
surface concentration gradients can be created by surface aomealistically strong. In Eggletoat al. and in this work, an
vection before any Marangoni stresses develop opposing teffort is made to choose parameters which might be realized
flow. In the insoluble limit, surfactant accumulates strongly &xperiment and to understand how surfactants with more re
the tip region, creating stagnant caps once the steady siate physicochemistry might effect this flow field. Results fo
shape has been attained. At higher surface concentrafibnghe exaggerated coupling and the more realistic value e
approachingl’,, from below), the surface tension changesompared to place this prior work in context.
strongly withT". Large Marangoni stresses result for perturba-
tive I' gradients. Surfactant remains nearly uniformly distrib- 2. GOVERNING EQUATIONS
uted during the deformation, and the deformation is dilution
dominated. Furthermore, in the insoluble limit, the interfaces1. Mass Transfer to an Interface
are nearly stagnated at steady deformation for weak surface
diffusion and are strictly stagnant for zero surface diffusion. A neutrally buoyant, spherical droplet of initial radiasis
Thus, the entire range of deformation behaviors is found ag@spended in an initially quiescent surfactant solution of co
function of surface concentration. centrationC,.. The surfactant is immiscible in the drop phase
In this paper, the work of Eggletoat al. is extended to Initially, the system is at equilibrium with surface concentra
account for surfactant mass transfer with the bulk. Mass trat§n I'eq When the straining flow is initiated with strain ra@e
fer is considered in the adsorption—desorption-controlled limfurfactant is redistributed by surface convection. This provok
The stagnant caps realized on stable, deformed drops at @Wlarangoni stress which retards the tangential surface vel
coverage, or stagnant surfaces found at elevated coverdiye, On the interface, the surface concentration gradient
form only when surface diffusion is negligible and the surfagnodulated by surface diffusion. Surfactant mass transfer |
tant is insoluble. In these circumstances, Marangoni stresé¥gen the bulk and the interface also acts to restore equil
alone regulate the surface concentration profile (surface diffilm. The surface mass balance is given by
sion is typically weak). When the surfactant is soluble, it can
desorb from the drop tip rather than accumulate there. Thus, ol
mass transfer provides an additional mechanism to Kdegs ot T Vs (Dv) + 2Hy, " — DV = j,, (4]
thanI',.. As the mass transfer rates increase relative to the

surface convection rate, the Marangoni stress diminishes, until . .
the interfacial flow is restored, and the deformation of a suffn€reDs s the surface diffusivityj, is the mass flux from the

factant-free drop is realized. The deformations tend monotdfilk: the term containing, indicates the tangential surface

ically from the insoluble limit to the clean interface behaviocOnvective flux, and the term witi, is the dilution of the
At elevated surface concentration in the insoluble limifnteérface by dilatation. These components of the surface \

Eggletonet al. showed thaf varies only perturbatively from IOCity Vs are defined,

a uniform distribution, but the interface is highly stressed. For

adsorption—desorption-controlled surfactarifs,varies even Vo=V, + Vv, = (Vg- 1)t + (vg- NN, [5]

Voy=—= VI =

dy
ol
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andv, andv,, are the magnitudes of these componenis the The equations become
nonazimuthal unit tangent amdis the normal unit vector.

The flux from the bulk is controlled, in general, by both ol , )
diffusion and adsorption—desorption fluxes. For a monolayer- op T Vs (Tv) + 2Hy I — Pe VT =, [12]
forming surfactant, the kinetic expression for adsorption—de-
sorption is jaa = BI[C(1 + k= KkI') = T'] [13]
jag = BC{T. = T) = aT, [6] io=~pg N VCls [14]
whereB, « are the kinetic constants for adsorption/desorption aC 1,
respectively, andC, is the concentration of surfactant in the ot +tv-VC= ﬁav C. [15]

fluid immediately adjacent to the interface. At equilibrium, this

expression reduces to the Langmuir adsorption isotherm |4 these expressions, several dimensionless groups appea
The surface Peclet and bulk Peclet numbers, respective

