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Abstract 
 

Many real-world search and optimization problems 
naturally involve constraint handling. Recently, quite a 
few heuristic methods were proposed to solve the 
nonlinear constrained optimization problems. However, 
the constraint-handling approaches in these methods 
have some drawbacks. In this paper, we gave a Multi-
objective optimization problem based (MOP-based) 
formula for constrained single-objective optimization 
problems. We proposed a way to solve them by using 
multi-objective evolutionary algorithms (MOEAs). By 
simulation experiments, we find this approach for 
constraint handling not only can find the constrained 
optimality, but also can provide the decision maker (DM) 
with a group of trade-off solutions with slightly 
constraint violation and meanwhile with substantial 
gain in the objective function. This can enable the DM to 
have more freedom to choose his preferred solution and 
therefore exploit more profits in the margin of constraint 
violations, where the constraint violations are small or 
acceptable. 
 
Keywords: constraint handling, constrained 
optimization problems, evolutionary multi-objective 
optimization, decision making. 
 
1. Introduction 
 

Many real-world search and optimization problems 
naturally involve constraint handling.  By judging whether  
the objective functions and constraints are linear or 
nonlinear, we can classify the constrained optimization 
problems into two categories: linear constraint 
programming and nonlinear constraint programming. 
Simplex algorithm [1] can handle the former efficiently, 
while it faces difficulties when dealing with the latter, since 
the nonlinear objective functions and nonlinear 
constraints  make the problem harder.  Therefore, many 
heuristic methods were proposed to solve the nonlinear 
ones.  In these heuristic methods, the classical ways to 
handle constraints is to convert the objective function and 

constraints into a weighted sum of objectives (penalty-
function approach) [2] and then try to find the feasible and 
optimal solutions by optimizing the weighted sum function.   

However, this constraint-handling method has some 
drawbacks. It is difficult to fix a weight vector for 
successful working and improper weight vector may lead 
the search process to local optimality rather than the 
global ones. Furthermore, in many real-world problems, 
some constraint can be ‘soft’ [3], that is, a solution with a 
permissible constraint violation can still be considered if 
there is a substantial gain in the objective function, which 
are not taken into account by the penalty-function 
approach. Thus, we need more flexible methods to provide 
the decis ion makers (DM) with more candidate solutions, 
including the solutions with slightly constraint violation 
but meanwhile with substantial gain in the objective 
function. In addition, in some difficult real world problems, 
the nonlinear constraints make most of, even all of the 
search space infeasible. We call this phenomenon over-
constrained. To solve the over-constrained problems, 
there should be some compromises in one or several 
constraints based on the DM’s experience and other 
conditions. To solve this kind of problems, we must 
release or compromise some constraints. It is the DM 
knowing the background and the real mean of the problem 
who should determine which constraints compromise and 
how much they need compromise. Therefore we should 
provide the DM a group of trade-off solutions rather than 
just one to make efficient decision. 

We find that the objective handling for multi-objective 
optimization problems (MOPs) is somewhat similar to the 
constraint handling for constrained single-objective 
optimization problems  (SOPs). The traditional ways of 
objective handling in MOP generally convert a MOP into a 
SOP by sum approach and solve it with classical 
optimization techniques. This sum approach in solving 
MOPs faces the similar difficulties as that faced with the 
penalty-function approach we described above. With the 
development of MOP optimization techniques, especially 
evolutionary multi-objective optimization (EMO), we may 
consider: can we convert the constraint SOPs into MOPs 
and solve them with the state-of-the-art EMO techniques.                                                        



In this paper, we gave a MOP-based formula of 
constrained single-objective optimization problems. Then 
we proposed the way to solve them by using one of the 
current multi-objective evolutionary algorithms. By 
simulation experiments, we find this approach for 
constraint handling not only can find the constrained 
optimality, but also can present the decision maker a 
group of trade-off solutions with slightly constraint 
violation and meanwhile with substantial gain in the 
objective function. This can enable the DM to have more 
freedom to choose his  preferred solution and therefore 
exploit more profits in the margin of constraint violations, 
where the constraint violations are small or acceptable. 
 
