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Abstract 

Configurable computing, where hardware resources are configured appropriately to 
match specific hardware designs, has recently demonstrated its ability to significantly 
improve performance for a wide range of computation- intensive applications. With 
steady advances in silicon technology, as predicted by Moore’s Law, Field-
Programmable Gate Array (FPGA) technologies have enabled the implementation of 
System-On-a-Programmable-Chip (SOPC or SOC) computing platforms, which, in turn, 
have given a significant boost to the field of configurable computing. It is possible to 
implement various specialized parallel machines in a single silicon chip. In this paper, we 
describe our design and implementation of a parallel machine on an SOPC development 
board, using multiple instances of a soft IP configurable processor; we use this machine 
for LU factorization. LU factorization is widely used in engineering and science to solve 
efficiently large systems of linear equations. Our implementation facilitates the efficient 
solution of linear equations at a cost much lower than that of supercomputers and 
networks of workstations. The intricacies of our FPGA-based design are presented along 
with tradeoff choices made for the purpose of illustration. Performance results prove the 
viability of our approach. 
 
Keywords : FPGA, LU factorization, matrix inversion, parallel processing, hardware 
design, SOPC/SOC. 
 
 
1. Introduction 
 
Solving a large sparse system of linear equations has always been a great challenge to 
conventional computing platforms, especially when operations have to be carried out in 
real time. An effective approach is to build high-performance parallel machines. After 
more than a decade of experimentation, clusters of Cray-like vector supercomputers, 
distributed shared-memory multicomputers employing crossbar or multistage 
interconnection networks, and clusters of scalar uni- and multi-processor systems 
dominate the high-performance computing field [1, 24]. These parallel computers have 
accomplished a great deal of success in solving computation- intensive problems. 
However, their high price, their long design and development cycles, the difficulty of 
sometimes programming them and the high cost of maintaining them, more often in 
supercomputing centers, limit their application to diverse computing fields.  
________________________________ 
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Supercomputing centers may soon become fully distributed computation brokers, serving 
either as “instrumentation” sites or nodes for peer-to-peer computing [1]. To make 
parallel computing available to the masses, all available Internet nodes in “grid 
computing” are candidates to solve large-scale problems in a distributed-computing 
fashion [22]. However, these approaches to high-performance computing are not viable 
for systems dedicated to a single application or for low-budget solutions. 
 
LU factorization is a direct method that can solve large systems of linear equations that 
come from many important application areas, such as circuit simulation, power networks 
[2, 3, 28-30], structural analysis, etc. Many successful parallel LU solvers run on 
massively-parallel supercomputers; for example, the SuperLU algorithm has been 
developed for distributed-memory machines such as the Cray T3E, and for shared-
memory machines such as the Cray C90 and J90, and IBM SP machines [5]. Good results 
for the S+ sparse LU solver have been obtained on distributed-memory machines such as 
the Cray T3D and T3E [6].  
 
Real-time power flow analysis has many variations that are used frequently in the 
electrical power utilities industry [32]. First, for such utilities to monitor the performance 
of the network continuously in order to identify disturbances, such as power station 
failures, broken lines, and line overcharge. Second, to speed up the process of deciding to 
purchase electrical power from neighboring utilities according to expected customer 
needs and prices of available power; this process normally has a running time of several 
hours on PCs (personal computers). Finally, different network configurations can be 
tested to select the choice with the highest efficiency. Parallel processing techniques to 
solve power flow analysis problems have received tremendous attention in recent years 
[2, 3, 32-34]. 
 
On the other hand, with continuous developments in the silicon industry and advances in 
architecture design, FPGAs have grown to the extent that they can form SOPC computing 
platforms, from serving previously as simple platforms for ASIC prototyping and glue 
logic implementation. These advances pronounce a new promising era in the FPGA-
based configurable computing field. After about a decade of active research and 
experimentation, configurable computing has recently proved to be a viable research 
avenue in accelerating algorithm execution. New generations of FPGAs have made it 
possible to integrate a large number of computation modules and build parallel machines 
in a single FPGA device. Undoubtedly, it is now the right time to reevaluate previous 
research efforts through the employment of this promising computing paradigm.  

In this paper, we present our design and implementation of a shared-memory MIMD 
multiprocessor machine that uses Altera’s Nios® configurable processor IP (Intellectual 
Property) as computing nodes [27]. The Nios embedded processor is optimized for Altera 
programmable logic and SOPC solutions. Altera provides a powerful, integrated-system 
development tool, the SOPC Builder, that supports the implementation of Nios-based 
embedded processor systems. We implemented our design on the Altera SOPC 
development board, which is populated with an EP20K1500EBC652-1x FPGA and 2 
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MB(ytes) of synchronous SRAM. A uniprocessor implementation with a smaller Altera 
device is also presented. Our highly parallel LU factorization algorithm, namely the 
bordered-diagonal-block sparse matrix solver for sparse matrices having unknown (i.e, 
not fixed) structure [2, 3], is very suitable for electrical power systems. Real electrical 
power systems are represented by very large sparse matrices having unknown structure, 
so we have adapted this algorithm for implementation on our FPGA-based parallel 
architecture. Our low cost, high-performance approach can improve the performance of 
several real-time electrical power system applications, such as the load-flow and transient 
stability analyses. Fields other than that of electrical power systems could also benefit 
from our design if the objective is to solve similar equations in reasonable running times 
and at dramatically reduced costs.  

Our paper is organized as follows. Section 2 presents briefly the general LU factorization 
problem and our chosen solution. Section 3 contains an overview of our target Altera 
SOPC board. Section 4 presents our design of a shared-memory Nios-based 
multiprocessor that was implemented on this board. Section 5 illustrates further 
implementation issues for our design and also presents relevant execution times. 
Appropriate comparative analysis of the results is also included. Finally, Section 6 
contains our conclusions. 

 

2. Parallel Bordered-Diagonal-Block Sparse LU Factorization  

2.1. Introduction to LU Factorization 

This section presents an overview of the LU factorization problem [4, 28, 29, 30]. 
Solving the following system of N linear equations is the core computation of many 
engineering and scientific applications 

A*x = b              (1) 

where A is an N x N nonsingular matrix, x is a vector of N unknowns, and b is a given 
vector of length N. The solvers for this equation come mainly in two forms: direct [4] and 
iterative [15].  

