
 1

Performance-Energy Tradeoffs for Matrix Multiplication
on FPGA-Based Mixed-Mode Chip Multiprocessors

X. Wang and S.G. Ziavras

NJIT

Abstract-Chip multiprocessing has demonstrated to be a
promising approach in microprocessor design. With ever
increasing concerns for energy consumption, performance-
energy trade-offs are often necessary, especially in the design of
real-time embedded systems. This paper presents our
performance and energy study on an in-house developed FPGA-
based mixed-mode chip multiprocessor, where the SIMD
(Single-Instruction, Multiple-Data), MIMD (Multiple-
Instruction, Multiple-Data) and M-SIMD (Multiple-SIMD)
computing modes can exist simultaneously in one system. We
propose performance-energy trade-off techniques based on the
observation that SIMD and MIMD task executions involve
substantially different amounts of computation and
communication, which result in different time and energy
behavior and provide us with opportunities to realize various
performance-energy objectives. Generalized matrix-matrix
multiplication (MMM) is employed as an example to illustrate
our analysis. Experimental results on a Xilinx Virtex II
XC2V6000-5 FPGA demonstrate the effectiveness of the
proposed approach.

I. INTRODUCTION

Chip multiprocessing has received significant attention
in both the academe and industry in the last few years as a
result of showing and looming difficulties of traditional
approaches to further improve performance [1]. Various
architectures have been studied and showed promising results
[2-7]. There are two practical computing paradigms in
parallel processing, namely SIMD and MIMD. SIMD’s
superior ability for data parallelism, often enhanced with low
inter-PE communication and synchronization overheads,
make it superior to MIMD in performing fine-grain tasks.
However, SIMD’s implicit intra-instruction synchronization
makes it difficult to accommodate application dynamics. On
the other hand, MIMD machines consisting of independent
PEs are good at conditional branching. However, the PE
independence property of MIMD makes programming
cumbersome. For applications prone to SIMD execution, the
need to explicitly synchronize the PEs in MIMD realizations
produces substantial overheads. Furthermore, every PE in
MIMD requires its own program memory. Mixed-mode
heterogeneous computing [8], where the machine's
operational mode (i.e., SIMD, MIMD or M-SIMD) changes
dynamically as needed by individual subtasks in an
application, integrates effectively most of the SIMD and
MIMD advantages while alleviating their major drawbacks.

HERA (HEterogeneous Reconfigurable Architecture) [9]
is such a mixed-mode chip multiprocessor that we have
designed and implemented on Xilinx Virtex II FPGAs.
Floating-point (FP) computation-intensive applications are
HERA’s main target domain. State-of-the-art FPGAs have

showed impressive FP performance and provided new
opportunities to parallel processing [10-11]. Moreover,
FPGAs add to HERA another dimension of flexibility to
customize and match the multiprocessor to the computation
and communication flavors of a given application. Given the
fact that function units for FP operations (addition,
subtraction, multiplication, division, square-root, etc) are
very resource expensive, application-specific customization
brings significant performance benefits. For example, matrix
multiplication only needs addition and multiplication. By
removing dividers from processors, the number of processors
nearly doubles based on our implementation results.

At the same time, energy has become an important
design metric for all computing systems, especially when
used in wireless and embedded environments, where real-
time constraints are combined with requirements for long
battery life [12-13]. Compared to their ASIC counterparts,
SRAM FPGAs are more energy hungry. Hence,
performance-energy trade-offs are often desirable, even
necessary, for FPGA-based reconfigurable systems.
However, in contrast to extensive low-power or energy-
efficient research on chip multiprocessors, very little work
has been done on performance-energy trade-offs. Li et al.
[17] explores power-performance optimizations targeting
chip multiprocessors with Alpha-like processor cores by
manipulating multiple interacting factors, including
application granularity, voltage/frequency levels and number
of processors. Ref. [18] studies energy-performance trade-
offs for a shared-memory chip multiprocessor with a shared
interconnection bus. A design strategy called spatial voltage
scaling is presented in [19] for heterogeneous chip
multiprocessors. Ref. [20] presents a domain-specific
optimization methodology by resource sharing and pipelining
for a reconfigurable coarse-grained architecture supporting
integer operations.

