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Abstract  

FPGAs (Field-Programmable Gate Arrays) are often 
used as coprocessors to boost the performance of data-
intensive applications [1, 2]. However, mapping algorithms 
onto multimillion-gate FPGAs is time consuming and 
remains a challenge in configurable system design. The 
communication overhead between the host workstation and 
the FPGAs is also significant. To address these problems, 
we propose in this paper the FPGA-based Hierarchical-
SIMD (H-SIMD) machine with its codesign of the 
Hierarchical Instruction Set Architecture (HISA). At each 
level, HISA instructions are classified into communication 
instructions or computation instructions. The former are 
executed by the local controller while the latter are issued 
to the lower level for execution. Additionally, by using a 
memory switching scheme and the high-level HISA set to 
partition the application into coarse-grain tasks, the host-
FPGA communication overhead can be hidden. We enlist 
matrix multiplication (MM) to test the effectiveness of H-
SIMD. The test results show sustained high performance. 
 
1. Introduction 

In the past decade, multimillion-gate FPGAs have 
emerged as a powerful computing accelerator to the 
conventional host, e.g., a workstation or an embedded 
microprocessor. The workstation-FPGA architecture is 
popular for large-sized data-intensive applications due to 
the nature of FPGA resources and flexible workstation 
control. Conventionally, custom FPGA architectures are 
widely used to speed up computing performance. However, 
mapping an application algorithm to multimillion-gate 
FPGAs is time consuming, and may incur high 
configuration overhead and large configuration files [4]. 
The substantial communication and interrupt overheads 
between the workstation and the FPGAs also is a major 
performance bottleneck that may prevent further 
exploitation of the performance benefits gained from the 
parallel FPGA implementation [3].  

Our proposed H-SIMD machine is designed to create a 
hierarchical and balanced pipeline from the host to the 
FPGAs. Assuming a multi-FPGA target system, we 
configure each FPGA chip as a separate SIMD architecture. 
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Multiple FPGA chips can be synchronized to work in 
SIMD at a higher level controlled by the host. The host 
sends function IDs as well as corresponding operands to the 
FPGAs in a manner that attempts to balance the workload 
across FPGAs. Based on HISA, application tasks are 
partitioned into three layers: the host, FPGA and nano-
processor (NP) layers, in decreasing order of task 
granularity. Because of this partitioning, it is possible to 
employ a memory switching scheme for data loads/stores. 
The switching between pairs of data memory banks 
overlaps operand computations with communications, thus 
improving performance. Our test analysis of matrix 
multiplication (MM) shows that the sustained performance 
of our H-SIMD machine is very close to its peak 
performance. Specifically, the contributions of our work are: 
1) We propose a hierarchical multi-FPGA system working 
in the SIMD parallel mode. Due to task partitioning with 
different granularities at each level, there is no need for 
communications between processing elements (PEs) in the 
H-SIMD machine if the block matrix multiplication 
algorithm is employed. Not only does this hierarchical 
architecture facilitate this modular design methodology to 
reduce the development cycles, but also it provides custom 
datapaths to speed up the application-specific computations 
at runtime. 2) We employ a memory switching scheme to 
overlap computations with communications as much as 
possible at each level. We also investigate the conditions 
for completely overlapping computations with 
communications. This technique overcomes the FPGA 
interrupt overhead and the PCI bus bandwidth limitation. 
Thus, it is possible to bring together the computing power 
of the workstation and FPGAs synthetically.  

Many research projects study MM for reconfigurable 
systems [4, 5, 6]. [4] proposed scalable and modular 
algorithms for FPGA-based MM. Their algorithms can 
achieve sustainable high performance with an area-speed 
optimized floating point unit (FPU). Yet the authors point 
out that the proposed algorithms still incur high 
configuration overhead, large-sized configuration files and 
lack of flexibility. In [5], the authors introduce a parallel 
block algorithm for MM with impressive results. Though 
their design is based on a host-FPGA architecture and 
pipelined operation control is employed, the interrupt 
overheads between the FPGAs and the host are not taken 
into consideration. A linear array of PEs is built up to run in 
the SPMD mode in [5]. [6] investigates sustainable 



floating-point BLAS performance on a commodity 
processor, FPGAs and a reconfigurable computing platform. 
They concluded that FPGAs can achieve higher 
performance with less memory capacity and bandwidth 
than the commodity processor.  

