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Abstract-Chip multiprocessing has demonstrated to be a 
promising approach in microprocessor design.  With ever 
increasing concerns for energy consumption, performance-
energy trade-offs are often necessary, especially in the design of 
real-time embedded systems. This paper presents our 
performance and energy study on an in-house developed FPGA-
based mixed-mode chip multiprocessor, where the SIMD 
(Single-Instruction, Multiple-Data), MIMD (Multiple-
Instruction, Multiple-Data) and M-SIMD (Multiple-SIMD) 
computing modes can exist simultaneously in one system. We 
propose performance-energy trade-off techniques based on the 
observation that SIMD and MIMD task executions involve 
substantially different amounts of computation and 
communication, which result in different time and energy 
behavior and provide us with opportunities to realize various 
performance-energy objectives.  Generalized matrix-matrix 
multiplication (MMM) is employed as an example to illustrate 
our analysis. Experimental results on a Xilinx Virtex II 
XC2V6000-5 FPGA demonstrate the effectiveness of the 
proposed approach. 
 

I. INTRODUCTION 
 

Chip multiprocessing has received significant attention 
in both the academe and industry in the last few years as a 
result of showing and looming difficulties of traditional 
approaches to further improve performance [1].  Various 
architectures have been studied and showed promising results 
[2-7]. There are two practical computing paradigms in 
parallel processing, namely SIMD and MIMD. SIMD’s 
superior ability for data parallelism, often enhanced with low 
inter-PE communication and synchronization overheads, 
make it superior to MIMD in performing fine-grain tasks. 
However, SIMD’s implicit intra-instruction synchronization 
makes it difficult to accommodate application dynamics. On 
the other hand, MIMD machines consisting of independent 
PEs are good at conditional branching. However, the PE 
independence property of MIMD makes programming 
cumbersome. For applications prone to SIMD execution, the 
need to explicitly synchronize the PEs in MIMD realizations 
produces substantial overheads. Furthermore, every PE in 
MIMD requires its own program memory. Mixed-mode 
heterogeneous computing [8], where the machine's 
operational mode (i.e., SIMD, MIMD or M-SIMD) changes 
dynamically as needed by individual subtasks in an 
application, integrates effectively most of the SIMD and 
MIMD advantages while alleviating their major drawbacks.  

HERA (HEterogeneous Reconfigurable Architecture) [9] 
is such a mixed-mode chip multiprocessor that we have 
designed and implemented on Xilinx Virtex II FPGAs.  
Floating-point (FP) computation-intensive applications are 
HERA’s main target domain. State-of-the-art FPGAs have 

showed impressive FP performance and provided new 
opportunities to parallel processing [10-11]. Moreover, 
FPGAs add to HERA another dimension of flexibility to 
customize and match the multiprocessor to the computation 
and communication flavors of a given application.  Given the 
fact that function units for FP operations (addition, 
subtraction, multiplication, division, square-root, etc) are 
very resource expensive, application-specific customization 
brings significant performance benefits. For example, matrix 
multiplication only needs addition and multiplication. By 
removing dividers from processors, the number of processors 
nearly doubles based on our implementation results.   

At the same time, energy has become an important 
design metric for all computing systems, especially when 
used in wireless and embedded environments, where real-
time constraints are combined with requirements for long 
battery life [12-13].  Compared to their ASIC counterparts, 
SRAM FPGAs are more energy hungry. Hence, 
performance-energy trade-offs are often desirable, even 
necessary, for FPGA-based reconfigurable systems. 
However, in contrast to extensive low-power or energy-
efficient research on chip multiprocessors, very little work 
has been done on performance-energy trade-offs. Li et al. 
[17] explores power-performance optimizations targeting 
chip multiprocessors with Alpha-like processor cores by 
manipulating multiple interacting factors, including 
application granularity, voltage/frequency levels and number 
of processors. Ref. [18] studies energy-performance trade-
offs for a shared-memory chip multiprocessor with a shared 
interconnection bus. A design strategy called spatial voltage 
scaling is presented in [19] for heterogeneous chip 
multiprocessors. Ref. [20] presents a domain-specific 
optimization methodology by resource sharing and pipelining 
for a reconfigurable coarse-grained architecture supporting 
integer operations. 