2. Constrained single-objective optimization 
 
In a Constrained SOP, there exist a single objective function 
and a number of constraints [1]:  
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Without loss of generality, we assume that the objective 
function f (x) is minimized. For a maximization problem, the 
duality principle can be used to convert the problem into a 
minimization problem. In most difficult and real-world 
problems, the constraints )(xg j and )(xhk  are nonlinear 

and make most of the search space infeasible. This causes 
difficulty even in finding a single feasible solution.  

Therefore, many traditional methods [4], including 
conjugate gradient method, Newton iteration method, and 
modern heuristic methods, including simulated annealing 
[5], Tabu search, genetic algorithms  [6] …  etc., were 
proposed to solve the nonlinear constrained optimization 
problems.  In these methods, the classical ways to handle 
constraints is to convert the objective function and 
constraints  into a weighted sum of objectives and then try 
to find the feasible and optimal solutions by optimizing it.  
This method is largely known as the penalty-function 
approach, where the original objective function f (x) and 
all constraints are added together with a weight vector 
consisting of penalty parameters, as follows [4]: 
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However, this constraint handling method has some 
drawbacks including, but not limited to, the following: 
(a) The quality of the solutions is heavily dependent on a 

weight vector (also called penalty parameters). The 
components of the weight vector determine a fixed 
path from anywhere in the search space towards the 
constrained minimum. Sometimes, instead of 
converging to the true constrained minimum, the path 
terminates to a local minimum. Thus, for sufficiently 
nonlinear problems, not all weight vectors will allow a 
smooth convergence towards the true constrained 
minimum.  Often, the user has to experiment with 
various weight vectors to solve the constrained 
optimization problem.  

(b) In many real-world problems, some constraints can be 
‘soft’, that is, a solution with a permissible constraint 
violation can still be considered if there is a 
substantial gain in the objective function, which is 
not taken into account by the sum approach.  

In some difficult real world problems, the nonlinear 
constraints make all of the search space infeasible. To 
solve the over-constrained problems, the DM should 
compromise in one or several constraints based on his 
experience and other conditions. Therefore we should 
provide the decision makers a group of trade-off solutions 
rather than just one to make efficient decision. However, 
the penalty-function constraint handling method cannot 
tackle this kind of problems. 

 
 
 

3. Solving constrained SOPs with EMO 
 
3.1. The  MOP-based description of constrained 
SOPs 
 

A constrained SOP defined in (1) can be posed as a 
MOP of minimizing the objective function and minimizing 
all constraint violations.  
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We can define: 
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Then (3) is equivalent to (4): 

,...,n, , iD x),...,x,x(xX
(X))(X),...,f(X),f(fF(X)Minimize

iin

k

21,21

10

=∈=
≡

         (4) 

Using this way, problem (1) is converted into problem (4), 
which is a typical MOP without constraints. 
 
3.2. Evolutionary multi-objective optimization 
(EMO) for Solving constrained SOPs 
 

Multi-objective optimization (MO) methods, as the 
name suggests, deal with finding optimal solutions to 
multiple objective optimization problems (MOPs). In a 
MOP, the presences of conflicting objectives give rise to a 
set of optimal solutions (called Pareto optimal Solutions 
[3]), instead of a single optimal solution. Thus, it becomes 
essential that a Multi-objective optimization algorithm find 
a wide variety of Pareto optimal solutions, instead of just 
one of them. 

Evolutionary algorithms  (EAs) are a natural choice for 
solving MOPs because of their populations approach. A 
number of Pareto-optimal solutions can be captured in an 
EA population, thereby allowing the DM to find diverse 
multiple Pareto-optimal solutions in one simulation run. In 
addition, the good search abilities of EAs can guarantee 
their good performance when dealing with problems 
having nonconvex search spaces and other difficult 
search spaces [7].  A lot of successful Multi-objective 
evolutionary algorithms (MOEAs), such as VEGA [8], 
NPGA [9], MOGA [10], NSGA [11], SPEA [12] have been 
proposed for EMO. 

