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1 Introduction

Computation-intensive problems are a great challenge to
general-purpose processors due to the latters’ underlying
sequential architecture. Application-Specific Integrated
Circuits (ASICs) with abundant calculation units are suitable
for such tasks but it takes a long time to develop relevant
systems; also, they are resilient to potential modifications
required to fit new applications. This makes the ASIC
approach prohibitively expensive for small productions and
drives designers in the search of flexible solutions. On the
other hand, in the last decade, there have been significant
Field Programmable Gate Array (FPGA) improvements in
logic resource capacity, speed and architectural features,
thus presenting us with a configuration-based alternative
to high-performance computing. Although FPGAs have
been used in the past primarily for prototyping and digital
glue-logic purposes, several recent high-performance
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computers contain FPGAs (e.g. Cray). Also, impressive
performance improvement has been reported for applications
running on reconfigurable computing systems containing
FPGAs (Buell et al., 1996; Chang et al., 2005; Gschwind
et al., 2001; Radunovic, 1999; Wang and Ziavras, 2003,
2004; Wawrzynek et al., 1996; Xu and Ziavras, 2005). New
generation FPGAs with million gates have also made feasible
powerful System-On-a-Chip (SOC) designs.

To ease programming with FPGAs and decrease
the overall design time, several types of Intellectual
Property (IP) cores for various application areas are
available by third-party companies or FPGA producers.
General-purpose programmable IP processors are also
available; relevant representative products are the
soft-core NIOS of Altera and the MicroBlaze and PicoBlaze
processors of Xilinx. Hardwired processors, as well,
are sometimes available on FPGA chips, such as the
PowerPC on some Xilinx products. These processors
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have brought about great flexibility in design and can be
used to implement successfully on-chip Single-Instruction
Multiple-Data (SIMD)/Multiple-Instruction Multiple-Data
(MIMD) parallel computing engines (Wang and Ziavras,
2003, 2004; Xu and Ziavras, 2005). Such processor
cores have adopted advanced architectural techniques like
pipelining, caching and branch prediction.

Vector processing is an advanced technique widely
used in supercomputers to achieve high performance by
exploiting regularities in array processing. In real-time
applications, a vector processor may be the best choice
if the application requires a heavy amount of calculations
involving vectors; vector processors can provide high
throughput by applying the same operation simultaneously
to many array/vector elements (Asanovi¢, 1998; Krashinsky
et al., 2004; Wawrzynek et al., 1996). For data parallel
applications, a vector processor can easily outperform Very
Large Instruction Width (VLIW) and superscalar processors
at low cost (Patterson and Hennessy, 2002). An FPGA-based
implementation of a vector processor would be a promising
task. However, a limited memory bandwidth may become a
major bottleneck in vector processors. Fortunately, recent
FPGA-based systems, such as Annapolis Micro Systems
Wildstar boards (Annapmicro web site) and Starbridge
Hypercomputers (Starbridge systems web site), can provide
high memory bandwidth at the gigabyte range by having 4-6
high speed SRAMs connected to one FPGA chip. This makes
the vector processor design on these systems an attractive
approach.

In this paper, we present a programmable vector
processor implemented on the Annapolis Wildstar-II board.
A vector register file having multiple ports is located in the
centre of our vector processor. By dividing it into several
banks, a higher bandwidth can be provided in a much smaller
area. The vector register file is divided into eight banks
where each bank has two read ports and one write port.
The arithmetic units and data memory are also organised
in eight banks to match the vector register file structure.
Alarger number of elements in a vector register can reduce the
effect of the startup time and speed up the execution for large
vectors, but it also increases the circuit complexity and may
cause a dramatic system frequency decrease. Vector registers
with various numbers of elements were implemented, and
their resource usage and resulting speed are reported.