In this paper we propose performance-energy trade-off 
techniques that exploit the flexibility of mixed-mode systems 
like HERA. Several studies have shown that communication 
channels consume significant energy in chip multiprocessors, 
especially for FPGA-based systems [14-15]. For a given task, 
SIMD and MIMD require different types and amounts of 
communication among processors. Also, the optimal modes 
for minimum execution time and energy are different. Hence, 
by carefully manipulating the presence of SIMD and MIMD 
execution for given tasks, we can achieve different 
performance-energy objectives.  

The multiplication of irregular shape and size matrices is 
used as an example to illustrate our techniques. But this 
approach can also be applied to other applications with minor 
modifications. The parallel multiplication of square matrices 
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has been studied extensively and numerous results targeting 
various computing platforms exist in the literature. With 
dramatic increases in the computing capability of current 
FPGAs, various highly specialized and customized floating-
point implementations of MMM on FPGAs are emerging (e. 
g., [11, 16]). In comparison, HERA is a semi-customized 
matrix-oriented chip multiprocessor with general-purpose 
instructions, which is more friendly to software developers 
without hardware expertise. Moreover, our focus in this 
study is the efficient processing of matrices of general shape, 
not only square matrices. 

The remainder of the paper is organized as follows. 
Section II shows our HERA design for the MMM algorithm. 
Section III describes the MMM algorithm and its mixed-
mode mapping onto HERA. Performance and energy 
characterization and trade-off techniques for the mixed-mode 
MMM on HERA are presented in Section IV. Experimental 
results and analysis are shown in Section V. Section VI 
concludes the paper. 

 
II. MIXED-MODE CHIP MULTIPROCESSOR 

 
The general organization of our multiprocessor for the 

generalized MMM is shown in Fig. 1. The PEs (Processing 
Elements) are interconnected via a 2-D q x q torus. We 
employ fast, direct NEWS (North, East, West and South) 
connections between nearest neighbors. The computing 
fabric inside the FPGA is controlled by the global control 
unit (GCU) that communicates with a host processor via the 
PCI bus for data I/O. Every PE includes a small amount of 
control logic (CTRL) controlled by the GCU. The GCU 
fetches instructions from the global program memory (GPM) 
for PEs operating in SIMD. A PE is an in-house designed 
pipelined RISC processor that consists of an integer function 
unit (FU), one or more pipelined FP FUs (from an in-house 
designed hardware library), custom function blocks, dual-
port local data memory (LDM), and dual-port local program 
memory (LPM). These are the basic PE features. In fact, all 
the PEs of HERA are semi-customized and generated during 
the architecture synthesis stage after the target application is 
given. In this work, only an adder and a multiplier (MAC) 
are included in each PE.  A novel feature of HERA’s 
memory hierarchy is that one port of every PE’s LDM is 
shared with its neighbors to the south and east. This way, a 
PE can directly write to or read from the LDMs of its west 
and north neighbors via the shared port. This feature can be 
used to eliminate omnipresent large block data transfers 
between nearest neighbors in numerous block-based matrix 
computations. Although PEs may contain different FP FUs, 
all of them support the same ISA to facilitate ease of 
software development. HERA’s complete instruction set 
contains about 30 instructions classified in six major groups: 
integer arithmetic, FP arithmetic, memory access, jump and 
branch, NEWS communications, and system control.  The 
operating mode (SIMD or MIMD) of each PE can be 
configured dynamically by the GCU through its Operation 
Mode Register that can be modified by the Configure 
instruction.  