In this paper we propose performance-energy trade-off
techniques that exploit the flexibility of mixed-mode systems
like HERA. Several studies have shown that communication
channels consume significant energy in chip multiprocessors,
especially for FPGA-based systems [14-15]. For a given task,
SIMD and MIMD require different types and amounts of
communication among processors. Also, the optimal modes
for minimum execution time and energy are different. Hence,
by carefully manipulating the presence of SIMD and MIMD
execution for given tasks, we can achieve different
performance-energy objectives.

The multiplication of irregular shape and size matrices is
used as an example to illustrate our techniques. But this
approach can also be applied to other applications with minor
modifications. The parallel multiplication of square matrices

 2

has been studied extensively and numerous results targeting
various computing platforms exist in the literature. With
dramatic increases in the computing capability of current
FPGAs, various highly specialized and customized floating-
point implementations of MMM on FPGAs are emerging (e.
g., [11, 16]). In comparison, HERA is a semi-customized
matrix-oriented chip multiprocessor with general-purpose
instructions, which is more friendly to software developers
without hardware expertise. Moreover, our focus in this
study is the efficient processing of matrices of general shape,
not only square matrices.

The remainder of the paper is organized as follows.
Section II shows our HERA design for the MMM algorithm.
Section III describes the MMM algorithm and its mixed-
mode mapping onto HERA. Performance and energy
characterization and trade-off techniques for the mixed-mode
MMM on HERA are presented in Section IV. Experimental
results and analysis are shown in Section V. Section VI
concludes the paper.

II. MIXED-MODE CHIP MULTIPROCESSOR

The general organization of our multiprocessor for the

generalized MMM is shown in Fig. 1. The PEs (Processing
Elements) are interconnected via a 2-D q x q torus. We
employ fast, direct NEWS (North, East, West and South)
connections between nearest neighbors. The computing
fabric inside the FPGA is controlled by the global control
unit (GCU) that communicates with a host processor via the
PCI bus for data I/O. Every PE includes a small amount of
control logic (CTRL) controlled by the GCU. The GCU
fetches instructions from the global program memory (GPM)
for PEs operating in SIMD. A PE is an in-house designed
pipelined RISC processor that consists of an integer function
unit (FU), one or more pipelined FP FUs (from an in-house
designed hardware library), custom function blocks, dual-
port local data memory (LDM), and dual-port local program
memory (LPM). These are the basic PE features. In fact, all
the PEs of HERA are semi-customized and generated during
the architecture synthesis stage after the target application is
given. In this work, only an adder and a multiplier (MAC)
are included in each PE. A novel feature of HERA’s
memory hierarchy is that one port of every PE’s LDM is
shared with its neighbors to the south and east. This way, a
PE can directly write to or read from the LDMs of its west
and north neighbors via the shared port. This feature can be
used to eliminate omnipresent large block data transfers
between nearest neighbors in numerous block-based matrix
computations. Although PEs may contain different FP FUs,
all of them support the same ISA to facilitate ease of
software development. HERA’s complete instruction set
contains about 30 instructions classified in six major groups:
integer arithmetic, FP arithmetic, memory access, jump and
branch, NEWS communications, and system control. The
operating mode (SIMD or MIMD) of each PE can be
configured dynamically by the GCU through its Operation
Mode Register that can be modified by the Configure
instruction.