Matrix operations are widely used in various areas such as
power flow analysis, image processing and human-machine
interaction. In this paper, a matrix-oriented linear equation
solver for power flow analysis is employed to show the
efficiency of our vector processor. The repetitive solution
of linear equations is sometimes the most time consuming
part in an application. The traditional solution method
involves forward and backward substitutions (Alvarado
et al., 1990; Wang and Ziavras, 2004). These steps are
essentially sequential and prohibit intense parallel computing
approaches for high-performance. The W-matrix method
has been proposed as an efficient way to solve linear
equations by changing sequential substitutions into matrix
multiplications which can run in parallel (Alvarado et al.,
1990; Enns et al., 1990). Some successful W-matrix solvers
have run on shared-memory parallel computers (Wu and
Bose, 1996), vector supercomputers (Gémez and Betancourt,

1990; Granelli et al., 1993) and multiprocessors (Padilha
and Morelato, 1992). We show that the W-matrix method
works efficiently on our FPGA-based vector processor.
A pseudo-column technique is used to generate longer
vector arrays in the application. Real power network
matrices are used to test our approach and the results are
compared with those of a commercial PC. Our design permits
general-purpose programmability and can be applied to
various other application areas as well. Such applications
having similar types of data parallelism could benefit from
reduced costs and smaller execution times on our vector
processor.

2 Architecture of the vector processor

The vector processor is composed of a vector core and a
tightly coupled five-stage pipelined scalar unit as shown
in Figure 1. It is organised as a Harvard architecture with
separate bus interface units for instruction and data access.
The scalar processor fetches and decodes instructions. It does
the actual work for scalar commands and forwards the vector
instructions to the vector core. The vector core is structured
as eight parallel lanes, where each lane contains a portion
of the vector register file, a floating-point multiplier, a
floating-point adder and connection to the eight-bank
memory system. It can produce up to eight results and get
a maximum of eight data items from the memory banks
per clock cycle. In order to focus on the actual vector
design, the floating-point IP cores were purchased from
Quixilica (Tekmicro web site).

Figure 1 Block diagram of the vector processor
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2.1 Instruction set architecture

Our vector processor has a RISC architecture supporting
24 instructions. There are 16 scalar instructions in the areas of
data transfer, arithmetic operations and programme control.
The other eight instructions run in the vector mode for data
transfers and arithmetic operations. The latter instructions are
of Types A or B, as shown in Figure 2. Type A instructions
use up to two source registers and one destination register.
Type B instructions use one destination register and a
16-bit immediate operand. Although we do not need eight
bits to represent the opcode or registers, it is a good choice
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for a possible extension of the instruction set or register
populations in the future. Two addressing modes are used
in our design: direct and register indexed.

Figure 2 Instruction formats
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We have designed our own assembler to translate programs
written in assembly language into machine code targeting
our system. The dramatically reduced code size resulting
from vector processing makes our programming job easier.
Creating our own compiler for high-level language support
is not an easy task and is beyond the scope of our research.

2.2 Scalar unit

The scalar processor in our system supports 16 instructions
for control, register and memory access and arithmetic
operations. There is a five-stage pipeline (fetch, decode,
execute, memory access and write back) as shown in Figure 3.
This scalar processor includes an Arithmetic Logic Unit
(ALU), aregister file, a data hazard detection unit and a data
forwarding unit. For the sake of simplicity, Figure 3 does
not depict all the hardware. The shaded areas are unique to
the vector system design; they are used to transfer useful
information to the vector core. The ALU is able to deal
with 16-bit integer addition/subtraction and multiplication.
The register file includes 30 general-purpose registers and
two special-purpose registers for vector processing. It
supports two read ports and one write port.

Figure 3  Scalar processor architecture
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The two specialised registers in the register file are used to
control vector operations. They are: Vector-Length Register
(VLR) and Vector-Mask Register (VMR). VLR is used to
control the length of vector operations and VMR indicates
that operations are to be applied only to the vector elements
with corresponding entries equal to 1 in VMR.

To avoid EXE and MEM data hazards due to pipelining,
data hazard detection and forwarding units are implemented.
We must emphasise that all scalar pipeline hazards can
be avoided either with data forwarding or interlocking in
hardware, so scalar instruction scheduling is not required
for correctness; however, it may improve performance. This
greatly eases code writing for our processor.
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2.3 Vector register file

The vector register file lies in the heart of the vector unit.
It provides both temporary storage for intermediate values as
well as the interconnect between the Vector Floating-Point
Units (VFUs) (Asanovi¢, 1998). A straightforward way to
implement the vector register file is to use a single multiported
memory. But this is a very expensive solution requiring many
logic resources that increase the power consumption of the
FPGA chip. Take the example of eight vector registers each
having 32 32-bit elements; the left diagram in Figure 5 shows
the slice usage for a Xilinx XC2V6000 chip and the right
one shows the power consumption assuming that it runs at
70 MHz. We can observe that the slices will be used up
quickly and the power consumption increases greatly for
an increased number of ports. All the results presented in
this paper are after the place-and-route step for the
XC2V6000 chip.