In addition to the NEWS interconnect, HERA also has a 
hierarchical bus system. Every PE is connected to a column 
Cbus and all the Cbuses are connected to the Column Bus for 
broadcasting SIMD instructions and their immediate data. 
Each column has its own instruction register. SIMD 
instructions and data are transferred via the Dbus in a 
pipelined fashion. HERA can be partitioned at run time into 
several islands, each comprising a group of PEs running in 
SIMD or MIMD. Partitioning is achieved by global or local 
PE masking; the mask status is stored in the PE’s Global 
Mask Register (GMR) and Local Mask Register (LMR), 
respectively. A PE in SIMD is active only when both 
registers are set. LMR can be set by executing locally a 
comparison instruction. Every PE is assigned a distinct ID 
that serves in global masking. The last seven bits of an 
instruction in SIMD form three fields: 3 bits each for the row 
and column address, and 1 bit for masking. A “1” in this bit 
sets the GMR of all the PEs in the column and a “0” only sets 
the GMR of the specific PE whose address is contained in the 
instruction. Combined with the PE ID and appropriate masks, 
the system can be configured dynamically into a mixed-mode 
computing system capable of supporting simultaneously 
SIMD, MIMD, and M-SIMD. 

 

Fig. 1. HERA organization.  
 

III. GENERALIZED MATRIX-MATRIX 
MULTIPLICATION  

 
Consider A x B = C, where A, B, and C are matrices of 

size N1 x N2, N2 x N3, and N1 x N3, respectively. N1, N2, and 
N3 are different for non-square matrices. If A and B are 
square, Cannon’s algorithm [21] works best in the SIMD 
mode; all the PEs are then busy all the time except during the 
initial alignment. If A and B are not square or cannot be 
partitioned in such a way that Ni, i = 1, 2, 3, is a multiple 
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of q, then the multiplication of border blocks is not efficient 
in the SIMD mode because the sizes and numbers of blocks 
are irregular. Some PEs are idle while other PEs are busy at 
some point because SIMD is implicitly synchronous. We 
solved this problem by changing the computation mode of 
PEs. Suppose that the LDM of the PEs can store 3m2 
floating-point numbers. To be able to store complete blocks 
from the input and output matrices, the maximum size of a 
matrix block should be m x m. Let 1 1 ( * )p N q m= ⎢ ⎥⎣ ⎦ , 

2 2 ( * )p N q m= ⎢ ⎥⎣ ⎦  and 3 3 ( * )p N q m= ⎢ ⎥⎣ ⎦ . We first partition A 
and B into 2 x 2 block-based matrices as shown in the 
example of Fig. 2, in such a way that the sizes of A(1,1) and 
B(1,1) are { 1*( * )}x{ 2*( * )}p q m p q m  and 
{ 2*( * )}x{ 3*( * )}p q m p q m , respectively. The remaining 
blocks A(2,1), A(1,2) and A(2,2) of A are decomposed into 
blocks with maximum dimension m. B is partitioned 
similarly. A(1,1) and B(1,1) are then partitioned into 1 x 2p p  
and 2 x 3p p  blocks of size ( * ) x ( * )q m q m  again and are 
distributed into the PEs in a cyclic checkerboard-like fashion.  

After we decompose the matrices in this way, the 
multiplication of A and B involves 8 major tasks, represented 
by TKi, i = 1, …, 8, for A(1,1) x B(1,1), A(1,2) x B(2,1), 
A(1,1) x B(1,2), A(1,2) x B(2,2), A(2,1) x B(1,1), A(2,2) x 
B(2,1), A(2,1) x B(1,2), and A(2,2) x B(2,2), respectively. 
Apparently, TK1 generally involves the most significant 
work and takes the longest time among the tasks. In SIMD, 
all PEs execute the same instructions from the GCU on 
different matrix blocks. In MIMD, PEs work independently 
and asynchronously on their own instructions and data 
blocks. In SIMD, both LDM and LPM of a PE are used for 
data and, hence, reduce the total number of data I/O. 
However, SIMD execution requires the global broadcasting 
of instructions and may threaten the energy budget. As 
discussed in the Introduction, global communication is a 
major contributing factor to the overall energy consumption. 
Also, SIMD cause more idle PEs on irregular matrix blocks. 
MIMD execution may reduce the energy consumption by 
working on local data. But only the LDM can be used to 
store matrix blocks in MIMD, which results in an increased 
number of data transfer. Also, MMM requires significant 
memory bandwidth for data exchanges between the local 
memory of the PEs and the on-board memory chips.  