In addition to the NEWS interconnect, HERA also has a
hierarchical bus system. Every PE is connected to a column
Cbus and all the Cbuses are connected to the Column Bus for
broadcasting SIMD instructions and their immediate data.
Each column has its own instruction register. SIMD
instructions and data are transferred via the Dbus in a
pipelined fashion. HERA can be partitioned at run time into
several islands, each comprising a group of PEs running in
SIMD or MIMD. Partitioning is achieved by global or local
PE masking; the mask status is stored in the PE’s Global
Mask Register (GMR) and Local Mask Register (LMR),
respectively. A PE in SIMD is active only when both
registers are set. LMR can be set by executing locally a
comparison instruction. Every PE is assigned a distinct ID
that serves in global masking. The last seven bits of an
instruction in SIMD form three fields: 3 bits each for the row
and column address, and 1 bit for masking. A “1” in this bit
sets the GMR of all the PEs in the column and a “0” only sets
the GMR of the specific PE whose address is contained in the
instruction. Combined with the PE ID and appropriate masks,
the system can be configured dynamically into a mixed-mode
computing system capable of supporting simultaneously
SIMD, MIMD, and M-SIMD.

Fig. 1. HERA organization.

III. GENERALIZED MATRIX-MATRIX
MULTIPLICATION

Consider A x B = C, where A, B, and C are matrices of

size N1 x N2, N2 x N3, and N1 x N3, respectively. N1, N2, and
N3 are different for non-square matrices. If A and B are
square, Cannon’s algorithm [21] works best in the SIMD
mode; all the PEs are then busy all the time except during the
initial alignment. If A and B are not square or cannot be
partitioned in such a way that Ni, i = 1, 2, 3, is a multiple

 3

of q, then the multiplication of border blocks is not efficient
in the SIMD mode because the sizes and numbers of blocks
are irregular. Some PEs are idle while other PEs are busy at
some point because SIMD is implicitly synchronous. We
solved this problem by changing the computation mode of
PEs. Suppose that the LDM of the PEs can store 3m2
floating-point numbers. To be able to store complete blocks
from the input and output matrices, the maximum size of a
matrix block should be m x m. Let 1 1 (*)p N q m= ⎢ ⎥⎣ ⎦ ,

2 2 (*)p N q m= ⎢ ⎥⎣ ⎦ and 3 3 (*)p N q m= ⎢ ⎥⎣ ⎦ . We first partition A
and B into 2 x 2 block-based matrices as shown in the
example of Fig. 2, in such a way that the sizes of A(1,1) and
B(1,1) are { 1*(*)}x{ 2*(*)}p q m p q m and
{ 2*(*)}x{ 3*(*)}p q m p q m , respectively. The remaining
blocks A(2,1), A(1,2) and A(2,2) of A are decomposed into
blocks with maximum dimension m. B is partitioned
similarly. A(1,1) and B(1,1) are then partitioned into 1 x 2p p
and 2 x 3p p blocks of size (*) x (*)q m q m again and are
distributed into the PEs in a cyclic checkerboard-like fashion.

After we decompose the matrices in this way, the
multiplication of A and B involves 8 major tasks, represented
by TKi, i = 1, …, 8, for A(1,1) x B(1,1), A(1,2) x B(2,1),
A(1,1) x B(1,2), A(1,2) x B(2,2), A(2,1) x B(1,1), A(2,2) x
B(2,1), A(2,1) x B(1,2), and A(2,2) x B(2,2), respectively.
Apparently, TK1 generally involves the most significant
work and takes the longest time among the tasks. In SIMD,
all PEs execute the same instructions from the GCU on
different matrix blocks. In MIMD, PEs work independently
and asynchronously on their own instructions and data
blocks. In SIMD, both LDM and LPM of a PE are used for
data and, hence, reduce the total number of data I/O.
However, SIMD execution requires the global broadcasting
of instructions and may threaten the energy budget. As
discussed in the Introduction, global communication is a
major contributing factor to the overall energy consumption.
Also, SIMD cause more idle PEs on irregular matrix blocks.
MIMD execution may reduce the energy consumption by
working on local data. But only the LDM can be used to
store matrix blocks in MIMD, which results in an increased
number of data transfer. Also, MMM requires significant
memory bandwidth for data exchanges between the local
memory of the PEs and the on-board memory chips.

A
(1

,2
)

Fig. 2. A partitioning example for matrices A and B.