One of the classic direct methods is LU factorization, which works as follows. We first 
factorize A so that 

A=L*U              (2) 

where L is a lower triangular matrix and U is an upper triangular matrix. Once the  
elements in L and U are determined, the unknown vector x in (1) can be identified by 
forward reduction and backward substitution, respectively, using the two equations 
L*y=b and U*x=y. LU factorization obviously has dramatically reduced costs compared 
to actual matrix inversion, especially for large matrices. As long as there is a solution to 
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the system of equations, it will be found. Moreover, the factorization result can be used 
repeatedly after the right hand vector has changed.  

Matrix inverses are not generally used to solve systems of linear equations. LU 
factorization followed by forward reduction and backward substitution is a more 
numerically stable technique because every nonsingular matrix possesses an LU 

decomposition. The complexities are Θ(N3) for LU factorization, and Θ(N2) for forward 
reduction and backward substitution, so the total time needed to solve the system of 
linear equations with LU decomposition is Θ(N3) [30]. Also, LU factorization saves 
space because the original space storing A is used to store L and U. In contrast, standard 
matrix inversion requires time O(N3) and much more space. 

There are numerous variants to LU factorization.  If we assume that L has all 1's on the 
diagonal and also write equation (2) in matrix form, as in 
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then we can derive the following equations for the widely used “Doolittle LU 
factorization algorithm” [4] that determines the matrix elements on the ith row, where i 
assumes all values in [1,N]: 
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Observing the structures of L and U, we can see that there is no need to store L, U, and A 
separately. We can use only one matrix A to store all three matrices. During the 
factorization, the modified elements in matrix A are destroyed and replaced with L and 
U. The diagonal of matrix L always contains all 1’s and is not stored explicitly. 

Another commonly used algorithm, namely “Crout factorization” [4], is similar to 
Doolittle factorization except that we use Ukk=1 instead of Lkk=1, for all i � k � N.  From 
equation (3), we can then derive the following expressions for L and U, for the jth step of 
the execution, where j assumes all values in [1,N]: 
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From equations (4) to (7), we can observe that the Doolittle and Crout methods can 
benefit from storing the matrix in the row and column order, respectively, in relation to 
fast matrix accesses. Since our matrices are stored in the row order, it is more efficient to 
employ the Doolittle method for those parts of our LU factorization that require the 
application of conventional LU factorization. This is our choice in this paper.  
 

2.2. Main Issues with Sparse LU Factorization 

2.2.1. Evaluation Sequence in LU Factorization 

From the L and U equations (4 and 5, respectively), we can see that before we can 
calculate the kth row and column elements respectively, all calculations in the previous 
(k-1)th step must have been already completed; thus, all nonzero elements on the 
preceding rows and columns have to be available before the kth loop step begins. Let us 
assume a 5 x 5 matrix to illustrate the precedence relation in LU factorization.  Assuming 
the third step (k=3), we need to update all elements in the dotted rectangular shown in 
Figure 1. For the new value of A43 (actually L43), we have the following expression: 
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Figure 1.  Precedence relations in LU factorization 

Hence, we need to know all the 4th row elements that are to the left of A43 and all 3rd 
column elements that are above A33.  

If the matrix elements are distributed to different processors of a parallel computer, then 
frequent communication among the processors is required, which reduces the efficiency 
of parallel algorithms and also increases the hardware complexity of custom-made 
parallel machines. 
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2.2.2. Pivoting 

We can observe from equation (4) that this algorithm is prone to numerical inaccuracies 
if some Ujj’s are very small. Of course, a major problem appears if any of the Ujj’s are 
zeros. To maintain numerical stability during factorization, pivoting is usually applied by 
rearranging the rows or columns of A. Row pivoting chooses the largest element on the 
kth row of A(k) as the new diagonal element, while column pivoting chooses the largest 
entry on the kth column of A(k), where A(k) is the A matrix in the beginning of step k. In 
the case of full pivoting, we choose the largest element on the kth row and column. 
Because pivoting is dynamically determined during factorization, it greatly increases the 
complexity of parallel sparse LU factorization. This problem is further exacerbated if 
dynamic data structures are employed to store sparse matrices. For sparse matrices, the 
structures of L and U (that is, the location of non-zero elements) cannot be determined 
precisely without performing actual factorization. In SuperLU, static symbolic LU 
factorization is performed in order to determine in advance all possible fill- ins (positions 
of zeros in the original matrix that will be reproduced with non-zero elements during LU 
factorization), before actual LU factorization takes place [5]. Fortunately, electrical 
power systems employ symmetric positive definite matrices which are also diagonally 
dominant, so pivoting is not often required. Because we do not consider pivoting during 
LU factorization, we can use static data structures where all fill- ins are predetermined. 

2.2.3. An Overview of the Bordered-Diagonal-Block (BDB) algorithm 

Electrical power flow analysis is based on the line admittance matrix, which is a highly 
sparse matrix. In the admittance matrix, off-diagonal non-zero elements represent branch 
buses. The larger the power network is, the more sparse the matrix (i.e., the smaller the 
percentage of non-zero elements). For real electrical power systems, the non-zero 
elements in a 3000 x 3000 matrix occupy only about two percent of the matrix positions. 
A sparse matrix offers the advantage of reduced storage space. However, during sparse 
LU factorization, some of the zeros may become non-zeros, resulting in several fill- ins. 
So a dynamic data structure is normally required to house the fill- ins during factorization. 
Moreover, as discussed above, the fill- ins increase the complexity of parallel 
implementations.  

 The main aim of ordering a sparse matrix is to reduce the number of fill- ins during 
factorization [2-5, 30, 32, 33, 36] The ordering is to generate a permutation of the 
original matrix so that the permuted matrix results in a stable solution that also increases 
parallelism. Parallel algorithms normally include a matrix reordering phase that attempts 
to maximize the efficiency of the implementation. Because we do not consider pivoting 
during factorization, we can use static memory storage structures and the reordering can 
be carried out before LU factorization. Also, by ordering a sparse matrix into special 
forms, such as the banded, envelope, block tri-diagonal, bordered-block-triangular, and 
bordered-diagonal-block (BDB) forms, entire independent portions of a sparse matrix can 
be factored in parallel. Significant efforts have been made to develop efficient algorithms 
specifically for such forms [2, 3, 37-39] 
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The most successful and widely used ordering techniques [4] are: (1) Minimum degree:  
The rows and/or columns of matrix A(k) at each stage k are ordered in ascending order, 
and the row/column with the lowest number of non-zero entries (degree) is chosen as the 
kth row/column in order to reduce the fill- ins in the current and, hopefully, future steps. 
(2) Minimum fill- in:  The rows and/or columns of matrix A(k) at each stage k are ordered 
in an effort to produce the minimum number of fill- ins. In our implementation, we use 
minimum degree ordering and node tearing algorithms [3, 4, 40] in order to get a near 
optimal BDB matrix. 