A
(1

,2
)

 
Fig. 2. A partitioning example for matrices A and B. 

( 2, 1 3, 2 4, 3 2)q p p p= = = =   
 

IV. PERFORMANCE-ENERGY TRADE-OFFS  
 

In this section we analyze the performance and energy 
consumption of the tasks in the SIMD and MIMD modes. 
This analysis provides a quantitative basis for our 
performance-energy trade-off techniques in the mixed mode. 
In contrast to most of the other performance and energy 
modeling approaches, our equations are based on 
implementation measurements on the FPGA.  

 
A. Performance and Energy Characterization 

In both the SIMD and MIMD modes, the multiplication 
of a pair of matrix blocks of size n1 x n2 and n2 x n3 is an 
indivisible job, which is mapped into one PE only. We 
denote this type of job as Jm(n1, n2, n3). Each task TKi 
involves many such jobs. The clock cycles to finish a Jm(n1,  
n2,  n3)  job on HERA is: 

1 2 3 1 2 3 1 2 1( , , )=15* * * 6* * 4* 15mt n n n n n n n n n+ + +  

There are several types of communication channels in 
HERA. Let Jc(n1,  n2) be the job to transfer a matrix block of 
size n1 x n2 between the GDM and an LDM. Since the GCU 
can directly access every LDM and LPM, an Jc(n1,  n2) job 
takes tc(n1,  n2 ) = (n1 * n2 ) clock cycles. Another type of 
major communication jobs is the broadcasting of HERA 
instructions. The MMM code has around 40 assembly 
language instructions. A few control instructions are added 
according to different computing modes. These instructions 
are broadcast via the column buses. The NEWS interconnect 
is used to transfer matrix blocks or register values between 
PEs. The clock cycles for the instruction broadcasting and 
NEWS transfer, denoted by tb and tnews, respectively, are 
proportional to the data volume.   

The energy consumption of the basic jobs is calculated 
as follows. We distinguish between two power states for the 
components in HERA: active and idle. Only the dynamic 
power is considered since the static power is much less 
significant in our target device, i.e., the Virtex II FPGAs 
[22]. The power data of HERA components in the two states 
are obtained after implementation on a specific FPGA 
device. The required power for a PE, a NEWS connection, 
the bus system, or an LDM in the active and idle states is 
represented by ( )active

xP f  and ( )idle
xP f , respectively, where f is 

the implemented system frequency of HERA and x 
represents the respective component.  Hence, the energy 
consumptions of Jm(n1, n2, n3) and Jc(n1,  n2), respectively, 
are: 

em (n1,  n2 , n3) = tm (n1,  n2 , n3)/f * ( )active
PEP f  

ec (n1,  n2 ) = tc (n1,  n2 )/f * ( )active
LDMP f  

Other types of communication include NEWS transfer 
and instruction broadcasting, with consumptions represented 
by eNEWS (n1, n2 ) and eI (nI), respectively, and calculated by 
similar equations to (2) and (3).  

Based on the above analysis, let us look at the execution 
time and energy consumption of the MMM tasks. If TK1 is to 
be scheduled in SIMD, we have two choices: Cannon’s 
algorithm and a naive algorithm. The naïve algorithm treats 
all jobs like Jm(m, m, m) and each round can finish 2*3*q2 

(1)

(2) 

(3) 
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Jm(m, m, m) jobs since each PE has direct access to three 
LDMs for itself and the two neighbors.  Results are then 
collected and new matrix blocks are loaded into the LDMs 
and LPMs followed by a new round of multiplications. Each 
round requires (3+4)*q2 Jc(m,  m) jobs. The pattern continues 
until all the jobs are done. Totally we have 31* 2* 3*p p p q  
Jm(m, m, m) jobs. We do not have Jnews jobs in this case. The 
total number of clock cycles for computation and 
communication, and the energy consumption for this naïve 
scheme are  

