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Abstract 

The square root is a basic arithmetic operation in image and signal processing. We present a novel 
pipelined architecture to implement N-bit fixed-point square root operation on an FPGA using a 
non-restoring pipelined algorithm that does not require floating-point hardware. Pipelining hazards 
in its hardware realization are avoided by modifying the classic non-restoring algorithm, thus 
resulting in a 13% improved latency. Furthermore, the proposed architecture is flexible allowing 
modification as per individual application needs. It is demonstrated that the proposed architecture 
is approximately four times faster than its popular counterparts and at the same time it consumes 
50% less energy for envelope detection at 268 MHz sampling rate. 

Keywords; Pipelining, fixed-point arithmetic, square root, non-restoring algorithm, 
Field-Programmable Gate Array (FPGA). 

1. Introduction 
In addition to the basic arithmetic operations (+, -, * and ÷), the square root is also an 
essential operation frequently employed by signal and image processing applications. 
Envelope detection is a simple but vital technique used to recover the original signal in 
the demodulation process of a communications receiver [1-3]. The envelope detector uses 
the square root operation numerous times for signal demodulation. In software 
implementations, the envelope detector uses the floating-point square root operation 
because of its precision, regardless of speed. Nevertheless, the floating-point square root 
is costly in hardware realization compared to the integer square root operation because it 
occupies more space on the chip and consumes higher number of cycles for the same non-
pipelined operation [4-8].  

Fixed-point hardware with appropriate software support is often used to achieve low-cost 
implementation of algorithms. This alternative approach usually provides accuracy very 
close to that of floating-point hardware. Furthermore, the fixed-point accuracy heavily 
depends upon the operand values and selection of q.n format for fixed-point operations. 
Small or extremely large values of operands may produce minor errors for complex 
operations due to the rounding and the truncation of least significant digits [9-11]. 
However, real-time portable applications emphasize time and power efficient solutions 
since minor errors in the answer do not often affect the quality of the results.  

Fixed-point addition and subtraction operations are relatively easy to implement on an 
FPGA, while rounding and truncation errors are negligible. The multiplication, division 
and square-root operations require complex procedures towards accuracy. They often rely 
on special types of algorithm for embedded system realization. Out of these three 
operations, the square root is the most complex one [8,12] because it usually involves 
convergence or approximation algorithms, and thus becomes computationally intensive 
[4,13-15]. 

Numerous techniques have been reported in the literature to implement the square root 
operation on FPGAs [8,16-19]. FPGA implementations provide tradeoffs between general 
purpose and ASIC solutions. They offer flexibility near that of a general purpose solution 
and performance closer to an ASIC since they support low-level hardware design; also, 
GPUs are not capable of such hardware specialization. They can even provide dynamic 
reconfiguration capabilities for run-time architecture changes. They are cost effective for 
customized applications and are commonly used for prototyping before ASIC realization 
[20]. However, end products containing FPGAs are now commonly employed to create 
time and power efficient designs for real-time portable applications. 
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It is worth mentioning that RISC microprocessors like the MIPS R4400, SUN Ultra 
SPARC and Ultra SPARC T2 have high latency to throughput ratio for the square-root 
operation [13,15]. Further, it is to be noted that some newer versions of microprocessors 
avoid floating-point based square-root instructions in their instruction sets in order to 
make the processor architecture more efficient [15,21,22]. On the other hand, the square-
root has a significant role in image and signal processing algorithms [23, 24], and thus it 
is not advisable to omit it altogether from an instruction set for such application areas. 

The Newton-Raphson, SRT-redundant and non-restoring division techniques form the 
bases of the three main categories of algorithms used for the evaluation of the square root. 
The Newton-Raphson method has self-correcting capability and provides relatively better 
precision but requires an initial guess using a seed generator while it converges 
quadratically [25]. Furthermore, it is based on an iterative approximation technique which 
requires frequent multiplications so a pipelined implementation of Newton’s method 
requires large multipliers which may not be a feasible option. On the other hand, the 
SRT-redundant and non-redundant algorithms are both recursive in nature and their 
implementation is costly especially for higher order radices [12].  