The rest of this paper is organized as follows. Section 2 
presents the H-SIMD machine design, HISA and the 
memory switching scheme. Section 3 analyzes workload 
balancing for MM across H-SIMD layers. Section 4 shows 
implementation results and a comparative study with other 
works. Section 5 draws conclusions.  
 
2. Multi-Layered H-SIMD Machine 
2.1 H-SIMD Architecture 

The H-SIMD control hierarchy is composed of three 
layers: the host controller (HC), the FPGA controllers (FCs) 
and the nano-processor controllers (NPCs) as shown in 
Figure 1. The HC runs the coarse-grain host SIMD 
instructions (HSIs) which are classified into host-FPGA 
communication HSIs and time-consuming computation 
HSIs. The HC executes the communication HSIs only and 
issues computation HSIs for FCs to execute. Inside each 
FPGA, the FC further decomposes the received 
computation HSIs into a sequence of medium-grain FPGA 
SIMD instructions (FSIs). The FC runs them in a manner 
similar to the HC: executing communication FSIs and 
issuing computation FSIs to the nano-processor array. The 
NPCs finally decode the received computation FSIs into 
fine-grain nano-processor instructions (NPIs) and sequence 
them for execution. Due to different execution levels 
between computation instructions and communication 
instructions, the H-SIMD machine configures one FPGA as 
the master which sends an interrupt signal back to the HC 
once the previously executed computation HSI has been 
done. Similarly, one NP within each FPGA is configured as 
the master NP that sends an interrupt signal back to its FC 
so that a new computation FSI can be executed.  

The communication overhead between the host and the 
FPGAs is very high due to the nature of the non-preemptive 
operating system on the workstation. Based on tests in our 
laboratory, the one-time interrupt latency for a Windows-
XP installed workstation with a 133MHz PCI bus is about 
1.5 ms. This penalty is intolerable in high-performance 
computing because, for example, 60x60 floating-point 
matrix multiplication takes about 1.3 ms on a single MAC 
running at 160 MHz (which is within the range of current 
FPGA technology). Thus, a design objective of the H-
SIMD machine is to reduce the interrupt overheads. A 
memory switching scheme is used in [5, 7]. But the authors 
do not specify the conditions to fully overlap computations 
with communications. Our data prefetching scheme 
involves memory switching which is designed for the H-
SIMD machine to overlap communications with 
computations as much as possible. 

The HC-level memory switching scheme is shown in 
Figure 2. The SRAM banks on the FPGA board are 
organized into two functional memory units: the execution 
data memory (EDM) and the loaded data memory (LDM). 
Both the EDMs and LDMs are functionally interchangeable. 
At one time, the FCs access EDMs to fetch operands for the 
execution of received computation HSIs while LDMs are 
referenced by the host for the execution of communication 
HSIs. When the FCs finish their current computation HSI, 
they will switch between EDM and LDM to begin a new 
iteration. FC is a finite-state machine responsible for the 
execution of the computation HSI. FCs have access to the 
NP array over a modified LAD (M-LAD) bus. The LAD 
bus was originally developed by the Annapolis company 
and used for on-chip memory references [8]. The M-LAD 
bus controller is changed from the PCI controller to the FCs. 
The HSI counter is used to calculate the number of finished 
computation HSIs. The SRAM address generator (SAG) is 
used to calculate the SRAM load/store addresses for the 
EDM banks. The FC is pipelined and sequentially traverses 
the states of LL (Loading LRFs), IF (Instruction Fetch), ID 
(Instruction Decode) and EX (execution). The transition 
condition from EX to LL is triggered by the master NP’s 
interrupt signal. The interrupt request/response latency is 
one cycle only as opposed to the tens of thousands of cycles 
between the host and FPGAs, thus enhancing the H-
SIMD’s performance. 

 
EDM: execution data memory;  

LDM: loaded data memory 
Figure 1. H-SIMD machine architecture. 

The nano-processor array forms the customized execution 
units of the H-SIMD machine datapath. Each nano-
processor has three large-sized register files: the load 
register file (LRF), the execution register file (ERF) and the 
accumulation register file (ARF) shown in Figure 3. Both 



LRFs and ERFs work in a “memory” switching scheme, 
similarly to the LDMs and EDMs. The ERFs are used for 
the execution of computation FSIs while the LRFs are 
referenced by the communication FSIs at the same time. 
The computation results are accumulated in the ARFs. Our 
multiply-accumulator (MAC) consists of commercial 
Quixilica FPU IPs [9] to reduce the development cycle. 
Each NP can finish two floating-point operations in one 
cycle. 