(2, 1 3, 2 4, 3 2)q p p p= = = =

IV. PERFORMANCE-ENERGY TRADE-OFFS

In this section we analyze the performance and energy
consumption of the tasks in the SIMD and MIMD modes.
This analysis provides a quantitative basis for our
performance-energy trade-off techniques in the mixed mode.
In contrast to most of the other performance and energy
modeling approaches, our equations are based on
implementation measurements on the FPGA.

A. Performance and Energy Characterization

In both the SIMD and MIMD modes, the multiplication
of a pair of matrix blocks of size n1 x n2 and n2 x n3 is an
indivisible job, which is mapped into one PE only. We
denote this type of job as Jm(n1, n2, n3). Each task TKi
involves many such jobs. The clock cycles to finish a Jm(n1,
n2, n3) job on HERA is:

1 2 3 1 2 3 1 2 1(, ,)=15* * * 6* * 4* 15mt n n n n n n n n n+ + +

There are several types of communication channels in
HERA. Let Jc(n1, n2) be the job to transfer a matrix block of
size n1 x n2 between the GDM and an LDM. Since the GCU
can directly access every LDM and LPM, an Jc(n1, n2) job
takes tc(n1, n2) = (n1 * n2) clock cycles. Another type of
major communication jobs is the broadcasting of HERA
instructions. The MMM code has around 40 assembly
language instructions. A few control instructions are added
according to different computing modes. These instructions
are broadcast via the column buses. The NEWS interconnect
is used to transfer matrix blocks or register values between
PEs. The clock cycles for the instruction broadcasting and
NEWS transfer, denoted by tb and tnews, respectively, are
proportional to the data volume.

The energy consumption of the basic jobs is calculated
as follows. We distinguish between two power states for the
components in HERA: active and idle. Only the dynamic
power is considered since the static power is much less
significant in our target device, i.e., the Virtex II FPGAs
[22]. The power data of HERA components in the two states
are obtained after implementation on a specific FPGA
device. The required power for a PE, a NEWS connection,
the bus system, or an LDM in the active and idle states is
represented by ()active

xP f and ()idle
xP f , respectively, where f is

the implemented system frequency of HERA and x
represents the respective component. Hence, the energy
consumptions of Jm(n1, n2, n3) and Jc(n1, n2), respectively,
are:

em (n1, n2 , n3) = tm (n1, n2 , n3)/f * ()active
PEP f

ec (n1, n2) = tc (n1, n2)/f * ()active
LDMP f

Other types of communication include NEWS transfer
and instruction broadcasting, with consumptions represented
by eNEWS (n1, n2) and eI (nI), respectively, and calculated by
similar equations to (2) and (3).

Based on the above analysis, let us look at the execution
time and energy consumption of the MMM tasks. If TK1 is to
be scheduled in SIMD, we have two choices: Cannon’s
algorithm and a naive algorithm. The naïve algorithm treats
all jobs like Jm(m, m, m) and each round can finish 2*3*q2

(1)

(2)

(3)

 4

Jm(m, m, m) jobs since each PE has direct access to three
LDMs for itself and the two neighbors. Results are then
collected and new matrix blocks are loaded into the LDMs
and LPMs followed by a new round of multiplications. Each
round requires (3+4)*q2 Jc(m, m) jobs. The pattern continues
until all the jobs are done. Totally we have 31* 2* 3*p p p q
Jm(m, m, m) jobs. We do not have Jnews jobs in this case. The
total number of clock cycles for computation and
communication, and the energy consumption for this naïve
scheme are

1,

3 1
1, 6

1 1,

1, 1, 1,

(, ,)* 1* 2* 3*

(,)* 1* 2* 3* *
1 *{()* (

)* * * }

n
comp m

n
comm c

n active active active n idle idle
PE bus LDM LPM comp PE bus

idle n active n idle n
NEWS comm LDM LPM comm NEWS comp

t t m m m p p p q

t t m m p p p q

e P P P t P P
f
P t P t P t

+

+

=

=

= + + + + +

+ +

If Cannon’s algorithm is used for TK1, then the needed
clock cycles and energy consumption are:

