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Abstract 
Hierarchically-structured arrays of processors 

have been widely used in the low-level and the 
intermediate-level phases of computer vision. This 
is because tasks in these phases require both lo-
cal and global operations, when the two-dimensional 
array structure of the image is considered. This 
paper introduces mapping (process assignment) 
algorithms for systems in the above class. It is 
the first time in parallel computer vision that 
both the domain and the range of the mapping 
functions are in a general set of hierarchically­
structured arrays of processors. More specif­
ically, the systems being studied here are not 
necessarily homogeneous; the processing pow-
ers of processors at different levels and the re­
ductions between different pairs of consecutive 
levels are allowed to vary. Efficient mapping is 
achieved by first proposing objective functions, 
so that each objective function measures the 
quality of a given mapping with respect to a par­
ticular optimization goal. Mapping algorithms, 
one for each objective function, that attempt 
to produce an optimal mapping by minimizing 
the corresponding objective function, are then 
proposed. It is proven theoretically that our 
mapping algorithms always yield an optimal so­
lution for systems composed of processors with 
identical processing powers. In all other cases, 
some assignment choices in the algorithms allow 
to take advantage of the increased processing 
powers of processors. 

1 INTRODUCTION 

The main goal of the low-level and the intermediate­
level phases of computer vision is to locate objects present 
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in images and then produce a description of them' this 
description is then used by the high-level image u�der­
standing tasks to identify individual objects and their 
spatial relationships in the given scene. The first two 
phases of computer vision are characterized by both lo­
cal and global operations, when the two-dimensional ar­
ray structure of the image is considered, with the ma­
jority of the operations being local [Ro84]. Pyramid 
machines, which consist of successive layers of Mesh­
Connected arrays of Computers (MCC), of size decreas­
ing with the increase of the level number (if the lowest 
leve� number corresponds to the fine�t array), support 
effiCIently both local and global operatIOns IMLL88, Ro84, 
Uh87]; they are also very suitable for divide-and-conquer 
types of cOInputations. Most of the times, the design is 
based on the (standard) pyramid, where each PE at a 
higher level has four sons at the level below. 

As noted in [CaLe88], any of two major strategies 
may be followed to build a pyramid machine: (1) us­
ing fine granularity, where one PE per image pixel is 
conceived at each level, and (2) using coarse granular­
ity, where one microprocessor is associated to an image 
block (since the VLSI technology may not support the 
utilization of fine granularity within a reasonable cost). 
There are two major categories of pyramid machines 
that differ in their control structure: the SIMD pyramid 
[Dy81, TaB3] and the MSIMD (Multiple SIMD) pyramid 
[CIMe87], which is of the SIMD type in each level. Of 
course, the first category of pyramidal systems can be 
considered a subset of the second category, because all 
the operations of a member in the former category can 
be implemented by the corresponding member in the 
latter category (by synchronization of its controllers) 
without loss of efficiency. Emphasis is given to MSIMD 
systems in this research. 

Multiresolution (pyramid) structures have been sim­
ulated on arrays and hypercubes [ChSa86, Re86, St86]. 
We now present the most important reasons that may 
make pyramid machines more cost effective and/or more 
efficient than hypercube systems; we will make this com­
parison because commercial systems of the latter type 
have been widely used for scientific applications [Hi85]' 
including computer vision. If more than one levels of 
the pyramid are assumed to be active at a time on dif­
ferent tasks (for example, pipelining [AhSw84] or con-



current multi-Ievdprocessing /ChSa86, Te85», then the 
(MSIMD) pyramid will be more cost-effective mainly 
because it has as many controllers as levels, while the 
hypercube will need to operate in the MIMD mode 
(which means that each processor in the system needs 
to have its own controller). Another reason that makes 
the pyramid machine more cost-effective is that it has a 
much smaller number of communication channels. Con­
current multi-levEl! algorithms do not also seem as well­
suited to the hYPE!rcube, if distinct nodes from the pyra­
mid need to be mapped onto distinct nodes of the hyper­
cube, with the distances between "lateral" neighbors be­
ing one and betw�!en "vertical" neighbors being at most 
two, since one has to use a hypercube of one higher 
dimension than that needed for just the finest mesh 
[ChSaB6j; if the size of the finest mesh is 2nx2n nodes, 
then the pyramid has lz2(n+1) /3 J PE's and 2n+2(zn_l) 
bidirectional challlnels, while the hypercube has 22n+l 
PE's and (Zn + 1)22n bidirectional channels. If a hy­
percube system having as many PE's as the base of the 
pyramid is considered, then for the above cases and for 
pipelining with ';he same operation at all levels (i.e., 
for algorithms that are also appropriate for SIMD ma­
chines), the performance of the hypercube will be lower 
compared with the performance of the pyramid; this is 
because there will be processors in the hypercube as­
signed to more than one levels of the multiresolution 
structure /St86j, so the hypercube will basically be ca­
pable of simulating only one level of the pyramid at a 
time. If SIMD systems without pipelining or concurrent 
multi-level processing are considered, then the hyper­
cube can offer performance comparable to that of the 
pyramid. Thus, im most of the cases a pyramid machine 
delivers more throughput and is more cost-effective than 
a hypercube machine for this kind of a.pplica.tions. 