To reduce the cost, we could divide the vector register
file into banks having smaller numbers of registers and ports.
A similar method has been used in a media processor (Rixner
etal., 1998) and a smart memory structure (Mai et al., 2000).
In our design, the vector register file is divided into eight
banks, where each bank has two read ports and one write
port. The Vector Memory Interface (VMI), FPU adder and
FPU multiplier share the read/write ports of the register file
in a time-multiplexed way. Take the example of eight vector
registers, each having 16 32-bit elements; the vector register
file construction and its connections with other components
are shown in Figure 4. The bandwidth of the vector register
file in this configuration can be 6.72 GBytes/sec when
operating at 70 MHz. If the equivalent bandwidth is to
be provided by a single register bank, a register file with
16 read ports and 8 write ports would be required. This is
significantly less efficient in terms of area, speed and power
consumption than the bank-based architecture since the latter
only consumes 24% of the slices and 4.3 W of power while
the resource and power consumptions increase dramatically
with an increase in the number of ports, as shown in Figure 5.
The additional cost of the bank structure corresponds to a
circuit for data transfers between any pair of memory-register
banks. This circuit uses quite a few FPGA resources and
lies in the critical path; but comparing to the single register
file implementation, this resource usage is much smaller and
does not change the fact that the bank structure is much more
efficient than the single block implementation.

Figure 4 Vector register file organisation
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Figure 5 Resource and power consumption for
single-block implementation of a vector
register file containing eight vector registers
of 32 32-bit elements
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Besides the structure of the vector register file, we
also need to determine its size. Eight vector registers
are chosen in our implementation. Although increasing
the number of vector registers can reduce the memory
bandwidth requirements by allowing more data reuse, most
matrix-based applications have little data reuse. Thus,
eight vector registers suffice and can demonstrate the
effectiveness of our design. Each vector element has 32 bits,
which is required for single-precision floating-point
calculations. More vector elements in a vector register
could amortise the startup time and speed up the
overall execution; the time to fill up the pipeline is
eight clock cycles for floating-point multiplication and
eleven clock cycles for floating-point addition. So, we
decided to implement as many elements as allowed
by the available resources without increasing the
circuit complexity tremendously. We experimented with
8, 16, 32 and 64 elements per vector in our design.
In Section 3, the resource usage and system frequency of our
vector processor are shown for various numbers of vector
elements.

2.4 Vector memory interface

VMI controls all the data transfers to/from the data memory
banks. It supports scalar loads/stores from/to any data
memory bank, vector loads/stores starting with any data
memory bank and for any length and indexed loads/stores
for sparse matrices. The execution time of vector load/store
and indexed load/store is not deterministic. The starting point
in memory and the length of the data affect the execution time
of these operations. Besides the impact of the vector length,
different data storage patterns in the eight data memory
banks may result in different contention patterns for the
indexed load/store, thus resulting in different execution times.
A circuit implemented with 16 eight-to-one 32-bit
multiplexers is used to transfer data between any pair of
memory-register banks in a single clock cycle.

The vector memory interface uses quite a few FPGA
resources. For example, assume the configuration of eight
vector registers each having 32 32-bit elements; the vector
memory interface consumes 5% of the flip flops, 21% of the
LUTSs and 24% of the slices in the XC2V6000 chip, which is
equivalent to 143,081 system gates out of the 6 M available.

2.5 Data storage structures

Three levels of data storage are used in this implementation:
separate register files in the scalar and vector units; an
instruction memory and two sets of eight data memory banks
using on-chip RAMs; finally, the host computer which is
temporarily used as a substitute for off-chip SRAMs.

The register file in the scalar unit can hold 32 words and
the register fie in the vector unit can hold up to 512 words
for the 64-element configuration. The instruction memory
has 256 x 32 bits and each data memory bank has 512 x 32
bits. There are two sets of eight data memory banks each,
so the on-chip data memory can have up to 32 Kbytes.
Besides our consideration to match the eight vector register
banks, it is always better to divide deep memories into several
smaller parts for better performance. Actually, if we do not
divide the 32 Kbytes into 16 banks, this design cannot satisfy
the time requirements for communications between the host
and the FPGA board.

