
H-SIMD Machine: Configurable Parallel Computing for Matrix Multiplication*

Xizhen Xu and Sotirios G. Ziavras
Department of Electrical and Computer Engineering

New Jersey Institute of Technology
Newark, NJ 07102, USA
Email: ziavras@njit.edu

Abstract

FPGAs (Field-Programmable Gate Arrays) are often
used as coprocessors to boost the performance of data-
intensive applications [1, 2]. However, mapping algorithms
onto multimillion-gate FPGAs is time consuming and
remains a challenge in configurable system design. The
communication overhead between the host workstation and
the FPGAs is also significant. To address these problems,
we propose in this paper the FPGA-based Hierarchical-
SIMD (H-SIMD) machine with its codesign of the
Hierarchical Instruction Set Architecture (HISA). At each
level, HISA instructions are classified into communication
instructions or computation instructions. The former are
executed by the local controller while the latter are issued
to the lower level for execution. Additionally, by using a
memory switching scheme and the high-level HISA set to
partition the application into coarse-grain tasks, the host-
FPGA communication overhead can be hidden. We enlist
matrix multiplication (MM) to test the effectiveness of H-
SIMD. The test results show sustained high performance.

1. Introduction

In the past decade, multimillion-gate FPGAs have
emerged as a powerful computing accelerator to the
conventional host, e.g., a workstation or an embedded
microprocessor. The workstation-FPGA architecture is
popular for large-sized data-intensive applications due to
the nature of FPGA resources and flexible workstation
control. Conventionally, custom FPGA architectures are
widely used to speed up computing performance. However,
mapping an application algorithm to multimillion-gate
FPGAs is time consuming, and may incur high
configuration overhead and large configuration files [4].
The substantial communication and interrupt overheads
between the workstation and the FPGAs also is a major
performance bottleneck that may prevent further
exploitation of the performance benefits gained from the
parallel FPGA implementation [3].

Our proposed H-SIMD machine is designed to create a
hierarchical and balanced pipeline from the host to the
FPGAs. Assuming a multi-FPGA target system, we
configure each FPGA chip as a separate SIMD architecture.

 * This work was supported in part by the US Department of Energy
under grant DE-FG02-03CH11171.

Multiple FPGA chips can be synchronized to work in
SIMD at a higher level controlled by the host. The host
sends function IDs as well as corresponding operands to the
FPGAs in a manner that attempts to balance the workload
across FPGAs. Based on HISA, application tasks are
partitioned into three layers: the host, FPGA and nano-
processor (NP) layers, in decreasing order of task
granularity. Because of this partitioning, it is possible to
employ a memory switching scheme for data loads/stores.
The switching between pairs of data memory banks
overlaps operand computations with communications, thus
improving performance. Our test analysis of matrix
multiplication (MM) shows that the sustained performance
of our H-SIMD machine is very close to its peak
performance. Specifically, the contributions of our work are:
1) We propose a hierarchical multi-FPGA system working
in the SIMD parallel mode. Due to task partitioning with
different granularities at each level, there is no need for
communications between processing elements (PEs) in the
H-SIMD machine if the block matrix multiplication
algorithm is employed. Not only does this hierarchical
architecture facilitate this modular design methodology to
reduce the development cycles, but also it provides custom
datapaths to speed up the application-specific computations
at runtime. 2) We employ a memory switching scheme to
overlap computations with communications as much as
possible at each level. We also investigate the conditions
for completely overlapping computations with
communications. This technique overcomes the FPGA
interrupt overhead and the PCI bus bandwidth limitation.
Thus, it is possible to bring together the computing power
of the workstation and FPGAs synthetically.

Many research projects study MM for reconfigurable
systems [4, 5, 6]. [4] proposed scalable and modular
algorithms for FPGA-based MM. Their algorithms can
achieve sustainable high performance with an area-speed
optimized floating point unit (FPU). Yet the authors point
out that the proposed algorithms still incur high
configuration overhead, large-sized configuration files and
lack of flexibility. In [5], the authors introduce a parallel
block algorithm for MM with impressive results. Though
their design is based on a host-FPGA architecture and
pipelined operation control is employed, the interrupt
overheads between the FPGAs and the host are not taken
into consideration. A linear array of PEs is built up to run in
the SPMD mode in [5]. [6] investigates sustainable

floating-point BLAS performance on a commodity
processor, FPGAs and a reconfigurable computing platform.
They concluded that FPGAs can achieve higher
performance with less memory capacity and bandwidth
than the commodity processor.