Of interest toO this study is also the simulation of 
multiresolution structures on arrays of processors, be­
cause our mapping algorithms will also be applicable in 
that case. A mapping of a pyramid onto a fiat array has 
been presented in [CaLe88] to obtain the maximum of 
efficiency, hardware economy, and modular simplicity. 
Each PE belong8 to at most two different levels, when 
the corresponding mapping is considered: the base level 
and a higher levd. Fig. 1 shows the mapping for a stan­
dard pyramid of four levels (the finest array is at level 0). 
The above mapping of PE's onto the two-dimensional 
grid produces a planar recursive distribution similar to 
the one of the balanced binary tree with a number of 
nodes equal to 2n - 1, where n is a positive integer. 

In this paper, the mapping (process assignment) prob­
lem is considered in such a way that both the domain 
(containing SOUl"Ce architectures) and the range (con­
taining target architectures) of the mapping functions 
are in the set of multi-level systems. 

Definition 1. Multi-level systems are pyramid-like 
systems (that is, systems composed of successive lay­
ers of mesh-connected arrays of PE's, where the num­
ber of PE's in the arrays decreases with the increase of 
the level number, only pairs of consecutive levels are al­
lowed to communicate directly with each other, PE's are 
connected to ea,:h other by point-to-point bidirectional 
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Fig. 1. Embedding a pyramid of four 
levels in a flat array [CaLe88]. 

communication channels, and the number of data trans­
fer registers (DTR's) of any PE is equal to the number 
of its communication channels) that have the follow­
ing characteristics: (1) they are homogeneous at each 
level (that is, all PE's of a single level are of the same 
type); (2) they may be heterogeneous between different 
levels; more specifically, the processing powers of PE's 
are allowed to stay the same between pairs of consec­
utive levels, or to increase with the level number; the 
formal definition of a PE's processing power is given in 
Definition 2 below; we assume that the bandwidths of 
channels also increase proportionally to the processing 
powers, to avoid bottlenecks caused by communications; 
systems where the "processing power" of PE's increases 
with the level number are sometimes very powerful for 
this kind of applications [Uh87:1; (3) they have any num­
ber of levels (i.e., between 1 - fiat array - and k, where 
k > 1, levels), which means that they are not neces­
sarily single-rooted systems; (4) they have reductions 
of size Zmx2m, where m are natural numbers, between 
consecutive levels (the reductions are not forced to be 
the same for all pairs of consec:utive levels); and finally, 
(5) there is a single controller per level (MSIMD mode 
of parallelism). 

Definition 2. The proceslling power of a PE is de­
fined to be the frequency it is driven at, divided by the 
average instruction cycles; th,� avera.ge instruction cy­
cles is obtained by summing up the number of cycles 
for all the instructions in the processor's instruction set 
and then dividing the result by the total number of in­
structions. 
The average instruction cycl��s has been used as the 
most important metric to distinguish between RISe 
(Reduced Instruction Set Computers) and CISC (Com­
plex Instruction Set Computers) processors /Ka85]i it is 
a good measure of comparing the speed of two proces­
sors driven at the same frequency. 

The kind of mappings being studied in this paper, 
for multi-level source and target architectures, may be 
necessary for one or more of the following reasons: (1) a 
target architecture with a few levels is considered, which 



is more cost-effective than the source architecture corre­
sponding to a particular application algorithm, because 
the former architecture has fewer PE's and communi­
cation channels; (2) the reductions in the source are 
different from the reductions in the target architecture; 
(3) the algorithms are designed for the most efficient 
multi-level architectures (Le., the ones that correspond 
to the smallest amount of operations) and their porta­
bility to existing (target) architectures is required; and 
(4) the efficiencies of different target architectures in 
simulating a source architecture need to be compared. 
It is the first time in parallel computer vision that the 
mapping problem is considered in such a way that both 
the domain and the range of the mapping functions are 
in a general set of pyramid-like systems. Another in­
novation of our research is that it also allows for some 
degree of heterogeneity in those systems. It is worthy 
mentioning at this point that, if our mapping procedure 
is applied for the simulation of a standard pyramid on a 
flat array, then the obtained mapping will be identical 
to the one proposed in [CaLe88] . 