1,

3
1,

1,

1, 1, 1,

1 1,

(, ,)* 1* 2* 3*

2* (2 ,2)* 1* 2* 3* /8

2* (2 ,2)* 1* 2* 3

1 *{()* (

)*

c
comp m

c
NEWS news

c
c c

c c c
comm NEWS c

c active active active c idle idle
PE bus LDM LPM comp PE bus

idle
NEWS

t t m m m p p p q

t t m m p p p q

t t m m p p p

t t t

e P P P t P P
f

P t

+

=

=

=

= +

= + + + + +

1, 1, 1, 1,()* *()}c active active c idle c c
c NEWS LDM LPM NEWS NEWS comp cP P t P t t++ + + +

If MIMD is the computing mode, then we need to update
the LDM only (Jc(m, m) jobs) in each round but finish only
q2 Jm(m, m, m) jobs. Also, we have a larger number of data
transfers. The data transfers can overlap with the
multiplication jobs since PEs work independently in MIMD.
The worst-case clock cycles and energy consumption can be
found by:

1,

3
1,

1 1,

1, 1, 1,

(, ,)* 1* 2* 3*

(,)* 1* 2* 3* *2 / 3
1 *{()* (

)* * ()*

MIMD
comp m

MIMD
comm c

MIMD active active n idle idle
PE LDM LPM comp PE NEWS

idle n active n idle idle
bus comm LDM LPM comm bus NEWS

t t m m m p p p q

t t m m p p p q

e P P t P P
f

P t P t P P t

+

+

=

=

= + + + +

+ + + }n
comp

For the sake of simplicity, we do not take data locality
into account in these equations. It will be considered during
task scheduling. Also, the accumulation time of the partial
products is not included.

Similarly, other tasks (TKi i = 2, …, 8) can be treated in
SIMD, M-SIMD, MIMD, or the mixed mode. In the mixed-
mode, PEs are divided into multiple SIMD and MIMD
groups. Synchronization may be needed at some point. We
can derive similar equations for clock cycles and energy
consumption. One particular thing with these tasks is that
they involve non-square matrix blocks. The irregularity will
cause more idle PEs in SIMD than MIMD. Hence, it is
beneficial to execute these tasks in the mixed mode. For
example, consider a task involving one Jm(2, 5, 17), six

Jm(10, 15, 11), and eight Jm(14, 25, 7) jobs. We can
construct one SIMD group consisting of six PEs working on
the six Jm(10, 15, 11) jobs and another SIMD group with
eight PEs for the eight Jm(14, 25, 7) jobs. An independent
PE will work on the Jm(2, 5, 17) job. This way we can avoid
the idleness of PEs and potentially save on energy and time.

Let iγ be the percentage of computation in TKi, i = 1,
…, 8, working in SIMD and M-SIMD. The remaining work
in TKi is assigned to PEs in MIMD. The clock cycles and
system energy consumption for all the tasks can be found by:

8

{ * (1)}SIMD MIMD
i ii iT T T+∑ = γ − γ∑

,
1{ * () * ()}*active active idle idle

sys x x x x
x

E C P f C P f
f∑ = +∑

where active
xC and idle

xC are the clock cycles of the system
components, i.e., PEs, NEWS, bus, or memory, in the active
and idle states, respectively, for all the tasks. They are
collected by hardware counters in the respective components
at runtime.