1,

3 1
1, 6

1 1,

1, 1, 1,

( , , )* 1* 2* 3*

( , )* 1* 2* 3* *
1 *{( )* (

)* * * }

n
comp m

n
comm c

n active active active n idle idle
PE bus LDM LPM comp PE bus

idle n active n idle n
NEWS comm LDM LPM comm NEWS comp

t t m m m p p p q

t t m m p p p q

e P P P t P P
f
P t P t P t

+

+

=

=

= + + + + +

+ +

 

If Cannon’s algorithm is used for TK1, then the needed 
clock cycles and energy consumption are: 

1,

3
1,

1,

1, 1, 1,

1 1,

( , , )* 1* 2* 3*

2* (2 ,2 )* 1* 2* 3* /8

2* (2 ,2 )* 1* 2* 3

1 *{( )* (

)*

c
comp m

c
NEWS news

c
c c

c c c
comm NEWS c

c active active active c idle idle
PE bus LDM LPM comp PE bus

idle
NEWS

t t m m m p p p q

t t m m p p p q

t t m m p p p

t t t

e P P P t P P
f

P t

+

=

=

=

= +

= + + + + +

1, 1, 1, 1,( )* *( )}c active active c idle c c
c NEWS LDM LPM NEWS NEWS comp cP P t P t t++ + + +

 

If MIMD is the computing mode, then we need to update 
the LDM only (Jc(m,  m) jobs) in each round but finish only 
q2 Jm(m,  m,  m) jobs. Also, we have a larger number of data 
transfers.  The data transfers can overlap with the 
multiplication jobs since PEs work independently in MIMD. 
The worst-case clock cycles and energy consumption can be 
found by: 

1,

3
1,

1 1,

1, 1, 1,

( , , )* 1* 2* 3*

( , )* 1* 2* 3* *2 / 3
1 *{( )* (

)* * ( )*

MIMD
comp m

MIMD
comm c

MIMD active active n idle idle
PE LDM LPM comp PE NEWS

idle n active n idle idle
bus comm LDM LPM comm bus NEWS

t t m m m p p p q

t t m m p p p q

e P P t P P
f

P t P t P P t

+

+

=

=

= + + + +

+ + + }n
comp

 

For the sake of simplicity, we do not take data locality 
into account in these equations. It will be considered during 
task scheduling. Also, the accumulation time of the partial 
products is not included.  

Similarly, other tasks (TKi i = 2, …, 8) can be treated in 
SIMD, M-SIMD, MIMD, or the mixed mode. In the mixed-
mode, PEs are divided into multiple SIMD and MIMD 
groups. Synchronization may be needed at some point. We 
can derive similar equations for clock cycles and energy 
consumption. One particular thing with these tasks is that 
they involve non-square matrix blocks. The irregularity will 
cause more idle PEs in SIMD than MIMD. Hence, it is 
beneficial to execute these tasks in the mixed mode. For 
example, consider a task involving one Jm(2,  5, 17), six 

Jm(10,  15, 11),  and eight Jm(14,  25, 7) jobs. We can 
construct one SIMD group consisting of six PEs working on 
the six Jm(10,  15, 11)  jobs and another SIMD group with 
eight PEs for the eight Jm(14,  25, 7) jobs. An independent 
PE will work on the Jm(2,  5, 17) job. This way we can avoid 
the idleness of PEs and potentially save on energy and time.  

Let iγ  be the percentage of computation in TKi,  i = 1, 
…, 8, working in SIMD and M-SIMD. The remaining work 
in TKi is assigned to PEs in MIMD. The clock cycles and 
system energy consumption for all the tasks can be found by: 

8

{ * (1 )}SIMD MIMD
i ii iT T T+∑ =  γ − γ∑  

,
1{ * ( ) * ( )}*active active idle idle

sys x x x x
x

E C P f C P f
f∑ = +∑  

where active
xC  and idle

xC  are the clock cycles of the system 
components, i.e., PEs, NEWS, bus, or memory,  in the active 
and idle states, respectively, for all the tasks. They are 
collected by hardware counters in the respective components 
at runtime. 
 