The paper is organized as follows. In order to pro­
duce mappings of the maximum of efficiency, objective 
functions are proposed in the next section, to measure 
the quality of a given mapping with respect to particular 
optimization goals. The set of inputs to our mapping al­
gorithms are also presented in the same section. Then 
our mapping algorithms (one for each objective func­
tion) , whose goals will be to minimize the previously 
mentioned objective functions, are proposed in Section 
3. A theorem is also presented which states that, any 
of our mapping algorithms achieves its ultimate goal by 
always minimizing the corresponding objective function 
for systems composed of PE's having identical process­
ing powers. Some illustrative examples of mapping are 
discussed in Section 4, while some tables corresponding 
to a large number of example systems and containing 
the parameters of the mappings (obtained through the 
application of our mapping algorithms) ' are presented 
in Section 5. Finally, the conclusions (Section 6) and 
an appendix containing some theorems, on which our 
mapping algorithms are based, are presented. 

2 THE MAPPING PROBLEM 
2.1 AN INTRODUCTION 

The solution to the mapping problem for application 
algorithms is generally composed of two phases: proces s 
as s ignment and s cheduling [B081, BoMiSS]. The process 
assignment problem for systems composed of identical 
PE's concerns in general with the mapping of nodes 
(processes) from a given source architecture (having a 
graph representation corresponding to an application 
algorithm) onto the nodes (PE's) of a given target ar­
chitecture, in a manner that minimizes the distances be­
tween communicating PE's, but maximizes the number 
of processes mapped onto distinct PE's. The scheduling 
problem concerns with the efficient implementation of 
the communication patterns and the scheduling of the 
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operations on the target architecture, after the process 
assignment phase is complete. 

In this paper, we deal only with the process assign­
ment phase of the solution to the mapping problem, so 
the terms process assignment and mapping will be used 
interchangeably from now on. Our mapping algorithms 
formally yield assignments f of type 

f = {i � j, (i, Xi, Vi) � (3', X�" yj) 
with x�. = h(Xi) and yj = fdyd} 

In the above, "i t-+ i" represents the mapping of level 
i from the source architecture onto level j of the tar­
get architecture; "(i, Xi, vd � (i, xi, v;·)" represents the 
mapping of the PE with Cartesian coordinates (Xi, yol 
at level i of the source architecture onto the PE with 
Cartesian coordinates (x�., y�.) at level j of the target 
architecture. 

We propose two mapping algorithms in this research, 
based on the identification of two classes of vision algo­
rithms for multi-level systems. The first class of vision 
algorithms, say class A, corresponds to single image pro­
cessing without concun-ency at different levels (i.e., one 
level of the source architecture is active at any time) , 
while the second class of algorithms, say clas s B, corre­
sponds to single-image concurrent multi-level processing 
(e.g., [Te85]) and pipelining. We distinguish between 
the two classes based on the performance requirements 
of vision algorithms with respect to the required utiliza­
tion of levels on a multi-level system. More specifically, 
the minimization of the total image turnaround time, 
irrespective of the utilization of levels on the target ar­
chitecture, is the optimization goal for algorithms in 
class A; however, the maximization of the throughput 
in the case of multiple image processing, and the mini­
mization of the total image turnaround time in the case 
of single-image concurrent multi-level processing (Le., 
for algorithms in class B), require the minimization of 
the workload, corresponding to the processing of a sin­
gle image, for each active level of the target architecture; 
this is because the level with the highest utilization will 
be the bottleneck of the system for the particular algo­
rithm. Objective functions, one for each dass of vision 
algorithms, are proposed in the next section, so that 
each objective function will measure the quality of a 
given mapping with respect to the corresponding opti­
mization goal. Two mapping algorithms -one for each 
objective function- whose goals will be the minimization 
of the corresponding objective functions, are presented 
in Section 3. 

Before we propose the objective functions that our 
mapping algorithms will attempt to minimize, let us see 
the input sets required by these algorithms. There are 
two sets of inputs, one set corresponding to the source 
architecture and the other one corresponding to the tar­
get architecture. We will start with the set of input val­
ues that uniquely describe the structure of the source 
architecture. 

The s et of input values for the s ource architecture 
are: 
- n: 2nx2n is the number of nodes at the lowest level; 
- l: the number of levels; 



: an array of�alueB ri,i+l, for 0 � i � l-2: ri,i+lxri,Hl 
IS the re?uct!on from level i towards level i + 1 (this 
actually ImplIes that the number of nodes at level i will 
be equal to 2nx2n /(It':� rj,i+lX n;":,� rj,j+1))' 

The set of inlnLt values for the target architecture 
are: 
- N: 2N x2N is thl� number of PE's at the lowest level' , 
- L: the number of levels; 
- an array of values �,i+lJ for 0 � i � L-2: �,i+lxRi,i+l 
is the reduction from level i towards level i + 1; 
- an array of values Pi, for 0 � i � L - 1: Pi represents 
the processing power of a single PE at level i. 