B. Performance-Energy Tradeoffs

From the above analysis, we can see that the SIMD and
MIMD executions of a task involve different amounts of
execution time and energy consumption. By varying the
appearance weight of different modes, we can achieve
different performance-energy objectives. In particular, we
explore three performance-energy scenarios:
(1) Optimize the performance with no energy constraints

The focus is to reduce the communication time and also
consider data locality when distributing matrix blocks to
available PEs. This case also helps us to learn the best
performance and the corresponding energy consumption of
the application on the specific architecture. The objective is
to find a set of iγ which results in minimum T∑

(Eq. 15). The

possible choices for the 'siγ are determined by partitioning.
After a matrix and a HERA configuration are given, the total
number of matrix blocks is fixed. This resulting problem can
be explored by a linear programming solver. The energy cost
of each task

, iTKE∑
can be found by summarizing all the

energy cost of its jobs using the equations in the last
subsection.
(2) Optimize the performance with energy constraints

Let EB be the upper bound on the energy. We first
analyze the energy consumption for TKi, i = 1, …, 8, in the
first case, and then estimate the difference between the actual
consumption and its upper bound. We take advantage of the
fact that different iγ values for the same task has different
impact on the execution time and energy consumption. For
an application-system pair, there is an optimal iγ for
minimum execution time. Since the PEs consume different
power in different states, this optimal iγ does not necessarily
correspond to minimum energy consumption. Optimality
involving both energy and performance depends on the task

(4)
(5)

(6)

(7)
(8)
(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

 5

characteristics as well as the architecture. We aim to
optimize across two dimensions for each task: energy and/or
performance vs. iγ . Moreover, a hardware technique, clock
gating, is employed to save energy at runtime. The clock
signal of idle PEs will be disabled until they are assigned
new jobs. Algorithm-1 is applied.
(3) Reduce the energy cost for a given performance loss

When energy consumption is also of paramount
importance, performance can be sacrificed to an allowable
extent in order to reduce the required energy. Let β be the
allowed loss percentage. We decrease the performance of
each task TKi by the ratio β. We find a set of iγ , i = 1, …, 8,
to meet the time budget of TKi

(1)*b i
it tβ ∑= +

An algorithm similar to Algorithm-1 but for the time budget
instead of the energy budget is applied.

Algorthm-1: Meeting the energy budget

1. Find the energy gap:
8

,
1

i
g B TK

i

E E E∑
=

= − ∑ ;

2. IF gE < 0, Stop;

3. Find the total energy cost of TKi i = 2, …, 8,
8

,
2

iTK
i

E∑
=
∑ ;

4. Calculate the energy budget for
8

2 8
,

2
iB B TK

i

E E E−
∑

=

= − ∑ ;

5. Assign an energy budget, 2 8 * ii
B B

i

i

Oe E
O

−=
∑

, to each TKi i = 2,

…, 8, according to its computation weight;
6. Find the optimal iγ , i = 2, …, 8, with the minimum it∑

 and
i i

Be e∑ < , where it∑
and ie∑

 are the total execution time

and energy consumption of TKi.
7. If the above procedure fails, include TK1 and repeat Steps 2-6.

V. EXPERIMENTAL RESULTS

The FPGA device used in our experiments is the Xilinx
VIrtex II XC2V6000-5 FPGA [22], which contains 33,792
slices and 144 x 512 x 36-bit BlockRAM blocks. The
performance of the single-precision floating-point adder and
multiplier used to construct the HERA PEs is shown in Table
I. The HERA system runs at 125MHz. 36 PEs with 512 x 36-
bit LDM and LPM were implemented for the experiments.

We first evaluated the accuracy of our performance and
energy equations in the SIMD and MIMD modes shown in
Section IV. A variety of non-square matrices of different
shapes were used. Cannon’s algorithm was applied to TK1 in
all the matrix pairs for the SIMD execution. The measured
execution time and energy consumption of the tasks are listed
in Table II. These results were compared with those
calculated with our time and energy equations. The energy
results were measured with the Xilinx XPower tool. The
average activity rates were extracted from ModelSim files.
The average difference between the actual and the measured

time and energy is 2.1% and 4.5%, respectively. The
difference in time mainly comes from the overheads of
system administration and bus conflicts. Data locality during
scheduling also adds to dynamic effects on performance and
energy. This energy error rate is acceptable for system-level
estimation models. HERA components consume a
continuous range of power with different activity rates while
we assume only one state to represent any active behavior.
The key is to obtain the accurate activity rate by extensive
simulations with benchmark matrices. Another reason is that
the energy measurements for the bus system tend to be less
accurate than for PEs and memory blocks. However, our
objective is to develop fast, yet useful models for exploring
performance-energy optimizations without involving tedious
and time-consuming low-level simulations. Table II also
shows that different execution modes require different
execution times and energy consumptions, which provides
room for performance-energy trade-offs. The exploration
space increases with the increases in the matrix size.