2.3. Parallel LU Factorization of a BDB Sparse Matrix 

In our implementation, we use the BDB form for the matrix (see Figure 2) as our final 
form of ordering. It was demonstrated elsewhere that real electrical power matrices can 
be ordered into this form and the ir parallel implementation on the Connection Machine 
CM-5 supercomputer resulted in significant speedup for up to 16 processors [2]. 

In Figure 2, the Bi j’s are matrix blocks; the Bii’s are referred to as the diagonal blocks and 
Bin  and Bnj are called right border blocks and bottom border blocks, respectively, where 
i,j∈[1, n]. The blocks Bi i, Bin, and Bni are said to form a 3-block group, where i∈[1,n-1]. 
Since all other off-diagonal blocks contain all 0’s, there will be no fill- ins in these blocks 
during factorization and the result will have the same BDB structure. From the 
dependence relations, we can see that only the factorization of the last block Bnn requires   
the data produced in the right and bottom border blocks. All other 3-block groups can be 
first processed in parallel, yielding very high performance. The factorization of Bnn  is the 
last step. To factor the last block, pairs of blocks are multiplied in parallel to produce 
Bnj=Bnj*Bjn, for j ∈[1, n-1]. Then, the summation of the lower border blocks is required 
to factor the last block (see equations (4) and (5)). It is accumulated by the other 
processors and sent to the processor assigned the last diagonal block. Thus, the BDB 
matrix algorithm exhibits distinct advantages for parallel implementation.  
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Figure 2.  Sparse BDB matrix 

BDB sparse matrix algorithms modify conventional preprocessing phases in an attempt to 
introduce explicit load balancing within an ordering step for uniform workload 
assignment to the resources of a distributed-memory multiprocessor. A new 
preprocessing phase was presented in [3]. Several blocks of matrices used in electrical 
power systems normally follow the BDB distribution for non-zero elements. The 
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remaining blocks in the sparse matrix need to be reordered to produce more independent 
diagonal blocks, which, in turn, will reduce the number of equations in the borders of the 
matrix. These matrix forms are normally unchanged for non-trivial amounts of time since 
they represent generators of electricity and existing power distribution networks. 
Therefore, the extra time consumed in the matrix reordering phase is easily justifiable. 

The LU factorization of the BDB sparse matrix involves four steps. (1) Factorization of 
the independent blocks. (2) Multiplication of the right and bottom border blocks to 
generate the partial sums. (3) The accumulation of the partial results for the last diagonal 
block. (4) Factorization of the last diagonal block using the accumulated partial results 
from the above steps. Figure 3 illustrates these steps. 

 

 

 

 

 

Figure 3. Parallel LU factorization of a sparse BDB matrix 

To summarize, each processor contains in its local memory all data that it needs to 
operate on, except for the last block. Matrix data are stored in both the local memory (on-
chip RAM) and the on-board SSRAM as explained in Section 4.  Internal register files 
are used by the application. Also, no data transfers are required for the updates in the 
independent blocks and borders. In fact, all respective calculations can be carried out in 
parallel. Each of the processes for the LU factorization of the 3-block groups and the 
updates in the lower-right-corner block can be carried out in parallel; the former set of 
processes do not require any data transfers whereas the latter process necessitates the 
transmission of partial sums of updates to the appropriate processors that deal with 
calculations in the lower-right-corner block. These data transfers are rather limited and 
form well structured patterns in the form of binary trees (see Section 4.2.4). The most 
efficient algorithm should be chosen to factor the last block.  
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The preprocessing phase carries out: (1) Ordering of the matrix into the BDB form. (2) 
Symbolic (i.e., pseudo) factorization to identify the location of fill- ins for static data 
structures and the actual amount of calculations corresponding to independent blocks. (3) 
Load balancing of the calculations among the processors. We need to emphasize here that 
a good load balancing technique should take into account not only the number of 
equations (that is, the amount of data) assigned to each processor but also the actual 
number of resulting operations because of non-zero elements. For good load balancing, a 
simulation of all the operations must be carried out in detail in the symbolic factorization 
phase, by taking into account all possible computations and data transfers. All three steps 
in the preprocessing phase can be carried out in parallel. However, the preprocessing 
phase is not the focus of this paper. 

Let us now focus individually on each of the three preprocessing steps. Mutually 
independent blocks in the matrix should be identified in the ordering step. This step is 
based on the fact that independent sub-matrix blocks do not share edges in an undirected 
graph where nodes represent sub-matrices. Several techniques have been developed to 
implement this step. Our implementation employs the node tearing approach that has 
gained great popularity in circuit simulation and power analysis applications [40]. 

Node tearing is a very efficient partitioning technique to solve large-scale problems. If 
the nodes in a fine-grain undirected graph represent individual rows/columns in a 
symmetric matrix and the edges represent non-zero elements at the intersections of the 
row-column pairs represented by the incident nodes, then a grouping of rows/nodes is 
suggested. Edges that run between any two groups of nodes indicate coupling/inter-
dependence of the corresponding groups which is expressed in the form of coupled 
equations. The main idea is to identify and isolate temporarily from the large problem all 
the coupled groups of nodes in order to generate independent sub-problems which can be 
solved independently. After all the sub-problems have been solved, we can solve the 
coupled equations. In our BDB form matrix, the independent diagonal blocks correspond 
to independent sub-problems, and the last (lower right) diagonal and border blocks 
represent the coupled nodes. Because the last block is factorized in the last step using 
solution data produced for preceding blocks in the matrix, we should try to make the last 
block as small as possible (that is, we should try to minimize the number of the coupled 
equations). The choice of the partitions and tear sets is based on heuristics that must take 
into account the physical characteristics of the matrix. In power distribution networks the 
buses are usually loosely interconnected, thus the node tearing algorithm can produce 
very good results because of the sparsity in the corresponding matrix. This matrix is 
symmetric in several variations of the power analysis problem. We carried out this 
process manually for the results presented in Section 5. We have also automated this 
process by running code currently residing on the host computer; this code is based on 
the algorithm that appeared in [40]. Within every diagonal block, we use minimum 
degree in the attempt to minimize the fill- ins.  