2.2 THE OBJECTIVE FUNCTIONS 

We will first propose the objective function which is ap­
propriate for vision algorithms in class A. As already 
emphasized in Section 2.1, our main objective for al­
gorithms in class A is the minimization of the total 
image turnaround time. To achieve our objective, we 
need to maximizE� the number of pairs of neighboring 
nodes (processes) from the source architecture that fall 
on pairs of direct;ly connected PE's in the target ar­
chitecture, while l;he workload (expressed in number of 
assigned processes) of target PE's will be kept as low as 
possible. 

The objective function that we have chosen to min­
imize for algorithms in class A, and for systems that 
contain PE's with identical processing powers, is 

/-1 
I:T?Di 
1=0 

where - Tl: the number of nodes from level i of the source 
that are mapped onto a single PE of the target architec­
ture; from now on, we will be calling T� the shrinking 

" . 
factor of level z obtained by the chosen mapping; � will 
represent the shrinking factor of level i for the corre­
sponding one-dimensional system. 

- Di: the distance between any two PE's in the 
target onto which two (4-connected) neighboring nodes 
from level i of the source architecture are mapped; if 
1i > 1 then we assign Di = 1 (not zero), because the 
maximum distance between "neighbors" will be one (it 
is based on the fact that if all PE's of a single level are 
synchronized, then the connection with the largest com­
munication cost determines the overall performance). 
From now on, we will be calling Di the dilation of level i 
obtained by the chosen mapping. 
The component of the mapping function of Section 2.1 
v.:ill be then given by: fi{Z,:} = rZiDi/1il, where Zi is 
eIther Xi or Yi. 

This objective function corresponds to the total im­
age turnaround time, which is the sum of the total 
computation and the total communication times. The 
choice of the above objective function as an appropri­
ate qualitative measure of the total image turnaround 
time on the target architecture is based on the follow­
ing issues: (I) the total computation time for level i is 

proportional to Tl; (2) the total lateral communication 
time for level i is proportional I�O 1t2 Di; (3) the total 
vertical communication time between the pair of levels 
hand i (where h is either i-lor i + 1) is proportional 
to 1t2T�· (largest vertical distance); this distance is a 
function of Di and/or Dh; (4) the term 1t2 Di domi­
nates the term T? and is in general a component of the 
last term; and (5) the deletion of the term that corre­
sponds to the total vertical communication time can be 
justified based on the following issues: (5.i) the mini­
mization of T� is taken indirectly into consideration in 
the minimization of the term T� Dhi (5.ii) our corre­
sponding mapping algorithm has all inherent property 
that helps to minimize the verl;ical distances between 
communicating nodes. More specifically, our algorithm 
always achieves the following: if there are appropriate 
reductions in the target architecture, then a particular 
node from level a and its children from level a-I of 
the source architecture a.re mapped onto PE e .. of level 
T and the set of PE's O<p of level tp respectively in the 
target architecture, where tp < 1", so that the set of PE's 
O<p are directly visible from € ... The following definition 
is pertinent. 

Definition 3. A set of PEls 0"" at a. level tp are said 
to be directly visible from PE f .. of a higher level T, if 
they are located within a sub-prramid whose root is � ... 
Otherwise (i.e., if there are not appropriate reductions 
in the target architecture) the node of level a is mapped 
in the middle of a square defined by a collection of PE's; 
the set 0"" of PE's are then directly visible from the 
PE's of that collection. 

For systems where the processing powers of PE's 
may differ between different levels, an assignment with 
Ti = Di = 1 (which guarantees the smallest possible 
value for the contribution of lev,al i to the objective func­
tion) is chosen, if it exists; otherwise, the inverses of the 
processing powers of PE's at different levels are used 
as weights to the corresponding terms T? Di in order to 
decide about the best assignmEmt. 

The objective function that we have chosen to min­
imize for vision algorithms in class B is 

where the sets F and Sj are defined as follows 
F={j / a level of the target onto which one or more lev­
els from the source architecturl� are mapped}, and 
Sj={i / a level from the source architecture mapped 
onto level jfF}. This objective function will be a qual­
itative measure of the maximum workload for a single 
level of the target architecture. 

Of course, a mapping algorithm whose optimization 
goal would be the minimization of one of the above ob­
jective functions, would normally have much lower com­
plexity than a mapping algorithm whose optimization 
goal would take the detailed computation and commu­
nication requirements of any particular application al­
gorithm -designed for a source architecture- into con­
sideration [Zi89]. 
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3 THE MAPPING ALGORITHMS 

We describe in this section our two mapping algorithms 
-one for each objective function-, whose optimization 
goals will be the minimization of the objective functions 
in the preceding section. A theorem is also presented to 
prove that our mapping algorithms always achieve their 
goal by yielding optimal solutions for systems composed 
of identical PE's. Some theorems related to the formu­
lae on which our algorithms are based, along with the 
corresponding proofs, are presented in the appendix. 
Let us now present the definition of a term to be used 
throughout the description of the mapping algorithms. 