3 FPGA implementation

Our vector processor resides in one of the two Xilinx
XC2V6000-5 chips on the Annapolis Micro Systems
Wildstar-1I board. In this section, we will present an overview
of this FPGA platform, our design flow, an overview of
the FPGA chip structure and the resource usage for our
implementation.

3.1 Overview of the Wildstar-1I board

The Wildstar-II board contains two Xilinx Virtex II
XC2V6000-5 chips. Each chip is surrounded by six Samsung
512kx36 DDR SRAMs; each SRAM has a 36-pin connection
to the FPGA chip. The Wildstar board can be mounted on
the mother board of a commercial PC through a PCI socket.
Software API libraries on the host computer and interfaces to
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the PCI bus on the FPGA side are provided by Annapolis for
communications via the PCI bus between the board and the
host computer. The registers, on-chip memory and off-chip
memory can be written/read by the host computer.

3.2 Design flow

For our vector processor, we employed an HDL-based design
flow: all the processor components were first described
in a subset of synthesisation VHDL, then Modelsim was
used for gate-level simulation to check for correctness and
Synplify pro was then chosen for synthesis; at last, Xilinx
place-and-route tools were used to put the design on
the FPGA chip. Other development tools, such as Viva
of Starbridge Systems (Starbridge Systems web site) and
Corefire of Annapolis Micro Systems (Annapmicro web site),
are also available in our laboratory. These tools generally
provide user friendly graphic interfaces and incorporate a
bunch of high-performance IP cores. The user can just use
a ‘drag and drop approach’. They aim to be a substitute
for hardware-based methodologies like VHDL and Verilog
by providing a much quicker and flexible approach. Their
benefit is short design time and development that does not
descend into low-level hardware details. But, on the other
hand, they limit the designer’s control and, therefore, the
hardware implementation can be hardly fully optimised. Our
experiments show that a processor written in VHDL and
running at 90 MHz on the Annapolis Wildstar-II board can
only run at 60 MHz when designed by Corefire.

3.3 Resource usage

Advanced FPGA organisations are characterised by large
numbers of programmable logic cells, abundant dedicated
functional units and high system speed. The distinct
complexity and structure of the logic resources is often used
to distinguish among FPGA families (Gschwind et al., 2001).
In the following, we focus on the Xilinx Virtex-1I series
of FPGA chips that serve as the platform for our
vector processor. More recent Xilinx FPGAs, like the
Virtex-II pro and Virtex-4, improve chip programmability by
incorporating hardcore processors, third-party IPs and DSP
slices. However, these types of resources are not appropriate
for our vector design.

There are two kinds of programmable resources in FPGAs:
logic and routing. The basic logic element in a Xilinx FPGA
is the Configurable Logic Block (CLB); each block is tied
to a switch matrix for routing. In the Xilinx Virtex-II series,
each CLB includes four slices and each slice contains two
four-input function generators, two carry-generating logic
elements, arithmetic logic gates, wide function multiplexors
and two storage elements, as shown in Figure 6. The Xilinx
XC2V6000 chip contains 33,792 slices, 144 18-bit x 18-bit
multiplier blocks, 144 18 kbit block memories as dedicated
functional units and up to 1104 I/O pins. It has a total of
six million system gates. A system gate is equivalent to an
NAND gate in ASIC technology. The capacity of this chip is
large enough for our medium-complexity processor design.

For efficient usage of the available logic resources
and better performance, dedicated functional units on the
FPGA chip are used whenever possible. In our design,
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the instruction memory and 16 data memory banks are
implemented with block memories. Each block memory on
the Xilinx XC2V6000 chip can hold 512 x 36 bits of data
and each data memory bank in our processor is designed as a
512 x 32-bit storage unit to fit in one block. About 17 out
of the 144 block memories are used. One of them is used for
the 256 x 32-bit instruction memory. Deeper data memories
are not used because of our timing constraints. Increasing the
block memory size can increase the complexity of the circuit
routing process and can cause system frequency reduction.
The eight floating-point multipliers and the 16-bit integer
multiplier are implemented with 18-bitx 18-bit dedicated
multipliers; 33 out of the 144 multiplier blocks are used.
The vector register banks are implemented with distributed
RAMs configured by function generators, as shown in
Figure 6.