T k K BC.. . are defined,
T T1+k T a [71
P ca P ce [16]
= ; e: -,
wherex is the fraction of surface covered by adsorbed surfac- & Ds D
tant andk is the adsorption number, the ratio of characteristic
adsorption to desorption rates. where Pe is the characteristic convective flux to diffusion flu
The sublayer concentration is determined by diffusion fromnd Pe is the characteristic surface convective flux to surfa
the bulk fluid, diffusion flux.
The dimensionless adsorption depth is defined:
jo=—Dn-VC|, [8] r.1 gL 1
. . . . h=c =" T, [17]
whereD is the bulk diffusion coefficient, and the concentration C.a oaal+k
gradient is evaluated at the interface. The concentrafiaa
governed by the convective—diffusion equation This is the characteristic depth beneath the interface diluted
surfactant adsorption. Note that this depth decreases as ¢
9C centration k) increases.

5T v-VC = DVZ<, [9] Finally, the Biot number is the ratio of characteristic de
sorptive to surface convective time scales:

which obeys the far-field conditions th&t tends toC,, far

from the droplet, and the velocity tends to the far-field Bi =
applied extension flowy,.. In general, both mechanisms con-

trol the flux to the interface, and so

63
G [18]
The surfactant distribution is adsorption—desorption co
) ) ) trolled when the desorption flux is slow compared to th
In= Jaa = Jo- [10]  giffusion flux. This requires that the ratio Bi(Re< 1. The

applicability of this result to drops of radiusgm and 1 cm is
These equations are recast in dimensionless form, accordingliscussed along with the results.

the scales In this limit, concentration gradients in the bulk becom
negligible. The surface mass balance is modified to reflect tl
I’ c’ in C is unity everywhere:
N==-:C==h=var
| A C. r.G . L
d
v’ X’ —+4+ Vo (I'v) — == VI + 2HT'v, = Bi(1 + k)(1 - I).
V=——:X=—;t=t'G, [11] It (v Pe ( ) :
G'a a [19]

where the primes indicate dimensional quantities, and tRer small Bi, the surfactant will behave as an insoluble laye
position vector defined with respect to the center of mass of tRer Bi sufficiently large, the interface can remain in equilib
drop is denoted. rium with the bulk.
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s=1

1
V(X9 = V(X9 — 87'rf M (X, {)

The equations governing the flow field are stated here |
dimensionless form. In addition to the scales adopted in Eq. =0
[11], the following variables are defined, - (2Hyn + Vo) (0)ds(2), [27]

2.2. Hydrodynamics

pi T v’ whereM is the axisymmetric Green'’s function for Stokes’ flow

Pi = M; = WG YT Ve [20]  (10) and¢ is an integration variable along the interface (se

Fig. 1). Given the far-field velocity and the stress jump at ar

wherep, is the pressure in either the external 1) or drop Iocati.on along the inFerface, the surface vglocity can be foyr
(i = 2) phase, and is the viscous stress tensor. The external USiNg @ quasi-static approach, Eq. [27] is solved for a give

flow field v. must agree with the applled flow field far from thesurface concentration distribution. The interface location is th
droplet: ! updated according to Eq. [23], and its shape is used to fi

curvatures, and the unit vectansandt. Given this information
and the velocity field, the surfactant is redistributed according

) o I _01 _01 8 ! Eqg. [19], and the stress balance at the interface is updated u:
L'an Vi= Ve = L0 0 2| "X [21] Egs. [24] and [25]. Equation [27] is then solved again. Thi

process continues unti}, tends to zero or no steady shape can |
] N _ attained. The details are discussed in Pawar and Stebe (6).