Definition 4. The optimal mapping for level i of 
the source architecture (if the mapping of level i-I is 
given) is the mapping that yields 1i = Di = 1; that is, if 
level i is mapped onto level � of the target architecture, 
then in that case every PE of level � will be assigned 
a single process (i.e., a node) from level i of the source 
architecture. 
The optimal mapping of the above definition does not 
necessarily exist on a given target architecture for all 
levels of a given source architecture; the term is used 
to indicate that our main objective here is to get opti­
mal mapping for each level of the source architecture, 
because in that case the contribution of every level i to 
the objective function is minimal (i.e., 1'l D .. = 1). 

We will first present the mapping algorithm for ap­
plication algorithms in class A. We will then briefly de­
scribe the modifications required in that algorithm, in 
order to get a mapping algorithm to minimize the ob­
jective function for application algorithms in class B. 

Our mapping algorithm makes use of the following 
parameters: 
- k: the current level of the source architecture; 
- K: the current level of the target architecture; 
The mapping algorithm is as follows. 

STEP 1: (INITIALIZATION) 
- Level 0 from the source is mapped onto level 0 of 

the target architecture. We assume that N :s: n. If 
N = n, then we have optimal mapping for level 0 of the 
source architecture. If N < n, then every node of level 
o in the target will simulate an array of 2(»-N)x2(»-N) 
nodes from level 0 of the source architecture, so To is 
initialized to 2n-N• In both cases Do is initialized to 1. 

- The parameters k and K are initialized to 1. 
STEP 2: 
The optimal reduction factor for the pair of levels 

k -1 and k of the source architecture, when the param­
eters of the mapping for level k - 1 are given (i.e., the 
reduction in one dimension that yields optimal mapping 
for level k), will be DT1c-l Tk-l k, while the reduction fac-

k-l ' 
tor that the target architecture supports for the pair of 
levels K - 1 and K is RK-l,K. We have to distinguish 
between two cases. 

2.a. If �:�:rk-l.k:S: RK -l,K (that is, if the reduc­
tion factor in the target architecture is greater than or 
equal to the optimal reduction factor) , then one of the 
following two solutions is chosen, as described below. 

2.a.i. If the current level k from the source is mapped 

onto the current level K of the target architecture, we 
get 

and 
Dk ,l = 1 

where Tk,l and Dk,l represent the values of Tk and Dk 
if this assignment is chosen. So, each node of level K 
in the target will be assigned Tt,l processes from level 
k of the source architecture by the mapping algorithm 
in this case. 

2.a.ii. However, if the current level k from the 
source is mapped onto level K - 1 of the target ar­
chitecture, we get 

1i - r Tk-l 1 k,2 - ---
rk - l ,k 

and 

D r
Dk-1 1 k,2 = -1i rk-1,k k-1 

Then, in order to choose from the above two solutions 
the one that delivers more efficiency, we define the relative 
speedup RS1,2 of the first mapping of level k onto level 
K, versus the second mapping onto level K - 1, as the 
ratio 
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RS _ 
PK Tt,2 Dk,2 

12- --, PK-1 T�,lDk,l 
This formula takes the processing powers of PE's at lev­
els K -1 and K of the target architecture into consid­
eration. If RS1,2 > 1, then the first solution can deliver 
more efficiency than the second one, so level k from the 
source is mapped onto level K of the target architec­
ture, and we subsequently assign Til: = Tk,lJ Dk = Dk,l, 
k = k + 1, and K = K + 1. Otherwise (that is, if 
RS1 ,2 :s: 1 ,  level k from the source is mapped onto level 
K -1 of the target architecture and we assign Tk = Tk,2, 
Dk = Dk ,2, and k = k + 1; the PE's of level K - 1 in 
the target that are assigned nodes from level k of the 
source architecture in this case have Cartesian coordi­
nates (iDk+ r � 1-I,jDk+r�1c 1-1), where i and j are 
positive integers and k assumes its current value minus 
1; the Cartesian coordinates of the PE in the upper-left 
corner of each level are (0,0). We choose these Carte­
sian coordinates for PE's to be assigned tasks, because 
the minimization of average distances between pairs of 
parent-child nodes is then guaranteed by allocating a 
parent in the middle of the square defined by its four 
outermost children. 

2.b. If �:�llTk-l,k > RK-l,K (that is, if the reduc­
tion factor required for the optimal mapping of the cur­
rent level is grea.ter tha.n the availa.ble reduction factor 
in the target architecture) , then level k from the source 
is mapped onto level)" of the target architecture, where 
).. is found as shown below. 



2.h.i. If there exists a value v (where v < L) such 

that �:�: Tk-l,k = rr:=K �-l,i' then>. will get the 

value ofv and we set Tk = 1, Dk = 1, k = k-+-1, and K = 

>'-+-1. (rr�=K �-l.,i represents the total reduction in one 
dimension between levels K - 1 -where K assumes its 
previous value- and v.) This is the case when optimal 
mapping for the c:urrent level is achieved, because this 
mapping sets Tk = Dk = 1. Levels k - 1 and k -

where k assumes its previous value- from the source 
will be mapped (>. - Kl - 1) levels away in the target 
architecture, where K 1 is the level number of the target 
onto which level k - 1 from the source architecture is 
mapped. 