To solve the constrained optimization problem defined 
by (1), we first need to convert it to (4) by the way we 
have described above. We then try to find the good 
uniform solutions to approximate the Pareto front [7] 
(Pareto front is the image of the set of optimal solutions) 
of this  MOP by using MOEAs. After we present these 
solutions, including the optimal solution without 
constraint violation and the solutions that violate one or 
some constraints marginally or by a large extent, to the 
DM, he will choose the BEST one from these candidate 
solutions based on his experience, his preference or other 
subjective or objective factors. 
    It is easy to prove that the Pareto front of (4) definitely 
includes the optimal solution of (1). Besides this solution, 
it also comprises the solutions with constraint violations 
and meanwhile with some gains in the objective function.  

 
3.3. Advantages of using EMO in solving 
constrained optimization problems  
 

Constraint handling with EMO has some advantages 
comparing with other constraint handling methods: 
(a) The Pareto front of (4) includes the optimal solution 

of (1), if (1) has a feasible optimal solution. Therefore, 
we can conclude that the optimal solution set we get 
by penalty-function approach is a subset of the 
solution set we get by EMO approach.  

(b) By EMO, the constraint-handling problem can be 
solved in a natural way. There is no need of any 
penalty parameters and penalized objective function. 

(c) Besides the optimal solution of (1), This method can 
provide the DM with the trade-off solutions that 
violate one or some “soft” constraints  marginally or 
by a large extent but have substantial gain in the 
objective function. In figure 1, if the constraint is 
“hard”, that is, no violation is permitted; then the only 
solution is on point A, where the constraint violation 
is zero. If the constraint is  

 
 
 

 
 

“soft”, then the DM can choose his preferable solution, 
which can make the most profits for him, among the whole 
Pareto front. The DM will carry out this posteriori decision 
making, based on his experience, his preference or other 
subjective or objective factors. With the visualization of 
the candidate solutions as in figure 1, the trade-off of the 
objective function and the “soft” constraints can by easily 
carried out by the DM. If we use penalty-function 
approach for constraint handling, then the decision 
process is priori. For the priori decision making process, 
we must decide the weight parameters before optimization, 
which is very difficult for both decision makers and 
optimizators.  
(d) The good search abilities of EAs can guarantee their 

good performance when tackling the problems with 

f(x) 

Constraint violation 
Figure 1. An example for the Pareto front (trade-off) of 

objective function and constraint violation 



nonconvex search spaces and other difficult search 
spaces. 

(e) It can handle over-constrained problems. In figure 1, if 
the minimum of the constraint violation is above zero, 
then the whole search space is infeasible (this more 
likely happens, if the problem has more constraints 
and there are no points where every constraints 
equals zero). To solve this kind of problems, we must 
release or compromise some constraints. This 
compromise decision process is problem-dependent. 
With the group of nondominated solutions presented 
by this method, the DM, who has more knowledge of 
the real mean of the problem than the computer 
scientists can determine which constraints 
compromise and how much they need to compromise 
and therefore choose the best solution. 

When practical considering, we are usually interested in 
the solutions, which are biased towards the region where 
all constraint violations are small. In figure 1, although the 
DM can choose his favorite solution from the whole 
Pareto front, he may be especially interested in the 
solutions within the region AB, where the constraint 
violation are small. Thus, we can use an algorithm, which 
is bias in finding Pareto optimal solutions, namely, which 
can find dense solutions towards the region with small 
constraint violations and lank solutions towards the 
region with large constraint violations. 

 
 
4. Experiments and analyses 
 

To help gain further insight on the effectiveness of this 
EMO constraint handling  approach, a series of 
experimental simulations were run. 

 
4.1. Test functions  
 

Test function 1 (TF1) is an ext remely hard and famous 
constrained optimization problem, known as Bump 
problem [2].  
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Test function 2 (TF2) is a constrained optimization 

problem with two “soft” constraints from [5,6]. 
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4.2. Implementation details 
 

Here, we adopted SEEA [13] as the MOEA for EMO.   
In TF1, we notice that although it has two constraints, 

the second constraint is ineffective, that is, it has no effect 
on the feasible search space. We converted the first 
constraint into an objective; meanwhile, we converted the 
problem into a minimization problem by the duality 
principle. Therefore, TF1 was converted into (7) by the 
means we described in section 3.1: 
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As we discussed in section 3.3, here we integrated the 

bias techniques into SEEA. Since it is easy for this 
integration, we will not explain it in detail. Please refer to [3] 
for the details. The other parameters are set as following: 

 n (problem’s dimension) =2, Max generation=10000; 
Population=50; Number of parents for multi-parent 
crossover = 6; shareσ =0.041. 