surface velocity andB are defined,
Vi =V, =V, [22] ) B
Pe = Ca\; Bi=, (28]
The kinematic condition at the interface is
where
dx, 23]
Sy
dt n Ve apa
A= . B= . 29
nDs Yeq [29]

where the vectox, is the position of a Lagrangian point on the
interface. The stress balance requires The groupsA andB are fixed for a given surfactant solution
and drop fluid. By studying the behavior of the drop at fid
Ex and A as a function of Ca, the impact of increasing strain ra
[[pl] + Cdln- Tl = —3 — 5 VL' + 2Hyn, [24] on adrop of given physicochemistry can be understood. Rec.
however, that the impact of solubility is determined by the rati
of the adsorption—desorption and the convective rate, Bi.
The governing equations are integrated using an arc-an
formulation. The profiles fof", vy, v,, etc., are all reported as
a function of arclengtls, which varies from 0 td, wherel is
y = Yo + E[In(1 — Tx)]; where& =1-Eln(l-x. & dimensionles's'contour length measurgd from one drop “ti
Yeq Yeq to the other. Initially, the contour lengthis equal tom and
[25] increases from this value as the drop elongates.

where [[]] indicates a jump condition at the interface, gnid
given by

In this expression, 2.3. Parameter Values Adopted in the Numerical
Simulations

E = RTL.. [26 The elasticity numbekE is a measure of the sensitivity of the

Yeq surface tension to the surface concentration. U$ingf 2 X
10~ ° mol/cn?, y, = 72 dyne/cm, andycyc of 30 dyne/cm,
is the elasticity number, a measure of the sensitivity of thhe range of values fdE can be estimated at ¥ 22C to be
surface tension to surfactant adsorption. 0.1-0.2; significantly less than unity. Here, as in Eggleton
Assuming creeping flow, both the drop and external fluidl., the value of 0.2 is adopted. AB value of 8.0 was adopted
obey Stokes’ equations. For an axisymmetric flow, Stok&s Pawar and Stebe, overestimating this sensitivity. A simil
equations can be recast as a line integraivigr overestimation was made in the studies in which the line
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FIG. 4. The surface tension profilg at Ca= 0.04 forx = 0.1. Results are

FIG. 3. The surface concentration profileat Ca= 0.04 forx = 0.1. presented foB = 0 (insoluble), 10 102, and 0.1. All results for\ = 10°.

Results are presented fBr= 0 (insoluble), 103, 1072, and 0.1. All results
for A = 103

infinite A (i.e., negligible surface diffusion), the steady stat

adsorption isotherm was adopted. Expanding the surface t8HRSS balance is

sion, Eq. [25], in smalkl", and keeping only linear terms, the

2-D ideal gas law is recovered: Vs (I'vy = Bi(1 + K)(1 - I). (31]

For insoluble surfactants, Bt 0; Eq. [31] requires thdfv, =
y = Yo _ Ex =1 — Be T. [30] 0, i.e., the droplet interface is divided into surfactant-rict
Yeq 1-Bc stagnated regions and surfactant-free, mobile regions. The N
rangoni stress determines therofile, and therefore the divi-
This approximation is valid only fax < 1; therefore the slope sion between mobile and stagnant regions. For finite, large
Ex = Bs/(1 — Bg) < 0.2. However, values foBg ranging the sharp demarcation of surfactant-free and surfactant-r
from 0.3 to 0.85 were adopted in studies by Leal and collafegions is modulated by surface diffusion. The surface veloci
orators. In order to comment on the effects of this overestimégmains significantly retarded near the drop tips and faster n
tion on the results obtained, the deformation of a droplet agh€ equator. For a soluble surfactant,BiB/Ca is finite, and
function of Ca and for x = 0.5 is compared for tw& values the mass balance no longer dictates stagnant cap formati
(E = 0.2 andE = 8.0). For all of theother simulationsE Mass transfer with the bulk diminishes the surface concent
was held fixed at 0.2. The parameReranges from 10°to 1. tion gradients realized. For Bi sufficiently large, the surfac
The groupA can be estimated to beX6 10° for emulsion-sized concentration profile approaches its equilibrium value, and t
drops, 6x 10° for drops with radius of 1 cm. In our study, Surface velocity is restored to that of a surfactant-free dropls
is assumed to be 1000. The droplet deformation DE (L — b)/(L + b), whereL