2.h.ii. ("Shrinking" in the target architec-
ture.) If �:�: r,le-l,k > rrf=-i �-l,i (that is, if the 

total reduction fa.ctor available, which is obtained by 
combining the reductions of the remaining levels in the 
target architecture, is smaller than the optimal reduc­
tion factor for level k) , we then set>. = L - 1 (that is, 
level k from the source is mapped onto the highest level 

D/i:-l 
• �r"-l,/i: 

of the target ardlltecture) , Tk = 1, Dk = rr� .. � Ri
-

l,i 
' 

k = k -+- 1, and If = L. 
2.h.iii. Otherwise, the largest value >. for which 

DT"-l rk-l k > rr.�-K R;-l i is found, and we then go to Ic-l ' -
, 

D"_l 
• �r"-l,,, 

D Step 2.a WIth rk--l,k = If' ' Tk-1 = 1, k-l = 

.'=KRi-1,i 
1, and K = >. -+- 1, to choose from the two solutions 
that map the current level of the source onto levels A 
and >. -+- 1 respectively of the target architecture, the 
solution that yields the higher speedup. 

STEP 3: 
3.a. If k = t (i.e., there are no more levels in the 

source architecture) we then go to Step 4; 
S.h. if K = L (i.e., there are no more levels in the 

target architecture) ' then the remaining levels from the 
source are mapped onto the highest level of the target 
architecture. The formulae of part 2.a.ii will then be 
applied to find the parameters of these mappings. 

S.C. otherwise (if there are more levels in both the 
source and the ta.rget architectures) we go to Step 2 to 
decide about the assignment of the next level from the 
source architecture. 

STEP 4: 
Stop. 
The modifications required in the previous algorithm, 

in order to achieve the minimization of the objective 
function for application algorithms in class B (which 
was proposed in Section 2) are as follows. 
Change 1. The relative speedup RS1,2 in Step 2.a will 
be given by 

Change 2. The mapping of Step 2.b.ii is performed 
"temporarily". The processing continues with the fol­
lowing steps. 

(1) Create a set Q of levels from the source architecture, 
with elements obtained by pic1ting out from every of 
those levels in the target (excepl, for level 0) onto which 
one or more levels from the source archit,ecture have al­
ready been mapped, the level of the source architecture 
with the smallest number that ha.s been mapped onto it; 
(2) choose from set Q. level f3 of the source architecture 
that has the smallest value for l�he speedup ratio (with 
respect to the level it is currently mapped onto, and 
the immediately lower level in the target architecture) ; 
if one or more levels of the source architecture in set 
Q satisfy the above condition, then choose the one with 
the largest number in order to achieve low average com­
putation complexity for the ma.pping algorithm; (3) if 
level f3 from the source is currently mapped onto level 
"( of the target architecture, then map level f3 onto level 
,,(-1 (the corresponding parameters of this mapping are 
obtained by the formulae in part 2.a.ii) ; (4) map the 
remaining levels, as far as level k - 1, according to the 
current assignment of level f3 from the source architec­
ture; and finally, (5) choose from the solutions obtained 
by the two mappings (i.e., the current solution and the 
solution that was obtained in the beginning of this step 
of the algorithm) the one that assigns the smaller value 
to the quantity 

(i.e., the part of the objective function that corresponds 
to different assignments of levels in the two mappings) . 
If the second solution is proven to be better than the 
first one, then repeat the above steps (steps 1 through 
5). The above procedure attempts to perform minimal 
changes to the previously existing assignment. 
Change s. Step 3.b is modified as follows. If K = L 
then for the mapping of the ne,xt level from the source 
architecture, the following two solutions are compared: 
the solution that maps it onto the highest level in the 
target architecture and the one which is obtained by 
applying the same technique as in Step 2.b.ii. 

The following theorem is relevant to our mapping 
algorithms. 

Theorem 1. 
Our mapping algorithms always yield an optimal as­

signment for systems composed of PE's with identical 
processing powers; that is, the assignment of nodes from 
a source architecture to the PE's of a target architecture 
minimizes the corresponding objective function. 
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Proof: The proof is omittE!d for the sake of brevity. 
o 

4 EXAMPLES 

Example 1. 
Let us now consider a source architecture with char­

acteristics 
- l = 7; 
- rO,l = 8; rl,2 = 4; r2,3 = 2; r�I,4 = 4; r4,5 = 2; r5,6 = 2; 
while the characteristics of the target architecture are 



- L = 3; 
- Ro 1 = Rl 2 = 8; 
- th� same processing power for all PE's. 
We also assume the same number of nodes in the finest 
arrays of both structures (i.e., n = N). We should 
remind at this point that the two systems are not nec­
essarily single-rooted in this research; that is, each sys­
tem is allowed to have more than one PE's in its highest 
level. 