Figure 6 Slice structure of the Xilinx Virtex-II FPGA
series (Xilinx web site)
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There are eight vector registers in our design and various
numbers of elements per vector register were investigated:
8, 16, 32 and 64. Table 1 shows the resource usage of these
different implementations for the XC2V6000 chip. It can be
observed that 64 is the largest number of element that we can
achieve limited by the slice resources. With the increased
circuit complexity and congestion of the on-chip routing
resources for more elements, the system frequency of the
design drops from 70 MHz for 8, 16 and 32 elements to
62.5 MHz for 64 elements. A more substantial frequency
reduction should be expected for more elements.

Table1 Resource usage as a function of the elements

per vector register

Element size  Flip flops % LUTs % Slices % System gates

8 13 23 34 1, 605, 040
16 14 32 43 1,651,709
32 16 44 63 1,874, 184
64 21 75 99 2,328,603

4 The W-matrix method

Numerous practical problems in many application areas
require the repetitive solution of a set of linear equations
given in the form

Ax =b (1
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where A is a large, sparse and symmetric matrix (Alvarado
et al., 1990; Enns et al., 1990; Gomez and Betancourt, 1990;
Granelli et al., 1993; Padilha and Morelato, 1992). In some
application areas, like power engineering, A is extremely
sparse, often containing less than 7% of non-zero elements.
A conventional way to derive the solution is to factorise
matrix A into triangular matrices and then calculate the
result by substitutions; these are computation-intensive and
essentially sequential processes (Enns et al., 1990; Wang and
Ziavras, 2003, 2004). Many efforts have been made to apply
parallel processing. For example, the W-matrix method that
was proposed for power flow analysis (Alvarado et al., 1990;
Enns et al., 1990) uses inverse triangular matrices to get
the solution via matrix-vector multiplications. Unlike the
inverse of a sparse matrix, which is almost full, the inverses
of sparse triangular factors using the W-matrix partitioning
method are sparse, though less sparse than the factors
themselves. We have for the solution:

x=A"=LDU)'b=U"'"D'L™D ()

where L, D and U represent the decomposition of A into
a lower triangular, diagonal and upper triangular matrix,
respectively. With appropriate ordering (Alvarado et al.,
1990), we can first reduce the factorisation fill-ins and
factorise A into the form L DLT. After this ordering, assume
that W= L~'. Then, (2) can be rewritten as:

x=W'D"'wb (3)
It is obvious that (3) can be solved in three steps:

:=Wb;y=D"'z; x=WTy 4)

that replace forward and backward substitutions with
matrix-vector products. Within each step, all multiplications
can be carried out concurrently, which is suitable for
parallel programming and vector computing. W-matrix is
associated with algorithms that partition the inverses of
L and U into elementary matrices with no fill-ins or only user
controlled fill-ins. Based on Alvarado et al. (1990) and Enns
et al. (1990), we can write matrix L as

L=LL,--L, (5)

where L; is an identity matrix except that its ith column is
actually the ith column of matrix L. Then:

W=L"=L"L" - L' =W, W,_---W, (6)

where W, is equal to L, with the sign of its off-diagonal
elements reversed. Plugging (6) into (3), we get the
expression:

x=W'WS - -WIDT'W,- - - W, Wb (7)

To avoid fill-ins induced in (7), we need 2n + 1 sequential
steps of multiplication to get the final solution; it has
no advantage over the common substitution method. But
according to Alvarado et al. (1990) and Enns et al. (1990),
adjacent matrices W;, for 1 < i < n, can be combined in
several ways to form various partitions:

x=WW) - - W D'W,. - Wo Wb 8)

Now the triangular factors are partitioned into p parts,
where we can have p <« n for a large n. According

to (8), the solution x can be obtained after 2p + 1 steps,
where many operations can be executed concurrently in each
matrix-vector product step. Different reordering and
partitioning schemes based on the factorisation path length
tree (Alvarado et al., 1990; Enns et al., 1990) show that the
W partitions can be chosen without adding new fill-ins or with
adding only user controlled fill-ins in efforts to minimise the
number of arithmetic operations. Thus, the combined sparsity
of the p factors can be the same as that of L.

5 W-matrix implementation on the
vector processor

Before mapping the W-matrix method to the vector
processor, we introduce the pseudo-column and last partition
notions in Sections 5.1 and 5.2, respectively and then modify
the linear equation solver accordingly. ‘Pseudo-column’is an
effective way to arrange the storage for the W-matrix partition
using long vectors. The ‘last partition’ method combines the
last lower triangular matrix with the last upper triangular
matrix into a unique one in order to reduce the overall process
by one big step.