3. RESULTS AND DISCUSSION

05

3.1. Low Concentration Results
04

The surface concentration, surface tension, Marangoni stress,
and tangential velocity profiles for a stable droplet at Ca of o3}
0.04 are presented in Figs. 3—6, respectively. Consider first%
the case of an insoluble surfactant present on the interface at  ,|
low concentrations (i.e., the fractional coverage of the in-
terface x = 0.1). Initially, the system is at rest and the
surfactant is uniformly distributed on the drop interface. The
flow is initiated and surfactant is swept along the interface.
According to Eq. [24], the Marangoni stresses resisting this ‘ . ‘ , ‘ .
flux are weak. Strong surface concentration gradients de- 00 o1 0z 03 04 05

velop, until a Marangoni stress develops resisting furthergg. 5. The Marangoni stress profile at Ga0.04 forx = 0.1. Results are
accumulation the region of the drop tip. At steady state feresented foB = 0 (insoluble), 103, 1072, and 0.1. All results fo = 10%.

0.1

00
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FIG. 8. The surface concentration profileat Ca= 0.04 forx = 0.99.

0.1.Results are presented for a clean interf&e; 0 (insoluble), 103, 102,  Results are presented fBr= 0 (insoluble), 10%, 107,2' 0.1,and 1. All results
and 0.1 forA = 10% the insoluble result is also shown for conditions thaf®" A = 10° The bold dots indicate results obtained using the approxima
correspond to stagnant cap formation, (i%.= o or D, = 0). mass balance foB = 0.01, Eq.[33].

FIG. 6. The tangential surface velocity profile at Ca= 0.04 forx =

is the drop length and is the breadth, is reported in Fig. 7. Fof2ngon stress Is of magmtu.cE VS[/(1 = x) = 0.0EVI.
. L The elimination of thd” gradients by mass transfer allows the
insoluble surfactant, B= 0, the surface tension is strongly . . :

: : . clean interface behavior to be recovered. This occur8fer
reduced in the region of the drop tip. The stable drop shapeZs

. 0.1, forwhich the Biot number Bi= B/Ca ranges from 10 to
more highly deformed than the surfactant-free drop. Bor 1.86;kBi ranges from 1 to 0.166. Recall that Bi is the ratio o

small enough, the deformations superpose with those reali . . "
loug IPeTp %ﬁe desorption rate to the surface convection riRi;is the
for an insoluble surfactant. A8 increases, mass transfer

o L ) . “ratio of the adsorption rate to the surface convection rate.
eliminates the strong local reductionyjnand the tip stretching . . .

o . X . this low surface concentrations, these values are rapid enol
diminishes, until, at elevatel, the deformation realized for a

clean droplet is recovered. The deformations are boundté)dforce gradients inl" to be sufficiently small that the Ma-

above by the insoluble results and below by the clean interfaée 9™ stresses do not alter the deformation.

results, tending monotonically from one limit to the otheiBas 3 5 Elevated Concentration Results

increases. The droplet becomes unstable for Ca lower than the . _ _

clean interface result; this destabilization decreaseB &% TheT", v, Marangoni stress, and surface velocity profiles fc

creases. stable drop shapes at Ga0.04 are presented in Figs. 8—11
Forx = 0.1, theadsorption numbek is roughly 0.1 as well. respectively, for a fractional surface coverage- 0.99. For

Initially, T is uniform and there are no Marangoni stresses $@luble surfactants, this corresponds to an elevated bulk ¢

the interface. When the straining flow is initiated, the Macentration, for whictk is roughly 100.