A square root implementation involving the non-restoring algorithm is a simple and 
efficient technique [26] because it employs addition/subtraction and shift operations only. 
There are many research articles in the literature describing the pipelined implementation 
of the non-restoring algorithm. Pipelining is usually adopted to make a system time 
efficient but requires extra effort to resolve timing and data hazards.  

In this article we present a pipelined implementation of the square root using the non-
restoring algorithm and fixed-point arithmetic. The proposed pipelined architecture 
avoids data dependence hazards by employing a modified non-restoring division 
algorithm. This architecture shows a time and power efficient evaluation of the square 
root compared to floating-point architectures. Furthermore, the proposed pipeline yields a 
four-fold speedup in the evaluation of the square root and almost doubles the efficiency 
of a digital communication receiver. 

2. Pipelining of Non-Restoring Algorithm  
In digital applications, pipelining is the most common parallel scheme used to improve 
the throughput. A complex task is divided into subtasks which are implemented 
independently in their respective execution stages. It is required that the output of each 
subtask become available to the subsequent unit as and when needed. A write-after-read 
(WAR) hazard may arise if a stage in a pipelined system tries to read data from a register 
written by an instruction that follows in program order. 

The non-restoring division technique can be used to evaluate the square root without 
restoring the remainder of a division [26]. It generates one bit of the result iteratively 
using two bits of data. Let D = DN DN-1…..D1 represent an N-bit radicand of an unsigned 
number. By using the non-restoring algorithm, the square root of D may be represented 
by Q = QN/2 QN/2-1….Q1 after the N/2th-iteration. The remainder R = R(N/2)+2 R(N/2)+1… R1 
has (N/2)+2 bits. The relation among R, D and Q is R = D-Q2, where D is less than 
(Q+1)2 because R < 2Q+1. A functional block representation of the non-restoring based 
square root evaluation is given in Figure-1. The figure shows that there are only 
addition/subtraction and shift operations involved in the evaluation of the square root. 
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2.1 Pipelining Hazard 

The conventional non-restoring algorithm was implemented for XC2VP2 Xilinx FPGA 
and the results were simulated in Integrated Simulated Environment (ISE) 8.2 and 
ModelSim 5.7 XE. Figure-2 shows the post layout simulation for a 2-stage pipelined 
implementation. Instability in the q2 signal representing Q2 was observed, which is 
associated with the fact that a register is receiving data from a stage while the next stage 
is trying to read the same register in the same clock cycle (this represents a WAR hazard).  

 

  

Q (N/2-bits) D (N-bits)

R (N/2+2)

Shift left twoShift left one

N/2+2

N/2 211

N/2

N/2

addition/
subtraction

Figure. 1.  Block diagram with non-restoring division. 
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Figure.2. Unstable output due to a WAR hazard for the non-restoring algorithm (pipelined implementation 
with the XC2VP2 FPGA device).  

Unstable 

Let D be an N-bit unsigned integer, Q be a k-bit unsigned integer and  R be a (k+2)-bit unsigned 
integer 

Declare R1=R2=......Rk and Q1=Q2=…..Qk=0  

// ( R and Q registers are initially filled with zeros to aviode the junk values). 