5.1 Pseudo-column

Efforts to implement the W-matrix method on vector
supercomputers began in 1990 (Gémez and Betancourt,
1990). However, they did not yield good performance
because the sparsity in the matrices and the recurrence
problem force the linear algebra solution to use short vectors.
The performance of the vector processor highly depends
on the length of the vectorisable do-loop; the longer the
vector, the better the performance. To solve the above
short vector problem, the concept of pseudo-column was
proposed (Granelli et al., 1993). The recurrence problem,
normally affecting the addition part in the linear equation
solver, can be eliminated if each pseudo-column contains
only matrix elements having different row indices as shown in
Figure 7 (Granelli et al., 1993). Also, this way columns of a
W-matrix partition are combined to achieve greater column
density, resulting in better vectorisation. The linear equation
algorithm in this paper uses the pseudo-column method to
store W-matrix data. Thus, in each W-matrix partition the
multiplication and addition operations can be realised with
long vectorisable loops.

Figure 7 Storage arrangement for W-matrix partitioning:
(a) original columns and (b) pseudo-columns
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Source: Granelli et al. (1993).
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5.2 Last partition

Since the last partition W, in (8) is always very dense, actually
almost full in our experiments, it becomes advantageous to
combine W, and W; into a unique one (Padilha and Morelato,
1992) (8) can then be expressed as:

x=WW)---W D D 'W, - -W, Wb

©))
=WIW,---D,\ W D' W, -W, Wb

where the diagonal matrix D~ is split into D;ﬂl, concerning

the previous p — 1 partitions and Dl_pl, concerning the last

partition. Let W, = W; Dfpl W, (9) can then be written as:
x=WW)-- W D,\W,W, - -W,W,b  (10)

This partitioning reduces the number of serial matrix-vector
multiplication steps by combining the forward, diagonal
and backward calculations into one piece. Also, no more
pseudo-columns will be generated because the last row in the
last partition is always full and only a few non-zero numbers
will be induced, therefore performance can be improved.

6 Performance results

W-matrix was used to test the performance of our vector
processor. Real matrices from the power flow area were
taken as input. Additional computation-intensive applications
as well, like dense/sparse matrix-matrix/matrix-vector
multiplication, can run on the vector processor and yield good
performance. In the following subsections, we discuss how
to map the W-matrix linear equation solver onto our vector
processor and a comparison with a Dell PC is performed
as well.

6.1 Mapping the W-matrix method onto the
vector processor

At static time algorithms for approximate minimum degree
ordering and LU factorisation were applied to the input
matrix, then the elimination tree of the matrix was generated
and the W-matrix was finally transformed based on the
path lengths in the elimination tree (Alvarado et al., 1990;
Enns et al., 1990). Finding out how to partition the inverse
triangular factors in order to get the shortest solution time
on the vector processor is difficult since there are numerous
ways to form W-matrix partitions. The partitioning method
used in this paper is easy to implement and can also guarantee
good performance. For the sake of brevity, we do not present
the detailed partitioning scheme here; we prefer to focus
on the vector-based operations. Table 2 shows the changes
in the non-zero elements after each preprocessing step
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without counting the diagonal elements. It can be seen
that, after W-matrix factorisation the sparsity of the matrix
is still large. After the W-matrix partitions are formed,
pseudo-columns and the last block are generated by the host
computer, and data is downloaded into the FPGA board for
actual computations. This experiment is suitable for those
applications that require repetitive linear equation solutions
without any change in the input matrices.
We apply these steps:

1 the application program is written in assembly language
and our assembler is used to translate it into machine
code targeting the vector processor

2 the data storage structure is prepared

3 the instructions and initial data are written into the
on-chip instruction and data memories by the host
computer and calculations on the board then begin

4 the vector processor sends a signal to the host computer
for more input data if all the data in the on-chip
memories have been used and calculation is stalled

5 the host fills up the on-chip data memories with
remaining data and forces the vector processor to
continue execution

6 steps (2) and (3) are repeated until the calculation is
finished

7 the final result can be read from the registers or
memories.