(o] 141 =
04r a—— N ¢ T Bhios
—o-— B=0.001 e B=0.01
it B=0.01 : 13 |- B=0.1
-—O—- B=0.1 ° G B=1
o clean B=0.01, apprx.
03 12}
111
7
Df o2r
ik
09
0.1 | T
/ o 0.8
<]
ot 07
0.‘0’[ 0.(‘)2 0.‘03 D.‘D4 0.;]5 0.;)6 0 01 02 s 03 04 0.5
Ca FIG. 9. The surface tension profile at Ca= 0.04 forx = 0.99.Results
FIG.7. The deformations Df as a function of Ca for= 0.1. Results are are presented fdB = 0 (insoluble), 10°, 1072, 0.1, and 1. All results for
presented for a clean interfad®,= 0 (insoluble), 103, 1072, and 0.1. Al = 10°. The bold dots indicate results obtained using the approximate m:

results forA = 10° balance forB = 0.01, Eq.[33].
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FIG. 10. The Marangoni stress profile at Ga0.04 forx = 0.99.Results Ca

are presented fdB = 0 (insoluble), 10°, 1072, 0.1, and 1. All results fon FIG. 12. The deformations Df as a function of Ca far= 0.99; C

= 10°. The bold dots indicate results obtained using the approximate magdicates the surfactant-free case. Results are present8d=fod (insoluble),

balance forB = 0.01, Eq.[33]. 1075, 1072 0.1, and 1. All results fon = 10° Approximate mass balance
results (obtained foB = 0.01) superpose with the full solution.

Consider first the insoluble results. FBr = 0, Eq. [31]
requires that steady statgbe zero ifl" is nonzero. According  The deformations Df as a function Bfare shown in Fig. 12.
to Eqg. [24], the Marangoni stresses are significant even febr slow mass transfer, the deformations are smaller than
perturbative surface concentration gradients. Thusemains clean drop. AsB increases, the adsorption rate relative t
nearly uniform, and yet the surface is highly stressed. Th@rface convection (which goes &8i) is faster than the
tangential velocity is strictly zero for infinitd and is nearly desorption rate to surface convection ratio (which goes as E
stagnated forA of 1000. The interface dilutes as the drogsurfactant is supplied to the equator faster than it is remov
deforms causing the surface tensigrto increase above its from the drop tips. AL’ profile develops with accumulation
equilibrium value. Smaller deformations result at a given Caegr the tips, but little depletion near the equator. Therefol

In the insoluble limit, Marangoni stresses are the sole meghzg drop deforms more than the clean interface case at m
anism to forcel' to remain less thar’., at the drop tip. erateB. Finally, for largeB, I' becomes uniform at its equi-
However, asB increases from zero, mass transfer competes|igrjym value. The Marangoni stresses are eliminated, and 1
regulatel’. Surfactant desorbs from the drop tips and is SURtean interface result is recovered. Therefore, the drop def
plied at the drop equator to restore surface equilibrium. Th8ation varies nonmonotonically &8 increases, and these

Marangoni stresses diminish. The dilution of the interfacg.tormations are not bounded by the insoluble and clean
becomes less pronounced, afidremains not only nearly (o f4ce results.

uniform, but approaches its equilibrium value. Finally, surfactant adsorption can either stabilize or destal

lize the drop against break-up, depending upon the rate
0o surfactant mass transfer. For mass transfer rates that are s
L P ciently slow (e.g.,.B = 10~ °) the drop is stabilized against
ol g S e break-up. However, foB fast enough® = 0.1) thedrop was
o T 0 o e destabilized,; i.e., the critical Ca was less than that of the cle
N drop.
ost RN Forx = 0.99, theadsorption numbek is roughly 100. The
04r ....... . RN droplet initially has no Marangoni stresses, dnds initially
03l e . uniform. When the straining flow is initiated, the Marangor
’ stress is of magnitudexv /(1 — x), or 20V .[". The sensi-
i tivity of the interface tov I is orders of magnitude higher than
M“’"""“"“w-»".“ "y in the low coverage case. Thug,I" must be smaller and mass
‘ ‘ . [ ‘ ‘ transfer more rapid in order that clean interface deformatio
0 04 02 03 04 05 be recovered. This occurs f@ = 1, for which the Biot
FIG. 11. The tangential surface velocity profile at Ca= 0.04 forx = number Bi= B/Ca ranges from 1.00 to 16.8Bi ran.ges from
0.99. Results are presented for a clean interfé8es 0 (insoluble), 10°, 10* to 1.66 x 1_03' Thus, adso_rptlon _and desorption m!'ISF b
1072, 0.1, and 1. All results fo = 10°. The bold dots indicate results Orders of magnitude more rapid at high coverage to eliminz
obtained using the approximate mass balanceBfer 0.01, Eq.[33]. Marangoni stresses than for low coverage.
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FIG. 13. The volume-averaged stress tensorxXor 0.1. (a)%,,; (b) =, (The results foB = 0 andB = 0.001 superpose.)
3.3. Volume-Averaged Stress Tensor deformation decreases wiB) cross sections increase, increas