 

 
Figure 2. HC-level memory switching. 

 

 
Figure 3. Nano-processor datapath and control 

unit. 
2.2 HISA: Instruction Set Architecture for MM 

Similar to the approach for PC clusters in [11], we 
suggest here that an effective instruction set architecture 
(ISA) be developed at each layer for each application 
domain. HC is programmed by host API functions of the 
FPGA board. They support to open the board, configure the 
FPGAs, reference the on-board/on-chip memory resources 
and handle interrupts [12]. We present here the tailoring of 
HSIs for the block-based MM algorithm. We assume the 

problem C=A*B, where A, B, and C are N x N square 
matrices. When N becomes large, block matrix 
multiplication is used to divide the matrix into smaller 
blocks to exploit data reusability. Due to limited space here, 
please refer to [10] for more details about block MM. In the 
H-SIMD machine, only a single FPGA or NP is employed 
to multiply and accumulate the results of one block of the 
product matrix at the HC and FC levels, respectively. 
Coarse-grain workloads can keep the NPs busy on MM 
computations while the HC and FCs load operands to the 
FPGAs and NPs sequentially. This simplifies the design of 
the hierarchical architecture and eliminates the need for 
FPGA-FPGA and NP-NP communications at the expense 
of memory reference time. According to the H-SIMD 
architecture, the HC issues NhxNh sub-matrix blocks for all 
the FPGAs to multiply. Nh is the block matrix size for HSIs. 
We have three HSIs here: 1) host_matrix_load(i, SLDM, Nh): 
Through the PCI bus, this HSI will load an Nh x Nh block 
matrix to the LDM of FPGA i with the starting address 
SLDM in the host memory (host-based DMA control is 
applied). 2) host_matrix_store(i, SLDM, Nh): The 
computation results in the LDM of FPGA i can be retrieved 
by the host through the PCI bus when the computation is 
done. Host_matrix_load/store are communication HSIs 
executed on the host. 3) host_matrix_mul_accum(HA, HB, 
HC, Nh): For matrix multiplication of size NhxNh, HA, HB 
and HC are the starting addresses of source matrix A, source 
matrix B and product accumulation matrix C, respectively. 
This computation HSI is coded in 32 bits, issued by the HC 
and executed by the FCs.  

The FC is in charge of executing the computation HSI, 
i.e., decomposing host_matrix_mul_accum for size Nh x 
Nh into FSIs for size Nf x Nf, where Nf is the sub-block 
matrix size for the FSIs. Enlisted is the same block matrix 
multiplication algorithm as the one for the HC. The code 
for host_matrix_mul_accum is pre-programmed by the 
FSIs and stored into the FC instruction memory. The FSIs 
are 32-bit instructions with mnemonics as follows: 1) 
FPGA_matrix_load(i, SLRF, Nf): the FC will execute this 
instruction by loading the LRF of NP i with a matrix of size 
NfxNf. SLRF is the starting address in the EDM. 2) 
FPGA_matrix_store(i, SARF, Nf): The NP computation 
results are stored into the ARF and retrieved into the 
FPGA’s EDM at starting address SARF when the 
accumulation of the partial products is done. 
FPGA_matrix_load/store are communication FSIs 
executed by the FCs. 3) FPGA_matrix_mul_accum(Fa, Fb, 
Fc, Nf): For matrix multiplication of size NfxNf, Fa, Fb and 
Fc are the starting addresses of source matrix a, source 
matrix b and product accumulation matrix c, respectively. 
This computation FSI is issued by the FCs and executed by 
the NPCs. 

The NPIs are designed for the execution of the 
computation FSI FPGA_matrix_mul_accum. The code for 
FPGA_matrix_mul_accum is pre-programmed by the NPIs 
and stored into the NPC instruction memory. There is only 



one NPI to be implemented: the floating-point multiply 
accumulation NP_MAC(Ra, Rb, Rc) where Ra, Rb, and Rc 
are registers for the function Rc=Ra*Rb+Rc. The NPI code 
for the computation FSIs needs to be scheduled carefully to 
avoid data hazards. They occur when operands are delayed 
in the addition pipeline with latency Ladder. Thus, the 
condition to avoid data hazards is Nf

2 > Ladder. 
   