The rest of this paper is organized as follows. Section 2
presents the H-SIMD machine design, HISA and the
memory switching scheme. Section 3 analyzes workload
balancing for MM across H-SIMD layers. Section 4 shows
implementation results and a comparative study with other
works. Section 5 draws conclusions.

2. Multi-Layered H-SIMD Machine
2.1 H-SIMD Architecture

The H-SIMD control hierarchy is composed of three
layers: the host controller (HC), the FPGA controllers (FCs)
and the nano-processor controllers (NPCs) as shown in
Figure 1. The HC runs the coarse-grain host SIMD
instructions (HSIs) which are classified into host-FPGA
communication HSIs and time-consuming computation
HSIs. The HC executes the communication HSIs only and
issues computation HSIs for FCs to execute. Inside each
FPGA, the FC further decomposes the received
computation HSIs into a sequence of medium-grain FPGA
SIMD instructions (FSIs). The FC runs them in a manner
similar to the HC: executing communication FSIs and
issuing computation FSIs to the nano-processor array. The
NPCs finally decode the received computation FSIs into
fine-grain nano-processor instructions (NPIs) and sequence
them for execution. Due to different execution levels
between computation instructions and communication
instructions, the H-SIMD machine configures one FPGA as
the master which sends an interrupt signal back to the HC
once the previously executed computation HSI has been
done. Similarly, one NP within each FPGA is configured as
the master NP that sends an interrupt signal back to its FC
so that a new computation FSI can be executed.

The communication overhead between the host and the
FPGAs is very high due to the nature of the non-preemptive
operating system on the workstation. Based on tests in our
laboratory, the one-time interrupt latency for a Windows-
XP installed workstation with a 133MHz PCI bus is about
1.5 ms. This penalty is intolerable in high-performance
computing because, for example, 60x60 floating-point
matrix multiplication takes about 1.3 ms on a single MAC
running at 160 MHz (which is within the range of current
FPGA technology). Thus, a design objective of the H-
SIMD machine is to reduce the interrupt overheads. A
memory switching scheme is used in [5, 7]. But the authors
do not specify the conditions to fully overlap computations
with communications. Our data prefetching scheme
involves memory switching which is designed for the H-
SIMD machine to overlap communications with
computations as much as possible.

The HC-level memory switching scheme is shown in
Figure 2. The SRAM banks on the FPGA board are
organized into two functional memory units: the execution
data memory (EDM) and the loaded data memory (LDM).
Both the EDMs and LDMs are functionally interchangeable.
At one time, the FCs access EDMs to fetch operands for the
execution of received computation HSIs while LDMs are
referenced by the host for the execution of communication
HSIs. When the FCs finish their current computation HSI,
they will switch between EDM and LDM to begin a new
iteration. FC is a finite-state machine responsible for the
execution of the computation HSI. FCs have access to the
NP array over a modified LAD (M-LAD) bus. The LAD
bus was originally developed by the Annapolis company
and used for on-chip memory references [8]. The M-LAD
bus controller is changed from the PCI controller to the FCs.
The HSI counter is used to calculate the number of finished
computation HSIs. The SRAM address generator (SAG) is
used to calculate the SRAM load/store addresses for the
EDM banks. The FC is pipelined and sequentially traverses
the states of LL (Loading LRFs), IF (Instruction Fetch), ID
(Instruction Decode) and EX (execution). The transition
condition from EX to LL is triggered by the master NP’s
interrupt signal. The interrupt request/response latency is
one cycle only as opposed to the tens of thousands of cycles
between the host and FPGAs, thus enhancing the H-
SIMD’s performance.

EDM: execution data memory;

LDM: loaded data memory
Figure 1. H-SIMD machine architecture.