B. Performance-Energy Tradeoffs 
 

From the above analysis, we can see that the SIMD and 
MIMD executions of a task involve different amounts of 
execution time and energy consumption. By varying the 
appearance weight of different modes, we can achieve 
different performance-energy objectives. In particular, we 
explore three performance-energy scenarios:  
(1) Optimize the performance with no energy constraints 

The focus is to reduce the communication time and also 
consider data locality when distributing matrix blocks to 
available PEs. This case also helps us to learn the best 
performance and the corresponding energy consumption of 
the application on the specific architecture. The objective is 
to find a set of iγ which results in minimum T∑

(Eq. 15). The 

possible choices for the 'siγ are determined by partitioning. 
After a matrix and a HERA configuration are given, the total 
number of matrix blocks is fixed. This resulting problem can 
be explored by a linear programming solver. The energy cost 
of each task

, iTKE∑
can be found by summarizing all the 

energy cost of its jobs using the equations in the last 
subsection.  
(2) Optimize the performance with energy constraints 

Let EB be the upper bound on the energy. We first 
analyze the energy consumption for TKi, i = 1, …, 8, in the 
first case, and then estimate the difference between the actual 
consumption and its upper bound. We take advantage of the 
fact that different iγ values for the same task has different 
impact on the execution time and energy consumption. For 
an application-system pair, there is an optimal iγ for 
minimum execution time. Since the PEs consume different 
power in different states, this optimal iγ does not necessarily 
correspond to minimum energy consumption. Optimality 
involving both energy and performance depends on the task 

(4) 
(5) 

(6) 

(7) 
(8) 
(9) 

(10)

(11)

(12)

(13)

(14)

(15)

(16)
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characteristics as well as the architecture. We aim to 
optimize across two dimensions for each task: energy and/or 
performance vs. iγ . Moreover, a hardware technique, clock 
gating, is employed to save energy at runtime. The clock 
signal of idle PEs will be disabled until they are assigned 
new jobs. Algorithm-1 is applied. 
(3) Reduce the energy cost for a given performance loss 

When energy consumption is also of paramount 
importance, performance can be sacrificed to an allowable 
extent in order to reduce the required energy. Let β be the 
allowed loss percentage. We decrease the performance of 
each task TKi by the ratio β. We find a set of iγ , i = 1, …, 8,  
to meet the time budget of TKi 

(1 )*b i
it tβ ∑= +  

An algorithm similar to Algorithm-1 but for the time budget 
instead of the energy budget is applied.  

 
Algorthm-1: Meeting the energy budget 

1. Find the energy gap: 
8

,
1

i
g B TK

i

E E E∑
=

= − ∑ ; 

2. IF gE < 0, Stop;  

3. Find the total energy cost of TKi i = 2, …, 8,  
8

,
2

iTK
i

E∑
=
∑ ; 

4. Calculate the energy budget for 
8

2 8
,

2
iB B TK

i

E E E−
∑

=

= − ∑ ; 

5. Assign an energy budget, 2 8 * ii
B B

i

i

Oe E
O

−=
∑

, to each TKi  i = 2, 

…, 8,  according to its computation weight;  
6. Find the optimal iγ , i = 2, …, 8,  with the minimum it∑

 and 
i i

Be e∑ < , where it∑
and ie∑

 are the total execution time 

and energy consumption of TKi. 
7. If the above procedure fails, include TK1 and repeat Steps 2-6. 
  
 

V. EXPERIMENTAL RESULTS 
 

The FPGA device used in our experiments is the Xilinx 
VIrtex II XC2V6000-5 FPGA [22], which contains 33,792 
slices and 144 x 512 x 36-bit BlockRAM blocks. The 
performance of the single-precision floating-point adder and 
multiplier used to construct the HERA PEs is shown in Table 
I. The HERA system runs at 125MHz. 36 PEs with 512 x 36-
bit LDM and LPM were implemented for the experiments.  