The drop contribution to the volume-averaged stress ten

%39 the radial contribution; lengths and Marangoni stress
(11) is €

crease, decreasing the axial contribution. ko= 0.5,
similar trends are observed.
For x = 0.99, however, the variation of,, is more
s = J X(2Hyn — Vey)dS [32] complex; it first decreases with from the in.soluble limit to a
A value less than the clean drop result, then increases to reach
clean drop limit. These trends are also well explained by tl

The radial componerk,, and axial componeri ,, are shown variations in the breadth of_ the drop with The axial com-
in Figs. 13 and 14 for low concentrations & 0.1) anchigh PONent>, varies monotonically, however, even though th

concentrationsX = 0.99), respectively. In dimensional form, length varies nonmonotonically. This can be understood
the magnitude oF, for x = 0.99 isless than that fox = 0.1 terms of the Marangoni stresses, which resist the flow in tl
because of the reduction in surface tension. Side made axial direction, and which decrease monotonically véth
dimensionless withy.{a, the differences not caused by this
simple reduction in tension are made apparent. 3.4. Approximate Mass Balance

Forx = 0.1, asB increasesy,,, increases andl,, decreases
monotonically from the insoluble to the clean interface limit. For x near unity,I" develops only perturbative gradients
This can be understood in terms of the deformation and tfiBis observation was used to simplify the mass balance in t
Marangoni stresses. The greater the deformation, the longerittgoluble limit, neglecting all fluxes associated with gradien
length of the drop and the smaller its cross section. Singel’. The results presented in Fig. 8 suggest that this appr

a o7
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A B . a
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FIG. 14. The volume-averaged stress tensorxor 0.99. (a)2,,; (b) =,,
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FIG. 15. Comparison of the full and approximate solution of the surface mass balanBe=f00.01 for thetransient velocities (a), and (b)v,,.

imation is also valid for soluble surfactants at elevated surfaBes. Moderate Surface Coverage Results: Overestimating

coverage. The mass balance is approximated: )
In Figs. 1620, the results far= 0.5 are presented f& =

0.2 andE = 8.0. First consider the insoluble results. Accord
19T 1-1) . . ,
+ V.- (V) + 2Hv, = Bi(1 + k)i_ [33] Ing to Eq. [24], the Marangoni stresses are of magnitu
T ot ExVJI/(1 — x), or EVJI'. ForE = 0.2, these stresses are
initially weak. The resulting profiles show strodggradients
This balance was adopted for Bi0.01 and compared to theand weakv,. The drop deformation is dominated by tip stretch
full results. The deformations superpose with the full sining, and larger Df result when compared to the clean interfa
ulation results in Fig. 12, agreeing to within 0.005% for theesult.
lowest Ca studied, and within 1% at the highest Ca studied.For E = 8.0, theinitial Marangoni stresses are strong eve
The approximatel’, y, Marangoni stress, and, profiles for smallI" gradients. The velocity is strongly reduced fron
show similar agreement; they are shown as bold dots in tearly in the deformation process. This exaggeration of tl
figures. The implications of this result at steady state aceupling between the Marangoni stress and the surface c
clear: the tangential flux of surfactant at steady state dégntration profile strongly alters the drop behavior. The resu
balanced by mass transfer from the bulk. The faster is thigy profiles show weall® gradients and weak,. The drop
rate of supply, the greater the tangential mobility of thdilutes as the interface stretches, and smaller Df result wh
interface. For the unsteady deformation, the evolutions ocbmpared to the clean interface result.
the tangential and normal velocity profiles also obey this Solubility acts to monotonically decrease the deformation fi
balance (see Fig. 15). E = 0.2 from the insoluble to the clean interface limit; the