The nano-processor array forms the customized execution
units of the H-SIMD machine datapath. Each nano-
processor has three large-sized register files: the load
register file (LRF), the execution register file (ERF) and the
accumulation register file (ARF) shown in Figure 3. Both

LRFs and ERFs work in a “memory” switching scheme,
similarly to the LDMs and EDMs. The ERFs are used for
the execution of computation FSIs while the LRFs are
referenced by the communication FSIs at the same time.
The computation results are accumulated in the ARFs. Our
multiply-accumulator (MAC) consists of commercial
Quixilica FPU IPs [9] to reduce the development cycle.
Each NP can finish two floating-point operations in one
cycle.

Figure 2. HC-level memory switching.

Figure 3. Nano-processor datapath and control

unit.
2.2 HISA: Instruction Set Architecture for MM

Similar to the approach for PC clusters in [11], we
suggest here that an effective instruction set architecture
(ISA) be developed at each layer for each application
domain. HC is programmed by host API functions of the
FPGA board. They support to open the board, configure the
FPGAs, reference the on-board/on-chip memory resources
and handle interrupts [12]. We present here the tailoring of
HSIs for the block-based MM algorithm. We assume the

problem C=A*B, where A, B, and C are N x N square
matrices. When N becomes large, block matrix
multiplication is used to divide the matrix into smaller
blocks to exploit data reusability. Due to limited space here,
please refer to [10] for more details about block MM. In the
H-SIMD machine, only a single FPGA or NP is employed
to multiply and accumulate the results of one block of the
product matrix at the HC and FC levels, respectively.
Coarse-grain workloads can keep the NPs busy on MM
computations while the HC and FCs load operands to the
FPGAs and NPs sequentially. This simplifies the design of
the hierarchical architecture and eliminates the need for
FPGA-FPGA and NP-NP communications at the expense
of memory reference time. According to the H-SIMD
architecture, the HC issues NhxNh sub-matrix blocks for all
the FPGAs to multiply. Nh is the block matrix size for HSIs.
We have three HSIs here: 1) host_matrix_load(i, SLDM, Nh):
Through the PCI bus, this HSI will load an Nh x Nh block
matrix to the LDM of FPGA i with the starting address
SLDM in the host memory (host-based DMA control is
applied). 2) host_matrix_store(i, SLDM, Nh): The
computation results in the LDM of FPGA i can be retrieved
by the host through the PCI bus when the computation is
done. Host_matrix_load/store are communication HSIs
executed on the host. 3) host_matrix_mul_accum(HA, HB,
HC, Nh): For matrix multiplication of size NhxNh, HA, HB
and HC are the starting addresses of source matrix A, source
matrix B and product accumulation matrix C, respectively.
This computation HSI is coded in 32 bits, issued by the HC
and executed by the FCs.

The FC is in charge of executing the computation HSI,
i.e., decomposing host_matrix_mul_accum for size Nh x
Nh into FSIs for size Nf x Nf, where Nf is the sub-block
matrix size for the FSIs. Enlisted is the same block matrix
multiplication algorithm as the one for the HC. The code
for host_matrix_mul_accum is pre-programmed by the
FSIs and stored into the FC instruction memory. The FSIs
are 32-bit instructions with mnemonics as follows: 1)
FPGA_matrix_load(i, SLRF, Nf): the FC will execute this
instruction by loading the LRF of NP i with a matrix of size
NfxNf. SLRF is the starting address in the EDM. 2)
FPGA_matrix_store(i, SARF, Nf): The NP computation
results are stored into the ARF and retrieved into the
FPGA’s EDM at starting address SARF when the
accumulation of the partial products is done.
FPGA_matrix_load/store are communication FSIs
executed by the FCs. 3) FPGA_matrix_mul_accum(Fa, Fb,
Fc, Nf): For matrix multiplication of size NfxNf, Fa, Fb and
Fc are the starting addresses of source matrix a, source
matrix b and product accumulation matrix c, respectively.
This computation FSI is issued by the FCs and executed by
the NPCs.