We will consider the minimization of the objective 
function that corresponds to application algorithms in 
class A; the result of applying the algorithm is shown in 
Table 1. The value of the objective function is 35; this 
means that if PE's with identical processing powers are 
considered in the source and the target architectures, 
and there is also uniform distribution of the workload 
among the levels of the source architecture, then the im­
age turnaround time on the target will be approximately 
equal to 35/7 times the image turnaround time OIl the 
source architecture (because the value of the objective 
function is 7 for the source architecture). Fig. 2 shows 
the mapping for levels 4-6 of the source architecture. 

Example 2. 
Let us now consider a standard pyramid of ten lev­

els (i.e., the size of its finest array is 512x512) as the 
source architecture, and a target multi-level system of 
L levels, where 1 :$ L $ 10, with reductions 2x2 be­
tween all pairs of consecutive levels, and with a size of 
512x512 for its finest array. The values assigned to the 
objective functions by our mapping algorithms, for ap­
plication algorithms in classes A and B, as well as the 
average values of the corresponding parameters of map­
pings, as functions of L, are shown in Fig. 3 and Fig. 4 
respectively. The comparison of the values assigned to 
the two objective functions by the two mapping algo­
rithms is shown in Fig. 5. We conclude from this com­
parison that maximization of the throughput in cases 
of pipelining does not necessarily imply minimization 
of the total image turnaround time; this should be ex­
pected, because uniform utilization of the used levels in 
the target architecture is required in order to achieve 
high throughput. 

5 PERFORMANCE RESULTS 

The ma.pping algorithms of Section 3 were implemented. 
Code was also developed to find the optimal solutions 
that minimize the objective functions of Section 2, by 
applying exhaustive search (i.e., by generating all the 
possible mappings of levels from the source architec­
ture). A large variation of source and target architec­
ture pairs were considered, and the parameters of the 
mappings (that were obtained by the application of our 
mapping algorithms proposed in Section 3) for some 
examples are shown in Table 2 and Table 3. The pro­
cessing powers of the PE's at the different levels of the 
ta.rget architectures were chosen to have the same value. 
The reductions were randomly chosen (however, they 
were always powers of two). The column of the tables 
containing the average T'l value represents the average 

workload, expressed in number of processes (Le., nodes) 
from a single level of the source architecture, assigned to 
a single used PE in the target architecture. The average 
value of Di represents the average dilation for a single 
level of the source architecture. The average value of 
1i2 Di represents the approximate average expansion of 
the execution time for a single level of the source archi-
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tecture, if uniform distribution of the workload among 
the levels of the source architecture is considered. The 
last two columns show the overall dissimilarities be­
tween the two architectures. The results shown in the 
tables verify that the more different the target from the 
source architecture is, the larger the value to be assigned 
to the corresponding objective function. The execution 
of the algorithm that performs exha.ustive search also 
verified that, our mapping algorithms each time find the 
optimal solution that corresponds to mappings at higher 
levels (i.e., the solution with the maximum value for the 
sum of i's, where i � i and i is a level of the source 
architecture); generally, there may exist more than one 
solutions that minimize the objective function for class 
B algorithms. Detailed simulations of some multi-level 
systems, based on the ERCW (Exclusive Read Concur­
rent Write) model of parallelism, and executing some 
vision algorithms (e.g., finding the perimeter of objects, 
convolution, connected-component labeling, etc.) have 
shown that the performance obtained by our mapping 
algorithms is most of the times optimal, and very good 
in general, when compared with the execution times or 
throughputs of the optimal mappings, where the latter 
ones are derived by applying exhaustive search. 

6 CONCLUSIONS 

Mapping algorithms were presented in this paper for a 
class of heterogeneous hierarchical systems. It is the 
first time in parallel computer vision that both the do­
main and the range of the mapping functions are in 
a general set of pyramid-like systems. Our mapping 
algorithms map source architectures, corresponding to 
application algorithms, onto target architectures. The 
general optimization goal of our mapping algorithms is 
to meet the performance requirements of the application 
algorithms. This is achieved by identifying two classes 
of vision algorithms for multi-level systems; we distin­
guish between the two classes based on the required 
utilization of levels on a multi-level system, which is 
dictated by high performance issues. Two objective 
functions, one for each class, are proposed, in order to 
measure the quality of a given mapping with respect to 
the corresponding utilization goal. Each mapping al­
gorithm, one for each objective function, yields an opti­
mal ma.pping by minimizing the corresponding objective 
function. 

It was proven theoretically that our mapping al­
gorithms always yield an optimal solution for systems 
composed of PE's having identical processing powers; 
in all other cases, some assignment choices in the algo­
rithms allow to take advantage of the increased process­
ing powers of PE's. 
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TABLE 2. 
Performance resullB fCII class A application algCllithma. 