Table I

Implementation results of the floating-point function units
Power (mW) at

125MHz Function
Unit

Number
of

Pipelines

Area
(slices)

Freq.
(MHz) Active Idle

Adder 3 390 163 227.2 87.4
Multiplier 3 134 174 85.9 59.2

Finally we evaluated our optimization techniques. Table

III shows results for matrices of size 565 x 767 and 767 x
999. Scenario-II evaluates the impact of clock gating on the
energy consumption. A reduction of 7.3% in energy
consumption was observed by putting the idle PEs into sleep
without major switching penalty on the execution time. A
performance penalty of 5.7% was observed when reducing
the energy consumption by 13%, as shown in Scenario-III. In
Scenario-IV and -V, we relaxed the performance by 10.6%
and 15% to reduce the energy consumption by 14.5% and
18.9%, respectively. The benefits of the approach should be
better with more closely coupled algorithms that have more
data dependences among tasks, which expose more
flexibility for performance-energy trade-offs.

VI. CONCLUSIONS

Continuous advances in silicon technology and

increasing difficulties in realizing superscalar processors
have brought a significant shift in microprocessor design.
Chip multiprocessing has recently emerged in general-
purpose computing and will continue to develop further in
many application scenarios, including embedded and
wireless systems. While performance is always desirable,
trade-offs between performance and energy are necessary in
many such systems. We have presented our performance-
energy trade-off study for an in-house designed and
implemented mixed-mode reconfigurable chip
multiprocessor. The flexibility of mixed-mode execution
provides us with a tremendous exploration space to achieve

(17)

 6

various performance-energy objectives. The experimental
results prove the effectiveness of our approach.

REFERENCES

[1] R. Ronen, A. Mendelson, K. Lai, S-L. Lu, F. Pollack, and J.

Shen, “Coming challenges in microarchitecture and
architecture,” Proc. IEEE, vol. 89, no. 3, March 2001.

[2] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Pharris,
J. Casper, and K. Asanovic, “The vector-thread architecture,”
IEEE Intern. Symp. Computer Archi., Munich, Germany, June
2004.

[3] L. Hammond, B. Hubbert, M. Siu, M. Prabhu, M. Chen, and K.
Olukotun, “The Stanford Hydra CMP,” IEEE MICRO, March-
April 2000.

[4] L. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S.
Qadeer, B. Sano, S. Smith, R. Stets, and B. V. Piranha, “A
scalable architecture based on single-chip multiprocessing,”
IEEE Int.. Symp. Comp. Arch., June 2000.

[5] D. Burger, S. W. Keckler, K. S. McKinley, et al., "Scaling to
the End of Silicon with EDGE Architectures," IEEE Computer,
vol. 37, no. 7, pp. 44-55, July 2004.

[6] H. P. Hofstee, “Power efficient processor architecture and the
cell processor,” 11th Intern. Symp. High-Perfor. Computer
Archi., pp. 258-262, Feb. 2005.

[7] A. Jerraya and W. Wolf (eds.), Multiprocessor Systems-on-
Chips. Morgan Kaufman, 2004.

[8] H. J. Siegel, M. Maheswaran, D. W. Watson, J. K. Antonio,
and M. J. Atallah, “Mixed-mode system heterogeneous
computing,” in Heterogeneous Computing, Eshaghian, M. M.
(Ed.), Artech House, Norwood, MA, pp. 19-65, 1996.