The NPIs are designed for the execution of the
computation FSI FPGA_matrix_mul_accum. The code for
FPGA_matrix_mul_accum is pre-programmed by the NPIs
and stored into the NPC instruction memory. There is only

one NPI to be implemented: the floating-point multiply
accumulation NP_MAC(Ra, Rb, Rc) where Ra, Rb, and Rc
are registers for the function Rc=Ra*Rb+Rc. The NPI code
for the computation FSIs needs to be scheduled carefully to
avoid data hazards. They occur when operands are delayed
in the addition pipeline with latency Ladder. Thus, the
condition to avoid data hazards is Nf

2 > Ladder.

3. Analysis of Task Partitioning in Matrix
Multiplication

The bandwidth of the communication channels in the H-
SIMD machine varies greatly. Basically, there are two
interfaces in the H-SIMD machine: a PCI bus of bandwidth
Bpci between the host and the FPGAs; the SRAM bus of
bandwidth Bsram between the off-chip memory and the on-
chip nano-processor array. The HSI parameter Nh is chosen
in such a manner that the execution time Thost_compute of the
HSI computation instruction host_matrix_mul_accum is
greater than Thost_i/o which is the sum of the execution time
THSI_comm of all the communication HSIs
(host_matrix_load/store) and the master FPGA interrupt
overhead Tfpga_int. If so, the communication and interrupt
overheads can be hidden. Let us assume that there are q
FPGAs of p nano-processors each. Specifically, the
following lower/upper bounds should hold for matrix
multiplication:
Thost_compute > t * Nh

3/p,
Thost_i/o<THSI_comm*q+Tfpga_int=4*b*Nh

2/Bpci*q+Tfpga_int,
where t is the nano-processor cycle time and b is the width
in bits of each I/O reference. Simulation results in Figure 4
show that the HSI computation and I/O communication
times vary with Nh, p and q, for b=64 and t=7 ns. With
increases in the block size for the HSIs, the computation
time grows in a cubic manner and yet the I/O
communication time grows only quadratically, which is
exploited by the H-SIMD machine. This means that the host
may load the LDMs sequentially while all the FPGAs run
the issued HSI in parallel.

Figure 4. Execution times of the computation and
communication HSIs as a function of Nh, p and q.

(a) Nbank=2

(b) Nbank=6

Figure 5. Execution times of the computation and
communication FSIs as a function of Nf, p, and

Nbank.
For FC-level Nf x Nf block MM, we tweak Nf to overlap

the execution time TFPGA_compute of the FSI computation
instruction FPGA_matrix_mul_accum with the sum
TFPGA_i/o of the execution times TNP_i/o of all the
communication FSIs and the NP interrupt overheads TNP_int.
The following upper/lower bounds should hold:
TFPGA_compute > t *Nf

3,
TFPGA_i/o<TNP_i/o*p+TNP_int=4*b*Nf

2/(Bsram*Nbank)*p + TNP_int
Nbank is the number of available SRAM banks for each
FPGA. Simulation results in Figure 5 show that the
computation FSI takes more execution time than the
communication FSIs with an increase in Nf. More SRAM
banks can provide a higher aggregate bandwidth to reduce
the execution times of the communication FSIs. By using
the above analysis of the execution time, we explore the
design space for the lower bound on Nh and Nf, respectively.
On the other hand, the capacity of the off-chip and on-chip
memories defines the upper bounds on Nh and Nf. For each
FPGA for MM operations: 4*r*N2

h*b<Csram*Nbank and
4*r*N2

f*b <Con-chip, where Csram represents the capacity of
one on-board SRAM bank; Con-chip represents the on-chip
memory capacity of one FPGA; r stands for the redundancy

of the memory system, so r=2 for our memory switching
scheme. In summary, Nh are Nf are upper-bound
by * /(8*)SRAM bankC N b and /(8*)on chipC b− , respectively.