To identify the location of fill- ins and also estimate the amount of required calculations in 
each independent block, symbolic factorization is needed. In pseudo-factorization, the 
entire numerical factorization process is carried out without producing any actual results. 
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Appropriate counters are employed to count the numbers of operations. We did not 
implement this step in the preprocessing phase. 

From the above discussion, we can find out that the BDB matrix LU algorithm exhibits 
several distinct advantages for parallel implementation. First, all 3-block groups defined 
in Section 2.3. are mutually independent, so the LU factorization of these groups can run 
in parallel. In our parallel implementation, we assign to each processor distinct 3-block 
groups. Also, except for the right and bottom border blocks, all the off-diagonal blocks 
contain all 0’s, so no fill- in appears outside of the diagonal blocks. Thus, we can use 
static data structures to represent the matrices and also distribute the independent matrix 
blocks among different processors.  

 

3. Configurable Devices and  Computing 

3.1. SOPC/SOC devices 

The terms SOPC and SOC will be used interchangeably from now on in this paper. The 
impact of FPGAs has been tremendous since they were first introduced by Xilinx® in 
1986. In the past, FPGAs were primarily used for the rapid prototyping of digital systems 
and for speeding up small applications that assumed cost sensitivity and higher 
performance, while custom ASICs were used for high volume implementations. Due to 
their small chip gate count and low system speed, FPGAs were too expensive and too 
slow for many applications; these drawbacks were further exacerbated for entire system 
level design and implementation. Also, FPGA development tools were too difficult to 
learn and lagged in many of the features found in ASIC development systems. Newer 
tools have better capabilities and have attracted larger numbers of system designers. 

FPGA capacities are often expressed in numbers of “system gates” that refer to the 
numbers of ASIC-equivalent 2-input NAND gates [26, 27]. By counting the number of 
system gates, we can get a sense of the amount of logic resources in an FPGA for the 
implementation of ASIC-equivalent designs. FPGA manufacturers normally provide the 
maximum number of system gates that can be used by a typical application. Current 
silicon manufacturing technology allows to build FPGA chips consisting of millions of 
system gates. This technology not only promises new levels of system integration for 
larger programmable chips, but also allows for more features and capabilities with 
reprogrammable technology. Advances in VLSI technology not only brought about 
multi-million gate FPGAs, but also facilitated the integration of numerous functions onto 
a single FPGA chip. Peripherals formerly attached to the FPGA at the board level now 
can be embedded into the same chip with configurable logic. According to Xilinx 
predictions, by 2003 the count of FPGA system gates will exceed 50 million and FPGA 
chips will operate at more than 500 MHz. Thus, the availability of many millions of 
system-level gates in FPGAs has introduced a new design paradigm, which is based on 
the SOC. Entire systems can be implemented on a single FPGA chip without the need for 
expensive non-recurring engineering charges or costly software tools. Quite often the 
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implementation of applications on SOCs requires the inclusion in the design of reusable 
Intellectual Property (IP) cores to improve productivity and reduce turnaround time; soft 
IP cores implement specialized units, such as FPUs (floating-point units), DSPs (digital-
signal processors), and general and special-purpose processors (e.g., ARM [25], 
MicroBlaze [26], 80186, ARC [35]), using hardware description languages (HDLs) to 
uniquely define the underlying architectures.  

Nevertheless, the high complexity of SOCs inadvertedly affects the complexity of 
pertinent application development tools. In order to deal efficiently and effectively with 
complex FPGA and SOC designs, and radically reduce system costs and development 
times, these tools should support the integration of IP cores seamlessly without reducing 
their performance. ASIC companies and large semiconductor vendors make available 
programmable- logic cores, like the VariCore EPGA IP offered by Actel. IBM has 
licensed FPGA technology from Xilinx for integration with its recently announced Cu-08 
ASIC product offerings. The reconfigurable logic in these ASIC chips will make it 
possible to adopt the system’s functional behavior on the fly, as needed, while still 
delivering high throughput because of the ASIC design. Relevant efforts initially target 
ease of system debugging and reduced costs in developing ASIC families. Undoutedly, 
these initiatives demonstrate industry convergence which is expected to make SOC 
approaches preeminent in the computing field. With the anticipated doubling of chip 
transistor densities every 18 months according to Moore’s Law, our dependence on SOC 
designs will become even more preeminent. 

3.2. Configurable Computing: An Overview 

The advent of multi-million gate FPGAs has the potential to make configurable 
computing a flourishing field in the near future.  Configurable or adaptive computing 
capitalizes on the static and/or run time reconfiguration of FPGA-like or switching 
devices and has been an active research and experimentation area ever since the 
introduction of commercial FPGAs [7-14, 17-20]. By loading various system 
configurations into FPGAs (often on the fly) as needed, the designer can achieve greater 
hardware functionality with the same hardware. FPGA-based (re)configurable systems 
can be used as specialized co-processors [16], processor-attached functional units or 
independent processing machines [7], attached message routers in parallel machines [17], 
general-purpose processors for unconventional designs [17], and general-purpose [16, 20] 
or specialized systems for parallel processing [12, 19]. In the past decade, FPGA-based 
configurable computing machines have acquired significant attention for improving the 
performance of algorithms in several fields, such as DSP, data communication, genetics, 
image processing, pattern recognition, etc. However, given the programmable nature of 
configurable devices, an ASIC implementation is generally faster by a factor of five to 
ten than its configurable counterpart [8].  
 
Most of the configurable parallel-machine implementations currently reside on multi-
FPGA systems interconnected via a specific network; ASIC components may also be 
present [7]. For example, Splash 2 uses 17 Xilinx XC4010s arranged in a linear array and 
also interconnected via a 16 x 16 crossbar [12]. For such systems, quite often the I/O 
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connection, and the communication between the processing elements and the host 
become major bottlenecks. 

Research and development in configurable computing usually requires expertise in both 
hardware and software design. The development of automatic mapping tools is always a 
Herculean task for configurable systems because this is an NP-hard problem. Not only 
tools are needed to map and combine required hardware components onto FPGA 
resources, but application algorithms also have to be modified and mapped appropriately 
to the chosen FPGA resources in ways that yield acceptable performance [21]. Due to the 
difficulty of dealing with low-level hardware design, research groups have developed 
high- level language compilers to effectively map C/C++ code into VHDL code for 
targeted FPGAs [7-11, 23]. However, current compilers often require manual 
hardware/software partitioning and optimization, and the quality of the result in area 
requirements and system clock frequency is not often satisfactory [10, 11].  