AVfK8Q8 AverT Value of Normalized Number of Ievell 
D! TI objecllve function. in &OIKce - Iotal 

AVfKage reduction In one 
TI2DJ dimension 

1.66 1.33 2.00 9-256 
2.16 1.50 2.66 6 - 1024 
1.88 1.38 2.25 8 -1024 
2.1" 1.42 2.57 7 - 512 
2.22 1.33 2.55 9-2048 
2.66 1.66 3.33 9-256 
7.77 1.00 7.77 9-258 
".33 1.33 4.66 0-256 
8.1" 1.00 8.1" 7- 512 
7.33 1.00 7.33 9- 1024 
5.00 1.00 5.00 7 - 1024 
1.50 1.00 1.50 2·2 
4.SO 1.00 ".SO 6-258 
4.33 1.33 4.66 9-258 
2.80 1.60 3.40 5 -102" 
1.20 4.00 4.20 5 -1024 
1.80 ".00 4.80 5-4098 
1.50 1.00 1.50 4 -32 
2.20 1.00 2.20 5 - 64 

Average val,," 
3.42 1.52 3.94 8.64 - 788.60 

Number of used 
levels In target 
- total reduction 
In one dimension 
tor used levels 

4-s.. 
3 -1024 
4 - 512 
3 -128 
3 -512 
3 - 512 
2 - 8 

2 -16 
3 -16 
4 -32 
3-64 
1·0 
3 -16 
2-64 
3 -2048 
4-4096 
4 - 16384 
4 - 32 
3 ·16 

3.05 - 1344.40 
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TABLE 3. 
Perlormance rasullS for cIa8a B appIlcalion aIgorIlhrna. 

Average Aver. Value assigned Average Number of levels Number of useel 
TI2 TI201 01 10 the abjectlY. In SOUf'C8 -total levels In 

function redu<:tIon In one target -
dimension total reducllon 

In one 
dimension 

2.00 1.00 7 2.00 9-256 4-64 
2.17 1.50 10 2.87 8-1024 3 -1024 
1.87 1.38 7 2.25 8-1024 4-512 
2.14 1.43 10 2.57 7-512 3 -128 
2.22 1.33 11 2.55 9-2048 3 -512 
3.44 1.33 15 3.77 9-256 3-512 

10.11 1.00 80 10.11 9-256 2-8 
5.11 1.00 31 5.11 9-256 2 -18 

13.14 1.00 48 13.14 7- 512 3 -18 
8.71 1.00 48 8.77 9-1024 4-32 
8.00 1.00 28 6.00 7-1024 3 -64 
1.50 1.00 3 1.50 2-2 1 -0 
5.50 1.00 20 5.50 6-256 3 -16 
2.67 3.00 27 4.67 9-256 2-64 
2.80 1.60 11 3.40 5-1024 3-2048 
1.20 4.00 16 4.20 5-1024 4-4096 
1.80 4.00 16 4.80 5-4098 4 -16384 
1.50 1.00 2 1.50 4-32 4-32 
2.20 1.00 8 2.80 5-64 3 -16 

Avenge valUN 
4.00 1.56 19.N 4.56 

APPENDIX 
Theorem 2 .. 
If the mapping of level k-l from the source architec­

ture yields (Tk-l., Dk-1) and the reduction between the 
pair of levels k - 1 and k in the source is rk-l kxrk-l k 
then the required reduction in the target architectu;e

' 

which would yielld optimal mapping for level k that i� 
a mapping with parameters (Tk' Dk) = (1, 1), �ill be 

Dk-1 Dk-1 
T,--rk-1 ,kx-;:;;--rk-l,k 

Jc-l .£k-l 
Theorem 3. 
If the mappilllg of level k - 1 from the source, onto 

level K -l of the target architecture, yields (Tk-1, Dk-1) , 
the reduction between the pair of levels k - 1 and k in 
the source is rk-l,kxrk-l,k, and the available reduction 
RK-1,KXRK-1,K in the target architecture is greater 
than or equal to the optimal reduction, then the map­
ping of level k from the source onto level K of the target 
architecture will yield 

and Dk = 1. 
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6.84 - 786.80 3.05 -1344.40 

Theorem 4. 
If, for the same data as in Theorem 3, level k from 

the source is mapped onto level K - 1 of the target 
architecture, the parameters will be 

and 

rDk-1 1 Dk = .",-rk-l,k 
.L k-1 

Theorem 5. 
If the mapping of level k - 1 from the source archi­

tecture yields (Tk-1, Dk-1), the total reduction in one 
dimension between the level onto which level k - 1 is 
mapped and another higher level v in the target archi­
tecture is T, and the reduction required for the optimal 
mapping of level k is greater than T, then if level k from 
the source is mapped onto level tJ of the target architec­
ture, we will get 

and 