4. Implementation and Experimental Results

The H-SIMD machine was implemented on the
Annapolis Wildstar II PCI board containing two Xilinx
Virtex-II 6000 FPGAs [8]. We use the Quixilica FPU [9] to
build up the NP’s floating point MAC. Table 1 gives the
characteristics of the Quixilica FPU and MAC for the 64-bit
IEEE double-precision format. In our design environment,
ModelSim5.8 and ISE6.2 are enlisted as development tools.
The Virtex-II 6000 can hold up to 16 NPs running at
148MHz. Broadcasting the FSIs to the nano-processor array
is pipelined so that the critical path lies in the MAC
datapath. The 1024x1024 MM operation is tested. The
block size Nf of FSIs is set to 8. The test results break down
into computation HSIs, host interrupt overhead, PCI
reference time, and initialization and NP interrupt overhead,
as shown in Figure 6. We can tell that the performance of
the H-SIMD machine depends on the block size Nh. When
Nh is set to 64, the frequent interrupt requests to the host
contribute to the performance penalty. When Nh is set to
128, the computation time of the coarse-grain HSI does not
increase long enough to overlap the sum of the host
interrupt overhead and the PCI sequential reference
overhead. If Nh is set to 512, there is a long enough
computation time to overlap the host interrupt. However,
the memory switching scheme between the EDMs and
LDMs does not work effectively because of the limited
capacity of the SRAM banks, which results in penalties
from both host interrupts and PCI references. If Nh is set to
256, the H-SIMD pipeline is balanced along the hierarchy
such that the total execution time is very close to the peak
performance Peak=2*p*q*freq, where all the nano-
processors work in parallel. We can sustain 9.1 GFLOPS,
which is 95% of the peak performance. The execution
overhead on the H-SIMD machine comes from LDM and
LRF initialization, and nano-processor interrupts to the FCs.

Table 1. Characteristics of the Quixilica FPU and

H-SIMD MAC.
 fpAdder fpMultiplier MAC

Pipeline
Stages 12 11 24

Slice
usage 815 923 1802

Clock
speed
(MHz)

153 150 148

For an arbitrary size of square MM operations, a padding

technique is employed to align the size of the input matrices
to multiples of Nf because FPGA_matrix_mul_accum
works on Nf x Nf matrices. Nf is set to 8 during our test. Let

A and B be square matrices of size NxN. If N is not a
multiple of eight, then both the A and B input matrices are
padded up to the nearest multiples of eight by the ceiling
function. The padded zeros will definitely increase the H-
SIMD’s computation overhead and lower its performance.
Table 2 presents test results for different cases. For matrices
of size less than 512, the H-SIMD machine is not fully
exploited and does not sustain high performance. For the
large matrix (N>512), the H-SIMD machine with two
FPGAs can achieve about 8.9 GFLOPS on average. In fact,
the H-SIMD machine can be built with multiple FPGAs
because no inter-FPGA communications are needed. We
show the relationship between the execution time of
2048x2048 MM and the number q of FPGAs in Figure 7.
There exists a saturation point, beyond which the number of
FPGAs does not affect the performance significantly. For
the case study of block matrix multiplication, seven Virtex
II 6000 FPGAs can be enlisted to achieve 31.85 GFLOPS
for 64-bit IEEE format floating point MM.

0

50

100

150

200

250

300

350

Nh=64 Nh=128 Nh=256 Nh=512

m
s

initialization&NP interrupts
PCI access
host interrupt
HSI computation instructions

Figure 6. 1024x1024 MM execution time as a
function of Nh.

Table 3 compares the performance of our H-SIMD

machine with that of previous works on FPGA-based
floating-point matrix multiplication [4][5]. Their designs
were implemented on Virtex II Pro125 FPGAS (55,616
slices) as opposed to our Virtex II 6000 (33,792 slices). We
scale the H-SIMD performance to match the Virtex II
Pro125. We estimate that 26 NPs can fit into one Virtex II
Pro125 running at 180MHz and can achieve a peak
performance of 9.36GFLOPS. The H-SIMD running
frequency can be further increased if optimized MACs are
used. [4] [5] presented systolic algorithms to achieve 8.3
GFLOPS and 15.6 GFLOPS on a single Xilinx Virtex II
Pro XC2VP125, respectively. However, the H-SIMD

machine can be used as a computing accelerator for the
workstation. The systolic approach does not fit well into
this paradigm because of the interrupt overhead, the FPGA
configuration overheads and the large size of configuration
files.