A PCI-based transfer can take unacceptably long time due
to the processing time for interrupts targeting the host
computer. In future work, we could use off-chip memories
to store data and do data transfers from off-chip memories to
on-chip memories without stalling the processor. Since each
data item is used exactly once and matrix operations on the
FPGA take a long time, data can be prefetched in an effort to
overlap communications with computations. In this paper, we
emphasise the vector processor design and implementation,
so the memory prefetch part has not been implemented. Thus,
the performance results given in this paper do not include the
stalling time due to data transfers on the PCI bus.

6.2 Performance analysis

The W-matrix method was run on our vector processor to
show that the system can yield high performance for such
complex problems. Since quite a lot of preprocessing work is
needed before FPGA execution, this method is only suitable
for those applications that require iterative calculations using
the same input matrices; this is not uncommon in power
network problems (Alvarado et al., 1990; Enns et al., 1990;
Gomez and Betancourt, 1990; Granelli et al., 1993; Padilha

Table 2  Number of Non-Zero elements (NNZs) after each preprocessing step
Matrix size 49 x 49 118 x 118
Original NNZs 118/4.9% 358/2.6%
NNZs after LU 160/6.7% 526/3.8%
NNZs in W-matrix 265/11% 792/5.7%

443 x 443 1454 x 1454 1723 x 1723
1180/0.6% 3840/0.18% 4782/0.16%
1936/1.0% 6878/0.33% 8984/0.30%
3543/1.8% 11,434/0.54% 14,307/0.48%
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and Morelato, 1992; Wang and Ziavras, 2003, 2004; Wu and
Bose, 1996). Other computationally intensive problems, like
dense/sparse matrix multiplication, are easier to map onto
our vector processing system for good performance.

Figure 8 shows the execution time of the linear equation
solver on our vector processor for various element-size
implementations. When the matrix size is small, 8 or 16
elements per vector register may consume fewer clock cycles
than 32 or 64 elements per vector because the vectorisation
of the small sparse matrix cannot generate large-sized arrays
for the latter cases. With the matrix size increases, more
elements per vector result in fewer clock cycles. The case
of 64 elements per vector is an exception and this can
be explained in two ways. Firstly, a high FPGA logic cell
utilisation (99% slice usage in this case) induces congestion
of the on-chip routing resources, thus decreasing the system
clock rate (62.5 MHz); secondly, the size of the test matrices
is still not large enough to show the efficiency of the approach.
It is not easy to tell whether 32 or 64 is better; 64 elements
may yield better performance for a larger or denser matrix.
We can only say that for our input matrices, the vector
processor implementation with 32 elements per vector is a
good choice.

Figure 8 W-matrix execution times for various vector sizes
(elex: x elements per vector register)
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Figure 9 shows a performance comparison with a 1.2 GHz
Pentium-III processor. We assumed 32 elements per vector
for the processor implementation in our comparison with
the PC. We can observe from Figure 9 that the clock cycles
used on the vector processor are about 1000 times fewer than
those on the PC. The performance gain comes from the well
designed data storage scheme, the tightly coupled on-chip
memory and the abundant floating-point units. But, because
of the low frequency (70 MHz) of the FPGA organisation,
the real speedup is not significant. A more recent FPGA
could yield much higher performance. Despite the low
frequency, we can still see that our vector processor on the

FPGA board can outperform the PC for larger matrices.
The results prove that SOC designs on FPGA boards
can provide high-performance vector-processing systems at
low cost.

Figure 9 Performance comparison of our vector processor
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7 Conclusions

New generation, million-gate FPGAs have become
increasingly attractive for high performance and cost
effective SOC designs. Additionally, FPGA providers
continue to decrease their price. The cost of logic cells has
been reduced 30-fold from their introduction, to as little
as less than 50 cents for 1000 logic cells. We presented in this
paper a vector processor implemented on an FPGA platform.
This vector processor has abundant parallel calculation
units and supports floating-point calculations. Specialised
hardware and respective user instructions for efficient sparse
matrix operations were implemented as well. W-matrix, a
linear equation solution method that enhances parallelism
for sparse matrices, was mapped onto the vector processor.
Our comparison with a commercial PC demonstrates
that our implementation is very efficient despite its low
frequency. With continued advances in FPGA technologies,
the expected increased speeds and densities could yield
much better performance in the near future for such
computationally intensive problems on FPGA-based vector
implementations.
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