08 -
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S S

FIG. 16. The surface concentration profileat Ca= 0.04 forx = 0.5. All results forA = 10°. (a)E = 0.2,B = 0 (insoluble), 102, and 10°%; (b) E =
8.0,B = 0 (insoluble), 102, 5 X 1072, 7.5 10 2, 1, and 5. Notice that the scales on the figures differ.
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FIG. 17. The surface tension profilg at Ca= 0.04 forx = 0.5. All results forA = 10°. (@)E = 0.2, B = 0 (insoluble), 102, and 10°%; (b) E = 8.0,
B = 0 (insoluble), 102 5 X 1072 7.5 1072, 1, and 5. Notice that the scales on the figures differ.

deformations realized are bounded by these limits.Brer 8.0, B. Faster mass transfer rates (higBgrare required to recover
however, the deformations realized are dilution dominated ftre clean interface result. Clearly, by altering the deformatic
small B, tip stretching dominated for moderd@eand finally, the behavior, the drop contribution to the system rheology was al
same as the clean result for lafge(This simulation also shows influenced.
nonunique Df for strongly differing; the Df curves foB = 0.05
andB = 5 superpose, and differ only slightly from the cleas 7. calculation of Controlling Mass Transfer Mechanisms
interface result. However, tHg -y, Marangoni stress profiles, and
v, profiles differ strongly forB = 0.05 andB = 5. This non- Most surfactants in agueous media have diffusivie®f
uniqueness of Df as a function of the surfactant material pararoughly 5 X 10 ° cmé/s. The differences in their behavior
eters can occur for any drop whose deformation is dilution doraecur because of differing tendencies to adsorb and the rate
inated in the insoluble limit.) adsorption—desorption. Here, the controlling mechanisms
The adoption of largé& (or B for the 2-D ideal gas law monomeric surfactant transport up to the critical micelle co
studies) strongly alters the system behavior. The large Megentration (CMC) are described. Thereafter, the role of
rangoni stresses that develop for snialgradients precluded celles in controlling the system behavior is briefly discusse
the accumulation of surfactant at the tips in the simulations bdngmuir adsorption parameters for a variety of nonion
Leal and collaborators and the work of Pawar and Stebe, evanfactants are given in Table 1 of Chang and Franses (1
at low concentrations. This biasing ® toward a uniform From this table, characteristic magnitudesForof 2 x 10 *°
distribution also forces the drop deformation away from timol/cn?, vy, of 30 dyne/cmB/a of 10'° cm*mol, and CMC
stretching in the insoluble limit and allows for the highlyof 10~ ” mol/cn? are adopted. The viscosities of the disperse
nonmonotonic deformation behavior observed with increasiagd continuous phases are assumed to be 1 cp. In rec
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FIG. 18. The Marangoni stress profile at Ga0.04 forx = 0.5. All results forA = 10°. (@)E = 0.2,B = 0 (insoluble), 102, and 10'%; (b) E = 8.0,
B = 0 (insoluble), 102, 5 X 1072 7.5 10 2 1, and 5.
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FIG. 19. The tangential surface velocity profile y at Ca= 0.04 forx = 0.5. All results forA = 10°. (@) E = 0.2, B = 0 (insoluble), 102, and 10°%;
(b) E = 8.0,B = 0 (insoluble), 102, 5 x 1072 7.5 X 10°2, 1, and 5. Notice that the scales on the figures differ.

pendant bubble retraction studies (13), characteristic magh® ‘. The group 1tPe ranges from 10 for extremely dilute
tudes for the desorption coefficiemthave been shown to be assolutions to 10“ at the CMC. The group Bi(Pe) is also small,
slow as 10* to 10 2 s for poly-ethoxylated surfactants.so that adsorption—desorptive exchange controls the m
Below the range of applicability of the insoluble and sorptiotransfer. Note that the extremely small Bi indicate that the ma
controlled analysis is discussed for drops of radius of 1 cm afidx from the bulk is extremely slow compared to the surfac
1 uwm (emulsion-sized drops). convective flux, and the insoluble approximation is valid fo