Figure 7. Execution time vs. number of FPGAs

(2048x2048 MM).

Table 2. Execution time of MM
for various test cases.

Matrix size H-SIMD
machine(ms) GFLOPS

200 7 2.28
397 18 6.952
601 47 8.683
999 225 8.849
2001 1720 9.039
3999 13882 9.027

Table 3. Performance comparison
between H-SIMD and other works.
 H-SIMD [4] [5]

Frequency 180 200 200
Number of PEs 26 24 39

GFLOPS 9.36 8.3 15.6
Hide interrupt

overhead Yes No No
configuration file

size
 (MB/100 cases) 5 500 500

5. Conclusions
Our multi-layered H-SIMD machine paired with an

appropriate multi-layered HISA software approach is
effective for data parallel applications. To yield high
performance, task partitioning is carried out at different
granularity levels for the host, FPGAs and nano-processors.
If the parameters of the H-SIMD machine are chosen
properly, the memory switching scheme is able to fully
overlap communications with computations. In our current
implementation of matrix multiplication, a complete set of
HISA for this application was developed and its high
performance was demonstrated. More current FPGAs, e.g,
the XC2VP125, could improve the performance
tremendously.

References:
[1] R. Tessier and W. Burleson, “Reconfigurable Computing for
Digital Signal Processing: A Survery,” Journal of VSLI Signal
Processing, 28, 2001, pp. 7-27.
[2] M. J. Wirthlin, B. L. Hutchings, K. L. Gilson, “The Nano
Processor: a Low Resource Reconfigurable Processor,”
Proceedings of IEEE Workshop on FPGAs for Custom Computing
Machines, April 1994, pp. 23-30.
[3] P. H. W. Leong, C. W. Sham, W. C. Wong, H. Y. Wong, W. S.
Yuen and M. P. Leong, “A Bitstream Reconfigurable FPGA
Implementation of the WSAT Algorithm,” IEEE Transactions on
VLSI Systems, Vol. 9, No. 1, Feb. 2001.
[4] L. Zhuo and V. K. Prasanna, “Scalable and Modular
Algorithms for Floating-Point Matrix Multiplication on FPGAs,”
Proceedings of the 18th International Parallel and Distributed
Processing Symposium (IPDPS’04), April, 2004.
[5] Y. Dou, S. Vassiliadis, G. K. Kuzmanov and G. N. Gaydadjiev,
“64-bit Floating-Point FPGA Matrix Multiplication,” Proceedings
of the 2005 ACM/SIGDA 13th International Symposium on
FPGAs, Feb. 2005.
[6] K. D. Underwood and K. S. Hemmert, “Closing the Gap: CPU
and FPGA Trends in Sustainable Floating-point BLAS
Performance,” Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing machines (FCCM 2004), April
2004.
[7] H. Singh, M. H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh and
E. M. Chaves Filho, “MorphoSys: an Integrated Reconfigurable
System for Data-parallel and Computation-intensive
Applications,” IEEE Transactions on Computers,Volume
49, Issue 5, May 2000.
[8] Annapolis Microsystems, Inc., “Wildstar II Hardware
Reference Manual,” Annapolis Microsystems, Inc, Annapolis, MD,
2004.
[9] QinetiQ Ltd., “Quixilica Floating Point FPGA Cores
Datasheet,” QinetiQ Ltd, 2004.
[10] Robert Schreiber, Numerical Algorithms for Modern Parallel
Computer Architectures, pp. 197-208, Springer-Verlag, New York,
NY, 1988.
[11] D. Jin and S. Ziavras, “A Super-Programming Approach for
Mining Association Rules in Parallel on PC Clusters,” IEEE
Transactions on Parallel and Distributed Systems, Vol. 15, No. 9,
Sept. 2004.
[12] Annapolis Microsystems, Inc., “Wildstar II Software
Reference Manual,” Annapolis Microsystems, Inc, Annapolis, MD,
2004.