Dynamically reconfigurable datapaths also can be implemented with FPGAs. For 
example, a relatively simple co-processor for the acceleration of main computation loops 
in compute intensive applications was presented in [16]. This co-processor contained 
fixed hardware blocks and a programmable interconnect structure. A reconfigurable, 
dynamically programmable message router where the mapping and size of datapaths 
could be changing continuously was presented in [17].  

Our research objective in this paper is to design a parallel machine on an SOC for the 
implementation of LU factorization using the BDB sparse matrix algorithm. Scalability 
of the algorithm-machine pair is a major objective, for the support of high-performance 
applications (such as power flow analysis).  

3.3. The Nios Soft IP  

3.3.1.  An Overview 

Our main implementation of LU factorization employs an Altera SOPC development 
board and involves many Nios processors in a shared-memory multiprocessor 
configuration. We have chosen a multiprocessor approach in this project in order to 
reduce the design and development times, and also take advantage of software available 
for soft processor cores (i.e., the Nios processor in this case). For special-purpose designs 
involving, among others, new processor development in HDL (i.e., a hardware 
description language) code, we either have to develop application code in assembly 
language targeting such a system (a quite cumbersome task indeed) or create our own 
compiler (which is really a Herculean task). In fact, even the task effort for the 
development presented in this paper has been very substantial. We spent about five 
months for the design of the multiprocessor architecture, the development of the 
application code, and the debugging of the hardware and software entities. The 
pioneering nature of our project necessitates that we convey such information to 
researchers who may attempt similar tasks in the future. Nevertheless, we are already in 
the process of also designing a special-purpose SIMD architecture for LU factorization 
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and relevant applications. One of our objectives will be to compare the performance and 
development costs of the design presented in this paper with the latter SIMD design when 
it becomes available. 

An overview of Nios is pertinent. The Altera Nios RISC processor is a fully configurable 
soft processor running over 125 MHz in the Stratix FPGA. With the Altera-provided 
SOPC Builder powerful development tool, the user can build Nios-based systems on 
FPGAs. Combining logic, memory, and a processor core, Altera's ExcaliburTM software 
component for embedded processor solutions allows engineers to integrate an entire 
system on a single programmable logic device. 

The following is a quick overview of the Nios features. A block diagram of Nios is 
shown in Figure 4.  
 

• General-purpose RISC microprocessor with Harvard architecture (that is, separate 
instruction and data buses) and a five-stage pipeline.  

• 32-bit and 16-bit architectural variants of the processor. 
• Complete 16-bit wide instruction set. 
• Windowed register file of configurable size. 128, 256, or 512 registers may be 

implemented. 
• The typical 32-bit Nios requires only about 2.9% of the resources contained in the 

EP20K1500E on the SOPC development board [27].  
• Nios supports only integer arithmetic operations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Altera Nios block diagram (adapted from the Altera® web site). (D-in: data in, 
D-out: data out, R/W: read/write, irq: interrupt request, PC: program counter, C-E: clock 
enable, clk: clock, BE; byte enable, Oper. Fetch: operand fetch.) 

From the above discussion, we can see that, many Nios processors can be 
implemented in a single FPGA when considering only integer operations. With the 
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implementation of a hardware FPU core, however, the number of implemented 
processors is reduced dramatically.  Our design had to add a hardware FPU in each Nios 
in order to significantly improve the system performance. Our FPU takes almost half of 
the logic resources in the EP20K200E on the Nios development board.  

3.3.2. Implementing Custom Instructions in Nios 
 
A great advantage of Nios is that it allows the user to significantly increase system 
performance by implementing performance-critical operations through direct hardware 
instruction decoding. Developers are allowed to develop and include up to five 
parameterized custom instructions in the Nios instruction set. Additionally, user-added 
custom instruction logic can access memory and/or logic outside of the Nios system. By 
using a prefix variable, the actual number of custom instructions is only limited by the 
available device resources. 

3.3.3. The Altera Avalon® Bus and Implementing Peripherals 

SOPC boards contain several peripherals. In promoting IP-based designs, we need to 
enable interconnectivity with a common bus protocol. In Nios-based systems, the Nios 
processor(s) and other peripherals are interconnected by the multi-mastering Avalon bus. 
Unlike traditional shared bus protocols, the Avalon bus is a parameterized, fully 
connected bus that supports simultaneous transactions for all bus masters, and 
automatically includes arbitration for peripherals and/or memory interfaces that are 
shared among masters. This simultaneous multi-master architecture offers great 
throughput performance compared to a traditional, shared bus architecture. Each 
recognized SOPC component is described by a Peripheral Template File (PTF) file in the 
library. The users can design their component in compliance to the specifications in the 
PTF and integrate them into the set of Nios peripherals.   

Nevertheless, a major problem arose during our implementation of the shared-memory 
multiprocessor. The Avalon bus tri-state bridge seems to have some problem when 
several Nios processors simultaneously access the data area in the off-chip SSRAM. 
During the LU factorization, we found out that the data read/write operations in the 
SSRAM memory became very unpredictable. We should mention, however, that we also 
tested our machine with some programs that did not have a lot of off-chip memory 
accesses, and the Avalon bus tri-state bridge worked well.  To rectify this problem for our 
application that requires numerous off-chip SSRAM accesses, a sixth Nios control 
processor was used to prefetch data needed by the five Nios computation processors; 
prefetched data were stored into the latter’s local memory. To speedup our application, 
we attempted to overlap as much as possible internal FPGA operations with external 
SSRAM memory accesses. More recent versions of the Avalon bus should work well. 

3.3.4. The Nios Development Board 

In order to facilitate Nios-based designs, Altera introduced an FPGA-based hardware 
development board along with the Nios development software. The Nios development 
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board is populated with an APEX20KE (EP20K200EFC484-2x) FPGA, which has 8,320 
logic elements and 106,496 bits of on-chip RAM. It also includes 256 KB(ytes) of zero- 
wait-state SRAM (in two 64 K x 16-bit chips) that can be used as the program memory. 
The two SRAM chips are asynchronous to the Nios and all the memory operations are 
completed in one clock cycle. The data and address buses are shared between the two 
memory chips, which are different from the SOPC development board that will be 
introduced later. If the SRAM is not enough for the user program, the board provides a 
144-pin SODIMM socket that is compatible with standard single-data-rate, 64-bit-wide 
SDRAM modules and can be used to expand the program memory. The 1MB on-board 
flash memory can be used to store the user configuration when the power is down. The 
configuration can be set to be loaded into the FPGA automatically using the 
configuration utility residing in the on-board EPROM.  
 