TF2 has two “soft” constraints, both of which are 
effective. Therefore we converted TF2 into a three 
objective problem: 
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otherwise

g
(X)fMinimize

XhXfMinimize 
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(8) 

For TF2, we used SEEA directly without bias 
techniques. The other parameters are set as following: 



f2 

 Max generation=10000; Population=80; Number of 
parents for multi-parent crossover = 6; shareσ =0.038. 

 
4.3. Experimental results and discussions  
 

Figure 2 is the Pareto front of (7) we got with bias SEEA 
in a simulation run.  

In Figure 2, f1(x) is TF1’s objective function and f2(x) is the 
first constraint violation of TF1. If the DM is especially 
interested in the solutions, whose constraint violation is less 
than =ε 0.03, there will be five candidate solutions, 
whose objective function values and constraint violations 
are as following, for DM to choose. 

 
Solution 1:  f1= -0.36491219978220,    

f2= 0.00000000000000 
Solution 2:  f1= -0.36565642706854,    

f2= 0.00135722933260 
Solution 3:  f1= -0.37878744522919,    

f2= 0.02577871038941 
Solution 4:  f1= -0.37933409043999,    

f2= 0.02703805632788 
Solution 5:  f1= -0.37987044678696,    

f2= 0.02786564881056 
 
In current literatures [2,14], when n=2, the best solution 

of Bump problem (5) found with penalty-function method 
is 0.36497974587066. Although the DM can use this non-
constraint-violated solution, he will not know how much 
he can gain if slight constraint violations to a certain 
extend are permitted. While our constraint handling 
method can find a group of candidate solutions. We can 
find that although solution 2-5 have constraint violations 
(since f2>0), they meanwhile have substantial gains in the 
objective functions. Basing on the real mean of this 
problem, the DM can make trade-off between constraint 
violations and objective function gains and therefore 
choose his preferable solutions freely to gain more profits. 
The main difference between TF1 and TF2 is that TF2 has 
two “soft” constraints. Therefore we converted TF2 into  
(8), a three objective problem. Consequently, The Pareto 
front of (8) we got with SEEA is of three dimensions, so 
we plot it with three two-dimension graphs. 

Our constraint handling method can give the vivid 
relationship between the objective function and the 
constraints. Figure 3 is the relationship between the 
objective function and the first constraint of TF2, figure 4 
is the relationship between the objective function and the 
second constraint and figure 5 is the relationship between 
the first and the second constraint. From figure 3-5, we 
notice visually that at point A, although the first 
constraint(since f2 >0) is violated, there is a substantial  
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Figure 2. Pareto front of  (7) 

 
Figure 3.  Trade-off front between f1 and f2 

 
Figure 4.  Trade-off front between f1 and f3 

 
Figure 5.  Trade-off front between f2 and f3 
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gain in the objective function, at the same time the second 
constraint (f3=0) is not violated. Therefore, we consider 
point A may be very alluring to the DM. Besides point A, 
the other solutions with different extent constraint 
violations and different extent objective gains also can be 
presented to the DM. All these cannot be realized with 
penalty-function constraint handling method. 
 
5. Conclusion and future work 
 

In this paper, we first analyzed the drawbacks of penalty-
function constraint handling method for nonlinear 
constraint programming. Then we presented a new 
constraint handling method based on EMO. Experimental 
tests demonstrated that this constraint handling method not 
only can find the constrained optimality, but also can 
provide the decision maker with a group of trade-off 
solutions with slightly constraint violation and meanwhile 
with substantial gain in the objective function, This enables 
the DM to have more freedom to choose his  preferred 
solution and therefore exploit more profits in the margin of 
constraint violations, where the constraint violations are 
small or acceptable. In addition, the good search abilities of 
EAs can guarantee their good performance when tackling 
the problems with nonconvex search spaces and other 
difficult search spaces.  

In the near future, we intend to integrate our EMO-
based constraint handling into a decision support system, 
which can offer DM visualization decision support for 
linear and nonlinear constraint programming. We also 
intend to do some experiments of tackling over-
constrained problems with this method and therefore 
extend our system in order to manage over-constrained 
problems . 
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