Surfactants behave as if they were insoluble when the malksps of this size subject to strong strain rates.
transfer between the interface and the bulk is slow compared tacConsider the behavior of larger drops wigh= 1 cm. In
the surface convective flux. Either the time scales for adsomrder to attain relevant Ca valueS, must be=30 s . For
tion—desorption are inherently slow, i.e., & 1, or the time these strain rates, Bi ranges fromx310 ®to 3 X 10 * The
scales for diffusion flux from the bulk to the interface are sloweclet number Pe is & 10°. For such large bulk Peclet
compared to the surface convective flux, i.e.,jP¢ < 1. In numbers, diffusion boundary layers develop near the dri
order for adsorption—desorption to control the surfactant traristerface, of thicknesaPe /% the diffusion flux scaling is
port, the rate of sorptive exchange must be slow comparedniodified:
bulk diffusion, i.e., Bi(P&) < 1.

Consider a drop of radius = 1 um. For this small length ) 1
scale, strong extensional flows must be applied for Ca to be Io = 7 pam
large enough to deform the drop, i.e., for €20.01,G = 10°
s~ ! are required. At these strain rates, Bi ranges from°0 (This boundary layer thickness applies only if the interfac

n-vc.. [34]
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FIG.20. The deformations Df as a function of Ca for= 0.5. C indicates the surfactant-free case. All resultsfo= 10°. (a)E = 0.2,B = 0 (insoluble),
1072 and 10% (b) E = 8.0,B = 0 (insoluble), 102, 5 X 1072 7.5X 1072 1, and 5.
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is mobile; for immobile interfaces, the exponent on Pe changeslues below the clean case to values greater than the cl
to —%, and the argument which follows must be modifiedase at moderate mass transfer rates.
appropriately.) The group (P8h)~! ranges in magnitude The drop contribution to the volume averaged stress ten:
from roughly 2.0x 10 “ for trace surfactant concentrationis strongly influenced by the deformation; drops with greats
to 0.2 at the CMC. (This variation occurs because the adsoguess sectional areas have greater radial components to
tion depth decreases as the bulk concentration increasésnsor. The axial components are influenced by both dr
Therefore, for concentrations up to an order of magnitudength and the magnitude of Marangoni stresses.
below the CMC, both diffusion and adsorption—desorption At elevated coverage, only perturbatiié gradients are
are slow enough that the insoluble limit is valid. In orderealized. For insoluble surfactants, Marangoni stresses regu
for adsorption—desorption to control the surfactant transpolt, forcing it to remain nearly uniform to prevent the loca
the group Bi(P¥2h) must be small; indeed, at the CMC forsurface concentration from approaching its upper bound. .
a of 10~ this group is 10°; for « of 102 this group is the mass transfer rates increase, smaller Marangoni stresse:
103, Therefore, for elevated concentrations of monomeriequired to keed" uniform. Finally, for rapid enough mass
surfactant, the mass transfer is sorption controlled for dropstodinsfer, thel' remains uniform and in equilibrium with the
radius 1 cm. surrounding surfactant solution. The Marangoni stresses :
The scaling arguments for the diffusion flux above are basptbach zero. This suggests a simplified framework for tt
upon monomeric flux of surfactant. However, most surfactargtudy of surfactant covered interfaces in the elevated conc
form micelles, which act as reservoirs of monomer, dissocidtation limit in which the Marangoni stress generated is dete
ing if the local concentration is depleted below the CMC. Iined by the constraint that it maintain a uniform surfac
this timescale is rapid, the monomer concentration will beoncentration.
equal to the CMC. Diffusion is eliminated as a controlling
timescale, and the surfactant is adsorption—desorption con- REFERENCES
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