3. Analysis of Task Partitioning in Matrix 
Multiplication 

The bandwidth of the communication channels in the H-
SIMD machine varies greatly. Basically, there are two 
interfaces in the H-SIMD machine: a PCI bus of bandwidth 
Bpci between the host and the FPGAs; the SRAM bus of 
bandwidth Bsram between the off-chip memory and the on-
chip nano-processor array. The HSI parameter Nh is chosen 
in such a manner that the execution time Thost_compute of the 
HSI computation instruction host_matrix_mul_accum is 
greater than Thost_i/o which is the sum of the execution time 
THSI_comm of all the communication HSIs 
(host_matrix_load/store) and the master FPGA interrupt 
overhead Tfpga_int. If so, the communication and interrupt 
overheads can be hidden. Let us assume that there are q 
FPGAs of p nano-processors each. Specifically, the 
following lower/upper bounds should hold for matrix 
multiplication: 
Thost_compute > t * Nh

3/p, 
Thost_i/o<THSI_comm*q+Tfpga_int=4*b*Nh

2/Bpci*q+Tfpga_int,  
where t  is the nano-processor cycle time and b is the width 
in bits of each I/O reference.  Simulation results in Figure 4 
show that the HSI computation and I/O communication 
times vary with Nh, p and q, for b=64 and t=7 ns. With 
increases in the block size for the HSIs, the computation 
time grows in a cubic manner and yet the I/O 
communication time grows only quadratically, which is 
exploited by the H-SIMD machine. This means that the host 
may load the LDMs sequentially while all the FPGAs run 
the issued HSI in parallel.  

   
Figure 4. Execution times of the computation and 
communication HSIs as a function of Nh, p and q.   

      
(a) Nbank=2 

 
(b) Nbank=6 

Figure 5. Execution times of the computation and 
communication FSIs as a function of Nf, p, and 

Nbank. 
For FC-level Nf x Nf block MM, we tweak Nf to overlap 

the execution time TFPGA_compute of the FSI computation 
instruction FPGA_matrix_mul_accum with the sum 
TFPGA_i/o of the execution times TNP_i/o of all the 
communication FSIs and the NP interrupt overheads TNP_int. 
The following upper/lower bounds should hold: 
TFPGA_compute > t *Nf

3, 
TFPGA_i/o<TNP_i/o*p+TNP_int=4*b*Nf

2/(Bsram*Nbank)*p + TNP_int   
Nbank is the number of available SRAM banks for each 
FPGA. Simulation results in Figure 5 show that the 
computation FSI takes more execution time than the 
communication FSIs with an increase in Nf. More SRAM 
banks can provide a higher aggregate bandwidth to reduce 
the execution times of the communication FSIs. By using 
the above analysis of the execution time, we explore the 
design space for the lower bound on Nh and Nf, respectively. 
On the other hand, the capacity of the off-chip and on-chip 
memories defines the upper bounds on Nh and Nf. For each 
FPGA for MM operations: 4*r*N2

h*b<Csram*Nbank and 
4*r*N2

f*b <Con-chip, where Csram represents the capacity of 
one on-board SRAM bank; Con-chip represents the on-chip 
memory capacity of one FPGA; r stands for the redundancy 



of the memory system, so r=2 for our memory switching 
scheme. In summary, Nh are Nf are upper-bound 
by * /(8* )SRAM bankC N b and /(8* )on chipC b− , respectively.  
  
4. Implementation and Experimental Results 

The H-SIMD machine was implemented on the 
Annapolis Wildstar II PCI board containing two Xilinx 
Virtex-II 6000 FPGAs [8]. We use the Quixilica FPU [9] to 
build up the NP’s floating point MAC. Table 1 gives the 
characteristics of the Quixilica FPU and MAC for the 64-bit 
IEEE double-precision format. In our design environment, 
ModelSim5.8 and ISE6.2 are enlisted as development tools. 
The Virtex-II 6000 can hold up to 16 NPs running at 
148MHz. Broadcasting the FSIs to the nano-processor array 
is pipelined so that the critical path lies in the MAC 
datapath. The 1024x1024 MM operation is tested. The 
block size Nf of FSIs is set to 8. The test results break down 
into computation HSIs, host interrupt overhead, PCI 
reference time, and initialization and NP interrupt overhead, 
as shown in Figure 6. We can tell that the performance of 
the H-SIMD machine depends on the block size Nh. When 
Nh is set to 64, the frequent interrupt requests to the host 
contribute to the performance penalty. When Nh is set to 
128, the computation time of the coarse-grain HSI does not 
increase long enough to overlap the sum of the host 
interrupt overhead and the PCI sequential reference 
overhead. If Nh is set to 512, there is a long enough 
computation time to overlap the host interrupt. However, 
the memory switching scheme between the EDMs and 
LDMs does not work effectively because of the limited 
capacity of the SRAM banks, which results in penalties 
from both host interrupts and PCI references. If Nh is set to 
256, the H-SIMD pipeline is balanced along the hierarchy 
such that the total execution time is very close to the peak 
performance Peak=2*p*q*freq, where all the nano-
processors work in parallel. We can sustain 9.1 GFLOPS, 
which is 95% of the peak performance. The execution 
overhead on the H-SIMD machine comes from LDM and 
LRF initialization, and nano-processor interrupts to the FCs. 