The Nios board communicates with the host through an on-board RS-232 serial port. A 
JTAG connector is used for programming the on-board APEX device and the 
configuration controller. 

3.3.5. Integrating an FPU with Nios  

Many scientific computations, such as LU factorization for power analysis, require 
floating-point arithmetic to deal with large dynamic data ranges. However, FPUs have 
been rarely introduced in configurable machines. The most important reason is the space 
required for the FPU implementation due to the complexity of floating-point operations; 
limited numbers of resources were available in older FPGAs. The implementation of 
FPUs on FPGAs is feasible nowadays because of increased numbers of available 
resources.  

We implemented a whole set of single-precision FPU instructions based on the IEEE 754 
standard and an earlier FPU design. The FPU instructions are ported into the Nios system 
as four user instructions. The performance of our FPU is listed in Table 1. We did not 
purchase a commercial FPU soft core because of their very high cost. Table 2 shows a 
comparison of the execution times for floating-point operations implemented in software 
and hardware, respectively.  

Table 1. Performance of the FPU for the APEX20K FPGA 

 Performance in 
APEX20K 

Resources (Logic 
Elements) 

Clock Cycles* 

Adder/Subtractor 51 MHz 696 7 
Multiplier 40 MHz 2630 5 
Divider 39 MHz 1028 50 

Note: In order to guarantee that Nios can get the FPU result under any circumstances, we 
introduced an extra cycle in porting the FPU logic into Nios systems. This consideration 
was based on our experiments.  
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Table2. Execution time of software and hardware floating-point operations on the Nios 
system 

Operations Software Library Macros 
(Clock cycles) 

Hardware FPU  
(Clock cycles) 

Speedup 

Addition/Subtraction 770 19 40.5 
Multiplication 2976 16 186 
Division 1137 51 22.3 

The data in the hardware FPU column of Table 2 are the total times for a Nios processor 
to complete the entire instruction, including fetching and decoding times. From Table 2, 
we can see that the hardware implementation of floating-point arithmetic can greatly 
improve the performance of algorithms.  

 

4. Design and Implementation 

 4.1. Sequential Implementation 

We first implemented a single Nios system with an FPU on the Nios development board, 
for sequential LU factorization. The following is the configuration of our uniprocessor 
system: 

• 32-bit Nios processor. 
• 128 registers. 
• Software multiplication is chosen (because of the hardwired implementation of 

the FPU, we do not need to employ the ALU embedded fixed-point multiplier).  
• 1 KB of on-chip ROM to store the control program. 
• 4 KB of on-chip RAM for program and data.  

 
The total number of logic elements used is 5,900 and the system can run with a frequency 
of up to 40 MHz. However, our Nios board has a fixed frequency of 33.33 MHz. Table 3 
shows the results for various matrix sizes and the respective speedups when compared to 
implementations that employ software floating-point operations. 

 
Table 3. Comparison of uni-processor execution times (expressed in numbers of 
clock cycles) for various matrix sizes 

 
Matrix Size Software FP 

 (clock cycles) 
Hardware FP 
 (clock cycles) 

Speedup 

24 x 24 3,328,615 203,567 16.35 
36 x 36 11,489,708 634,137 18.12 
64 x 64 70,502,845 3,326,162 21.20 
96 x 96 228,013,002 10,935,456 20.85 

102 x 102 274,946,133 13,076,173 21.03 
 
With the Nios-based development board, we produced the preliminary results of LU 
factorization and acquired valuable design experience. We demonstrated that the 
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hardware FPU could significantly improve the performance of our implementation. 
However, due to resource restrictions, we could implement only one Nios processor with 
a hardware FPU. So, we then targeted our parallel design to the higher capacity Altera 
SOPC development board.  

4.2. Multiprocessor and SOPC Implementations  

Unlike the Nios development board, for which Altera provides all the documentation and 
fully supports it, the only documentation for the SOPC development board is the user 
guide. This board is populated with the biggest APEX20KE FPGA device 
EP20K1500EBC652-1x, which has 51,840 logic elements and 442,368 bits of on-chip 
memory. The board also contains two banks of SRAM memory chips with a total size of 
2 MB. Each SSRAM (synchronous, static random-access memory) chip has its own data 
and address buses, which is a great advantage for our parallel implementation. We will 
discuss this later. 

The memory chips on the two Altera boards are different. For the zero-wait-state SRAM 
on the Nios board, if the processor is rather slow (e.g., the Nios processor in our 
implementation that has a clock period of about 25ns) then this memory feeds the 
processor with data very efficiently. The zero-wait state technology supports consecutive 
burst read cycles by eliminating idle bus turnaround cycles. However, it requires one or 
two extra idle clock cycles to avoid contention when transitioning from a write to a read 
operation and vice versa, thus it eventually increases the duration of memory access 
cycles. For fast processors, it is good for applications that require frequent switches 
between read and write memory operations. The SOPC board has two synchronous, 
pipeline-burst SRAM chips (SSRAMs). Unlike the zero-wait-state SRAM on the Nios 
board for which all operations may take one cycle, the SSRAM chips on the SOPC board 
deliver data in 3-1-1-1 (read) or 1-1-1-1 (write) cycles in the burst mode, where 3-1-1-1 
means that the first word takes 3 cycles and succeeding accesses consume just one cycle. 
There are two wait states for the first read operation. This explains why we consume 
more cycles when we use the on-board SSRAM memory as the program memory on the 
SOPC board. We compared the performance of our programs on the Nios and SOPC 
boards; the results are listed in Table 4. We designed the interface of the SSRAM to Nios 
on the SOPC board and implemented it as a standard SOPC builder library component. 

Table 4. Execution times (expressed in numbers of clock cycles) on the Nios and SOPC 
boards for uni-processor implementations 

Nios Board SOPC Board Programs  
SW FP HW FPU SW FP HW FPU 

Multiplication of two 
floating-point numbers  

2976 16 4376 33 

LU factorization of 5 x 5 45,168 4583 78,785 7664 

LU factorization of 30 x 30 7,570,660 351,843 13,592,766 674,385 
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From the above table, we can see that almost all the programs take 70 percent more time 
to run on the SOPC board than on the Nios board due to the larger SSRAM read wait 
states of the SOPC board.  