[9] _______, “Exploiting mixed-mode parallelism for matrix
operations on the HERA architecture through reconfiguration,”
IEE Proceedings, Computers and Digital Techniques, in press.

[10] K. Underwood, “FPGAs vs. CPUs: trends in peak floating-
point performance,” 12th ACM/SIGDA Intern. Symp. Field-
Program. Gate Arrays, pp.171-180, 2004.

[11] L. Zhuo and V. K. Prasanna, “High performance linear algebra
operations on reconfigurable systems,” ACM/IEEE Conf.
Supercomputing, Washington, 2005.

[12] C. Im and S. Ha, “An energy optimization technique for
latency and quality constrained video applications,” IEEE
Design & Test of Computers, vol. 21 pp. 358-366, Sept. 2004.

[13] P. H. Chou and C. Park, “Energy efficient platform designs for
real-world wireless sensing applications,” IEEE International
Conference on Computer Aided Design (ICCAD 2005), Nov.
2005.

[14] L. Shang, A. S. Kaviani, and K. Bathala, “Dynamic power
consumption in Virtex™-II FPGA family,” 10th ACM/SIGDA
Intern. Symp. Field-program. Gate Arrays, pp. 157-164, 2002.

[15] F. Li, Y. Lin, L. He, D. Chen, and J. Cong, "Power modeling
and characteristics of Field Programmable Gate Arrays,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 24, no. 11, pp. 1712-1724, Nov. 2005.

[16] M. deLorimier and A. DeHon, “Floating-point sparse matrix-
vector multiply for FPGAs,” 13th ACM/SIGDA Intern. Symp.
Field-Program. Gate Arrays, pp. 75-85, 2005.

[17] J. Li and J. F. Martínez, “Power-performance considerations of
parallel computing on chip multiprocessors,” ACM Trans. on
Architecture and Code Optimization, vol. 2 no.4, pp. 397-422,
Dec. 2005.

[18] I. Kadayif, M. Kandemiret, and U. Sezer, “An integer linear
programming based approach for parallelizing applications in
on-chip multiprocessors,” IEEE Design Automation
Conference, New Orleans, LA, June 2002.

[19] B. H. Meyer, J. J. Pieper, J. M. Paul, J. E. Nelson, S. M.
Pieper, and A. G. Rowe, “Power-performance simulation and
design strategies for single-chip heterogeneous
multiprocessors,” IEEE Transactions on Computers, June
2005.

[20] Y. Kim, M. Kiemb, C. Park, J. Jung, and K. Choi, “Resource
sharing and pipelining in coarse-grained reconfigurable
architecture for domain-specific optimization,” IEEE Design,
Automation and Test in Europe (DATE 2005), vol. 1, pp. 12-
17, 2005.

[21] L. E Cannon, “A cellular computer to implement the kalman
filter algorithm,” Ph.D. Thesis, Montana State University,
1969.

[22] Virtex II FPGA datasheet,
http://direct.xilinx.com/bvdocs/publications/ds031.pdf.

Table II

Execution time and energy consumption for various parallel execution modes

Matrix Dimensions SIMD MIMD

N1 N2 N3 Time
(sec)

Energy
(J)

Time
(sec)

Energy
(J)

150 150 172 0.028 0.43 0.033 0.45
245 261 375 0.11 1.61 0.13 1.55
312 595 303 0.25 3.55 0.30 3.27
205 611 613 0.41 5.94 0.48 5.69
508 311 528 0.43 6.19 0.49 6.17
687 202 676 0.55 7.20 0.63 6.64
711 713 403 1.51 21.30 1.68 18.64
999 997 996 6.40 96.76 7.16 82.43

Table III
Performance-energy trade-offs in mixed-mode computing

Scenario Objective Constraints Energy
(J)

Execution Time
(sec)

I Minimize T None 32.8 2.45
II Minimize E T < 2.45 30.4 2.44

 7

III Minimize T E < 28.6 28.55 2.59
IV Minimize E T < 2.70 28.03 2.70
V Minimize E T < 2.82 26.6 2.80