#Define Con = Concatenation (x,y)  

// (In HDL the bits of two variables x and y are concatenated using curly brackets by comma i.e. 
{x,y}) 

loop i=1:k 

   if (i=1)    

     Ri=Con(k zeros, D[N-2(i-1)-1:N-2(i-1)-2]) - Con(k+1 zeros,1), sel=0 

   else 

      sel = Ri-1[k-1] 

          if(sel=0) 

   Ri=Con(R(i-1)[k-1:0],D[N-2(i-1)-1:N-2(i-1)-2])– Con(Q(i-1),R(i-1) [k-1],1); 

                   Qi=Con(Q(i-1)[i-1:1], Ri
’ [k+1]); 

          else  

   Ri=Con(R(i-1)[k-1:0],D[N-2(i-1)- 1:N-2(i-1)-2])+Con(Q(i-1) , R(i-1) [k-1],1); 

                   Qi=Con(Q(i-1)[i-1:1],  Ri
’ [k+1]); 

    endif 

Figure. 3.  Modified non-restoring algorithm for pipelined fixed-point based N-bit square root 
realization. 
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To overcome this WAR hazard, we modified the design as shown in Figure-3. k is a 
variable related to the bit-width of the R and Q registers, as required by the algorithm. 
With this modification, the ‘if condition’ of the conventional version [4, 12] has been 
replaced with a simple NOT gate. The shift operation, which is an integral part of the 
non-restoring algorithm, works well in the non-pipelined implementation where only one 
Q register is required as shown in Figure-1.  

In the proposed pipelined implementation, an arrangement has been made for the proper 
placement of bits in the Q register from different wires in the same clock cycle without a 
shift operation. This provides stable and correct data for subsequent stages in the pipeline 
without losing clock cycle.   

Figure-4 shows a conceptual flow of the pipelined implementation for the modified non-
restoring algorithm. However, more Q registers for a pipelined implementation are 
required and their exact number depends upon the number of stages involved in the 
pipelined system. Two bits are fed to each stage from a D input register whose length is 
equal to N radicand bits. In stage-1, the two most significant bits (MSBs) are directly 
connected to M1 and there are no pipeline registers. In stage-2, there are three pipeline 
registers, five pipeline registers in stage-3, and so on.  

Figure. 4.  N-bit pipelined architecture for fixed point based square root implementation.  
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The circuitry associated with the M-modules of Figure-4 is shown in Figure-5. In this 
figure, Sn is a computing unit (ALU) and is labeled as S1 for stage-1, S2 for stage-2, and so 
on. 
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Figure. 5. The details of the M1and M2 modules and their inter-connections. 
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S1 gets the two LSB bits from the D register as its right operand, while the remaining bits 
of the left and right operands are initialized with one’s and zero’s as shown in Figure-5; 
on the other hand, the LSB of the left operand of S2 is fixed as one whereas the remaining 
bits are fed from the previous stage of the pipeline. S1 is treated as a subtractor in stage-1 
because its select bit is always low. S2 could be a subtractor or adder depending upon the 
select bit whose value is defined by the MSB of the R1 register.  

To demonstrate the validity of the modified non-restoring realization, the concept in 
Figure-4 for N=32 was implemented on XC2VP2 and XC3S100 Xilinx devices. The 
software tools are ISE 8.2 and ModelSim 5.7 XE. For N = 32, the number of stages 
defining the pipeline architecture is 16. In Figure-4, Preg1&2 act as padding registers 
while the r2 receives data from stage-1. For n stages in the pipelined architecture, 2n-2 
Preg registers are required plus a register rn which receives data from the previous stage, 
where n is the stage number. The rn register is primarily used to store partial results from 
the Qn-1 register of the previous stage and provides the same data to the Qn+1 register of 
the subsequent stage in the pipeline. Therefore, the WAR hazard, which is related to read 
and write timing the Q register in Figure-2, has been solved.  

3. Operation 
To observe the operations in the proposed pipeline system, one stage at a time, consider 
Figure-5 with N=4. In the first clock cycle (T1) the two MSB bits of the D register are 
transferred into the LSB positions of the right operand of S1. The remaining k MSBs in 
the right operand of S1 are fixed to zeros. The k as a variable is equal to half of the 
radicand bits and k+1 bits are concatenated with 1 for the left operand of S1. The result of 
the above operation is not immediately available from S1 to R1 because of the 
combinational delay in S1. After that delay, k+2 bits from S1 are available in R1 but not 
placed in R1. Furthermore, the MSB of S1, after passing through an inverter, is available at 
Q1 during T1, but is not placed in Q1 registers because the sequential units operate in a 
clock edge-triggered manner. Furthermore, in T1 the two LSBs from the input D register 
are transferred into the Preg(1) which is a part of stage-2.  