 
Table 1. Characteristics of the Quixilica FPU and 

H-SIMD MAC. 
 fpAdder fpMultiplier MAC 

Pipeline 
Stages 12 11 24 

Slice 
usage 815 923 1802 

Clock 
speed 
(MHz) 

153 150 148 

 
For an arbitrary size of square MM operations, a padding 

technique is employed to align the size of the input matrices 
to multiples of Nf because FPGA_matrix_mul_accum 
works on Nf x Nf matrices. Nf is set to 8 during our test. Let 

A and B be square matrices of size NxN. If N is not a 
multiple of eight, then both the A and B input matrices are 
padded up to the nearest multiples of eight by the ceiling 
function. The padded zeros will definitely increase the H-
SIMD’s computation overhead and lower its performance. 
Table 2 presents test results for different cases. For matrices 
of size less than 512, the H-SIMD machine is not fully 
exploited and does not sustain high performance. For the 
large matrix (N>512), the H-SIMD machine with two 
FPGAs can achieve about 8.9 GFLOPS on average. In fact, 
the H-SIMD machine can be built with multiple FPGAs 
because no inter-FPGA communications are needed. We 
show the relationship between the execution time of 
2048x2048 MM and the number q of FPGAs in Figure 7. 
There exists a saturation point, beyond which the number of 
FPGAs does not affect the performance significantly. For 
the case study of block matrix multiplication, seven Virtex 
II 6000 FPGAs can be enlisted to achieve 31.85 GFLOPS 
for 64-bit IEEE format floating point MM.  
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Figure 6. 1024x1024 MM execution time as a 
function of Nh. 

 
Table 3 compares the performance of our H-SIMD 

machine with that of previous works on FPGA-based 
floating-point matrix multiplication [4][5]. Their designs 
were implemented on Virtex II Pro125 FPGAS (55,616 
slices) as opposed to our Virtex II 6000 (33,792 slices). We 
scale the H-SIMD performance to match the Virtex II 
Pro125. We estimate that 26 NPs can fit into one Virtex II 
Pro125 running at 180MHz and can achieve a peak 
performance of 9.36GFLOPS. The H-SIMD running 
frequency can be further increased if optimized MACs are 
used. [4] [5] presented systolic algorithms to achieve 8.3 
GFLOPS and 15.6 GFLOPS on a single Xilinx Virtex II 
Pro XC2VP125, respectively. However, the H-SIMD 



machine can be used as a computing accelerator for the 
workstation. The systolic approach does not fit well into 
this paradigm because of the interrupt overhead, the FPGA 
configuration overheads and the large size of configuration 
files.  

 

 
Figure 7. Execution time vs. number of FPGAs 

(2048x2048 MM). 
 

Table 2. Execution time of MM  
for various test cases. 

Matrix size H-SIMD 
machine(ms) GFLOPS 

200 7 2.28 
397 18 6.952 
601 47 8.683 
999 225 8.849 
2001 1720 9.039 
3999 13882 9.027 

 
Table 3. Performance comparison  
between H-SIMD and other works. 
 H-SIMD [4] [5] 

Frequency 180 200 200 
Number of PEs 26 24 39 

GFLOPS 9.36 8.3 15.6 
Hide interrupt 

overhead Yes No No 
configuration file 

size 
 (MB/100 cases) 5 500 500 

 
 
 
 

5. Conclusions 
Our multi-layered H-SIMD machine paired with an 

appropriate multi-layered HISA software approach is 
effective for data parallel applications. To yield high 
performance, task partitioning is carried out at different 
granularity levels for the host, FPGAs and nano-processors. 
If the parameters of the H-SIMD machine are chosen 
properly, the memory switching scheme is able to fully 
overlap communications with computations. In our current 
implementation of matrix multiplication, a complete set of 
HISA for this application was developed and its high 
performance was demonstrated. More current FPGAs, e.g, 
the XC2VP125, could improve the performance 
tremendously.  
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