4.2.1. Multiprocessor Architecture Design  

As mentioned earlier, due to resource limitations on the Nios development board, we can 
only use it to run sequential LU factorization. Thus, we designed and implemented a 
parallel Nios-based configurable MIMD machine on the SOPC board. Figure 5 is the 
block diagram of our parallel machine that was configured to contain five Nios 
processors.  

4.2.2. The Configuration of Nios Processors  

Before we designed the parallel Nios system, we carefully calculated the workload of 
every Nios, and the requirements for program and data memories. Our LU factorization 
algorithm for independent blocks assumed dense submatrices, so the performance could 
be estimated. Because every Nios with hardware FPU requires about 6,300 logic 
elements and we totally have 51,840 logic elements inside the FPGA, we decided to 
implement five computation Nios and a separate control Nios. In order to allow for some 
flexibility in software mapping and routing, and to also guarantee the system clock 
frequency, we did not use all available logic elements in our design. The boot program 
was written in assembly language, had size less than 1 KB, and was stored in a 1 KB on-
chip ROM. The SOPC board provides about 50 KB of on-chip memory and each Nios 
CPU uses about 1 KB for its register file (with the choice of 128 registers), so we 
assigned every Nios 6 KB of on-chip RAM. The control program stored in the on-chip 
ROM of each Nios processor guides every Nios. Whenever the power is turned on or the 
system is reset, the embedded control program prepares the processor for executing our 
application program. Table 5 shows the configuration of the Nios processors in our 
implementation. 

 

Table 5. The configuration of  the Nios processors in our multiprocessor design 

CPU Nios   1-5 (Computation) Nios  6 (Control) 
On-chip RAM (Intermediate Data) 6 KB 8 KB 

On-Chip ROM (Boot Program) 1 KB 1 KB 
SRAM size (Program and data memory) 192 KB 640 KB 

Registers 128 256 
Hardware FPU Yes No 

Hardware Multiplier (MUL) Yes Yes 
UART No Yes 
Timer No Yes 
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4.2.3. SSRAM Architecture  

The two SSRAM memory chips on the SOPC board have separate address and data 
buses, and control signal channels. This architecture improves the system frequency and 
increases the memory throughput. Otherwise, with six Nios simultaneously accessing the 
SSRAM, the SSRAM arbitration would slowdown significantly the system’s operation. 
We divided the SSRAM memory space into segments and assigned the same amount of 
memory to each Nios for main program and data needs, as shown in Figure 6. In most 
modern configurable machines, all SSRAM chips have their own separate data and 
control paths. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. SSRAM memory assignments in the parallel machine 
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The partial results for the factorization of the last block in the lower right corner of the 
reordered matrix are accumulated in the following way. These three communication steps 
determine the required connectivity of the Nios processors. 

(1) Nios  1 + Nios  2 -> Nios  2;  Nios  3 +Nios  4 -> Nios  4;   

(2) Nios  2 + Nios  5 -> Nios  5; 

(3) Nios  4 + Nios  5 ->Nios  5.        

Where -> points to the destination.   

The complete schedule of operations is shown in Figure 7. 
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4.2.5. More Implementation Issues 

For the design of all the hardware in this project, we used the VHDL language. The boot-
up program for the multiprocessor system and the control programs for all Nios 
processors were written in the Nios assembly language. The LU factorization programs 
were written in the C language. The size of the boot-up and control programs for the Nios 
processors 1 through 5 are about 1 Kbyte; they are about 3 Kbytes for Nios 6. The 
application C code is about 100 Kbytes; there is no big difference of application code 
sizes for different matrix sizes. We used Nios 6 for system debugging and control. This 
processor is connected to the on-board LEDs, LCD and UART. Through the UART this 
processor can interact with the host PC computer using a monitor program. We also 
included in our implementation Nios debug cores provided by Altera in order to be able 
to debug and dump the contents of Nios registers into specified memory locations. They 
were read back using the Nios 6 monitor program. We did not use any third party 
debugging tools because they are not normally designed for multiprocessor 
implementations.  
 
 

5. Performance Results and Comparisons  

The size of the independent diagonal blocks is determined during the heuristics-based 
reordering phase based on the number of the processors and the physical structure of the 
original matrix. During our experimentation with the matrices in Table 7, the number of 
the independent diagonal blocks is the same as the number of computation processors, 
namely 5. With increases in the matrix size and reduction of its sparsity, we may make 
the number of the independent diagonal blocks a multiple of the number of computation 
processors in order to assign every processor several 3-block groups. The last processor 
(Nios 5) is assigned one 3-block group as well as the last diagonal (lower-right-corner) 
block on which it performs sequential LU factorization. 

Table 6 shows the expected performance of our implementation and the actual execution 
times on our parallel machine for a 30 x 30 matrix. Detailed execution times are included 
to show that different steps with the same asymptotic complexity have quite different 
execution times; the details in these steps must be taken into account by load balancing 
techniques for problems assuming large matrices. 

Table 6. The computation complexity of the parallel algorithm and detailed results 

Step 1 2 3 4 

Complexity 
O((

N
p

)3) O((
N
p

)3 ) O((
N
p

)2* 

log2p) 

O((
N
p

)3) 

Clock Cycles for 30x30 21,599 8914 8885 9312 
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A brief explanation of the complexities shown in Table 6 follows. We assume that: 

§ the size of the matrix is N x N; 
§ p represents the number of processors that participate in the computation; 
§ the size of the largest diagonal block is k x k; 
§ the size of the last diagonal block in the reordered matrix is O(m) x O(m). 

Without loss of generality, we can assume that O(k)=O(
N
p

) and O(m)=O(k) for simple 

attempts to equibalance the work load .  

Step 1: For the LU factorization of the 3–block independent groups in parallel, the 
maximum execution time depends on the largest diagonal block of size k x k. So the 

computation complexity is O((k+m)3-m3) = O(k3) = O((
N
p

)3). 

Step 2: The multiplication of the right and bottom border blocks in parallel has a 

complexity of O(k3)= O((
N
p

)3). 

Step 3: A binary tree of processors is formed to carry out the additions of O(k) x O(k) 
matrices in this phase of the algorithm. For a total number of p processors, this phase 

consumes time O(k2log2p) = O((
N
p

)2 log2p). 

Step 4: The LU factorization of the last diagonal block in the lower right corner has a 

complexity of O(k3) = O((
N
p

)3). 