We first evaluated the accuracy of our performance and 
energy equations in the SIMD and MIMD modes shown in 
Section IV. A variety of non-square matrices of different 
shapes were used. Cannon’s algorithm was applied to TK1 in 
all the matrix pairs for the SIMD execution. The measured 
execution time and energy consumption of the tasks are listed 
in Table II. These results were compared with those 
calculated with our time and energy equations. The energy 
results were measured with the Xilinx XPower tool. The 
average activity rates were extracted from ModelSim files. 
The average difference between the actual and the measured 

time and energy is 2.1% and 4.5%, respectively. The 
difference in time mainly comes from the overheads of 
system administration and bus conflicts. Data locality during 
scheduling also adds to dynamic effects on performance and 
energy. This energy error rate is acceptable for system-level 
estimation models. HERA components consume a 
continuous range of power with different activity rates while 
we assume only one state to represent any active behavior. 
The key is to obtain the accurate activity rate by extensive 
simulations with benchmark matrices. Another reason is that 
the energy measurements for the bus system tend to be less 
accurate than for PEs and memory blocks. However, our 
objective is to develop fast, yet useful models for exploring 
performance-energy optimizations without involving tedious 
and time-consuming low-level simulations. Table II also 
shows that different execution modes require different 
execution times and energy consumptions, which provides 
room for performance-energy trade-offs. The exploration 
space increases with the increases in the matrix size. 

 
Table I 

Implementation results of the floating-point function units  
Power (mW) at 

125MHz Function 
Unit 

Number 
of 

Pipelines 

Area 
(slices) 

Freq. 
(MHz) Active Idle 

Adder 3 390 163 227.2 87.4 
Multiplier 3 134 174 85.9 59.2 

 
Finally we evaluated our optimization techniques. Table 

III shows results for matrices of size 565 x 767 and 767 x 
999. Scenario-II evaluates the impact of clock gating on the 
energy consumption. A reduction of 7.3% in energy 
consumption was observed by putting the idle PEs into sleep 
without major switching penalty on the execution time. A 
performance penalty of 5.7% was observed when reducing 
the energy consumption by 13%, as shown in Scenario-III. In 
Scenario-IV and -V, we relaxed the performance by 10.6% 
and 15% to reduce the energy consumption by 14.5% and 
18.9%, respectively. The benefits of the approach should be 
better with more closely coupled algorithms that have more 
data dependences among tasks, which expose more 
flexibility for performance-energy trade-offs. 

 
VI. CONCLUSIONS 

 
Continuous advances in silicon technology and 

increasing difficulties in realizing superscalar processors 
have brought a significant shift in microprocessor design. 
Chip multiprocessing has recently emerged in general-
purpose computing and will continue to develop further in 
many application scenarios, including embedded and 
wireless systems. While performance is always desirable, 
trade-offs between performance and energy are necessary in 
many such systems. We have presented our performance-
energy trade-off study for an in-house designed and 
implemented mixed-mode reconfigurable chip 
multiprocessor. The flexibility of mixed-mode execution 
provides us with a tremendous exploration space to achieve 

(17)
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various performance-energy objectives. The experimental 
results prove the effectiveness of our approach. 
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Table II 

Execution time and energy consumption for various parallel execution modes 

Matrix Dimensions SIMD MIMD 

N1 N2 N3 Time 
(sec) 

Energy 
(J) 

Time 
(sec) 

Energy 
(J) 

150 150 172 0.028 0.43 0.033 0.45 
245 261 375 0.11 1.61 0.13 1.55 
312 595 303 0.25 3.55 0.30 3.27 
205 611 613 0.41 5.94 0.48 5.69 
508 311 528 0.43 6.19 0.49 6.17 
687 202 676 0.55 7.20 0.63 6.64 
711 713 403 1.51 21.30 1.68 18.64 
999 997 996 6.40 96.76 7.16 82.43 

Table III 
Performance-energy trade-offs in mixed-mode computing 

Scenario Objective Constraints Energy  
(J) 

Execution Time 
(sec) 

I Minimize T None 32.8 2.45 
II Minimize E T < 2.45 30.4 2.44 
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III Minimize T E < 28.6 28.55 2.59 
IV Minimize E T < 2.70 28.03 2.70 
V Minimize E T < 2.82 26.6 2.80 

 