Therefore, the total computation time is O(k3+k3+k2log2p+k3)=O((
N
p

)3+(
N
p

)2log2p) 

=O((
N
p

)3), assuming that O(N) > O(p log2p) for large matrices and medium granularity 

parallel systems.  

Table 7 shows more performance results involving various matrix sizes. 

During our experimentation we observed that, when the size of blocks assigned to 
processors is a power of two, then each Nios works more efficiently. Higher efficiency in 
these cases may be the result of smoother pipelined access of matrix data in the memory. 
These high speedups prove the viability of our approach in solving the LU factorization 
problem for sparse matrices. 
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Table 7. Execution times of our parallel LU factorization algorithm with a clock 
frequency of 40 MHz 

Matrix 
 Size 

 
Total  
Cycles 

 
24 x 24 

 
30 x 30 

 
36 x 36 

 
42 x 42 

 
48 x 48 

 
54 x 54 

 
96 x 96 

 
102 x 102 

Multi-
processor 

22,041 48,710 38,274 55,618 106,909 177,510 624,415 852,002 

Uni- 
processor 

 

79,630 165,141 136,037 202,878 414,874 671,711 2,511,122 3,404,160 

 
Speedup 

 
3.61 

 
3.39 

 
3.55 

 
3.65 

 
3.88 

 
3.78 

 
4.02 

 
3.995 

 

We also applied our approach to a power flow analysis problem that uses real data for the 
IEEE 118-bus test system. The data representation involves a 118 x 118 admittance 
sparse matrix. We reordered the B matrix used in the decoupled load flow iterative 
algorithm in the PC host to make it appropriate for our LU factorization algorithm. 
Execution times for the SOPC board are shown in Table 8. The time corresponding to the 
reordering is not included in the results. Our implementation shows the viability of our 
approach that employs FPGAs to efficiently solve this problem at low cost. 

Nevertheless, a better FPGA-based development board could give us better results. We 
found out that the major bottleneck in the system lies in the interface to the two SSRAM 
chips. Since the application programs do not fit in the on-chip memory, all processors use 
the on-board SSRAMs as the instruction and data memory; for the sake of scalability and 
flexibility, we should not actually rely on the on-chip memory to hold the application 
programs. If we could design our own interface to the SSRAM chips, we should let the 
number of SSRAM chips be equal to the number of processors in our implementation; 
alternatively, we should include as many SSARM chips as possible for a given number of 
FPGA pins. This approach can reduce the complexity of the arbitrator for accessing the 
SSRAM chips and this, in turn, can result in higher system frequency and improved 
throughout. The FPGA on our SOPC board has a maximum of 488 I/O pins that can be 
used in user designs; this number is adequate for our current design.  
 
Our SOPC system has very low cost compared to large parallel machines and 
supercomputers. The cost of our system was less than three thousand dollars more than a 
year ago and it is, therefore, many orders of magnitude lower than the cost of the latter 
systems. In fact, such a direct comparison is not fair at this time because of many reasons. 
First, FPGAs have not been perfected yet because they represent relatively new 
technology. Second, FPGAs do not currently contain enough resources to help us 
implement large parallel designs; however, this is expected to change in the future 
primarily because of Moore’s Law. Third, the design tools for FPGAs are not really very 
good at this time. Nevertheless, more advanced tools will become available in the future 
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as more designers attempt to use FPGAs for complex designs. Driven by expected 
advances predicted by Moore’s Law, many researchers have recently focused on the 
design of multiprocessor chips [31]. Such chips will often have to be prototyped on 
FPGAs. Fourth, our design does not give very good performance because it does not 
include a good FPU. The design of a very good superpipelined FPU is not a trivial task, 
free HDL for very good FPUs is not available to the public, and the price of such a soft IP 
is prohibitively high (more than $10,000). Our goal in the university environment is to 
prove the viability of our design concepts and approaches; we do not have to acquire the 
best possible FPU (in the form of a soft IP) in order to compete directly with commercial 
supercomputers. Fifth, better performance can be achieved by implementing multi-FPGA 
boards targeting specific applications. Finally, specialized FPGA designs do not normally 
have compiler and other advanced software support for ease of program coding and most 
efficient implementation using general-purpose load balancing tools. The designer of the 
hardware system is normally the person who also writes the application and tries to fine-
tune it for higher performance. To conclude, it is only natural that FPGAs will receive 
more attention by researchers in the near future as their need will become more prevalent. 
As a result, they will be able to improve significantly.  
 
The cost of FPGAs is not much higher compared to conventional processor chips. A 
single FPGA chip has market cost comparable to a newly designed advanced processor 
chip. However, the cost of FPGA-based development boards is often higher than that of 
PCs but it is only because the use of such boards is not widespread at this time. Their 
slightly higher cost is the result of market forces, not actual production cost. It may even 
be true that the production cost of a top-of-the-line processor is much higher than the 
production cost of an FPGA (when considering same quantities of chips) because the 
FPGA has a basic structure that is replicated throughout the chip; in contrast, the 
processor has a non-uniform design.  The R&D cost of a completely new processor is in 
the billions of dollars range that companies producing FPGAs cannot afford. Also, HDL 
implementations are highly portable to different FPGA platfo rms, whereas new hardware 
designs for PCs and comparable systems require new production lines. 

 

6. Conclusions  

In this paper, we described the design and implementation of a multiprocessor shared- 

Table 8. Performance results for the IEEE 118-bus system (118 x 118 matrix) 

Block size Execution times (ms) % of non-
zero 

elements Largest 
independent 

diagonal block 

Last 
diagonal 

block 

Step 1 Step 2 Step 3 Step 4 Total 

3.42 23 25 18.47 12.12 2.37 8.20 41.16 
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memory architecture on an FPGA-based system. It can result in reasonable performance 
at low cost for the parallel LU factorization of sparse BDB matrices. Our results show 
that the new generation of SOPCs provides viable computing platforms that offer the 
possibility of building high-performance parallel machines in one programmable device. 
Because our implementation was based on a relatively slow FPGA device (the Altera 
EP20KE series FPGA) and a non-advanced FPU, the system frequency was not 
satisfactory. The new Virtex II device from Xilinx can achieve up to 420 MHz system 
frequency. With the doubling of the transistor density in silicon chips every 18 months, as 
predicted by Moore’s Law, we strongly believe that this research avenue will become 
even more promising in the near future. Also, our work has shown that it is necessary to 
utilize existing IP components for the fast design of robust systems in large capacity 
programmable devices. The intricacies of our design were presented to guide future 
attempts in this research arena. 
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