In T2, Preg.(2) receives data from Preg.(1), Q1 from the inverter and R1 from S1 which is 
available to S2 and ready for computation because S2 is a combinational unit. The LSB of 
the left operand for S2 is always high and its next bit is defined by the MSB of R1 (it 
determines addition or subtraction) after T2 (because data from Preg.(2)  is available to 
S2). 

In T3, S2 performs addition or subtraction and the pipeline register r2 receives data from 
Q1. Register r2 contains just one bit and is part of stage-2. In this cycle, data is not placed 
in R2 due to the delay in S2, and similarly data from r2 is not available to Q2. In T4, the 
final result will be computed and will become available in Q2 after receiving data from S2 
and r2. 

Figure-6 shows a dry run of the proposed system. It explains the stage-wise changes in 
the R and Q registers per cycle, once the pipeline is filled. The answer is available at Q4 
for 8-bit data. Similarly extending the same logic, the answer for a 32-bit radicand will be 
available in Q16.  
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4. Results and Discussion 
Figure-7 (a&b) shows post layout results of non-pipelined and pipelined implementations 
of non-restoring algorithm on a Virtex2Pro (XC2VP2) device. Figure-7(c) represents 
once again pipelined implementation of the same algorithm on a Spartan3E (XC3S100) 
device. The post layout simulations shown in Figure-7 were generated after the place-
and-route process of the Xilinx tools. In this figure, data_in and data_out show the input 
and output data, respectively. To demonstrate the validity of the proposed system, 
hundreds of randomly selected radicand values for the evaluation of the square root were 
used in simulations. The same output from various Xilinx devices shows that the 
proposed architecture is device independent. The total latency of the system was 
evaluated for various devices. This latency of the modified non-restoring algorithm is 
about 118 nsec whereas it is 135 nsec  on the Virtex2Pro for the classical version, as 
shown in Figure-7 (a). Therefore, the proposed system demonstrates a 13% improved 
latency with respect to the classical system. 

Table-1 shows time to evaluate a square root with non-pipelined and pipelined systems 
using Virtex2Pro from Xilinx and Flex from Altera. It is useful to consider power 
consumption along with the execution time because they are reciprocally dependent upon 
each other.  

Various performance metrics have been reported for the evaluation of FPGA-based 
square root systems, but they are not comparable [18,19]. Throughput (the inverse of the 
clock period for the slowest pipelined stage) is used as a performance metric. The 
throughput of a pipelined system is dependent upon number stages. Thus, a system 
comprising on larger number of stages will require higher resources and as a result it will 
consume more power. 

 

Figure. 6. Dry run for an example using a 4-stage pipelined system (8-bit radicand). 
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Figure.7. Post layout simulation of the proposed algorithm (a) using a non-pipelined 
architecture operating at 8 ns on the Virtex2Pro (b) using a pipelined architecture operating at 
approximately 3.5 ns on the Virtex2Pro (c) using a pipelined architecture at 5.63 ns on the 
Spartan3E. 
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Table 1. Throughput of non-pipelined (NP) and the proposed pipelined (PL) architecture. 

 Time per square root evaluation (ns) 
Number of 
operations NP PL 

1.00E+00 1.60E+02 1.25E+02 

1.00E+01 1.60E+02 1.56E+01 

1.00E+02 1.60E+02 4.71E+00 

1.00E+03 1.60E+02 3.62E+00 

1.00E+04 1.60E+02 3.51E+00

1.00E+05 1.60E+02 3.50E+00 

1.00E+06 1.60E+02 3.50E+00 

1.00E+07 1.60E+02 3.50E+00 
 

Million floating-point operations per second per slice (MFLOPS/slice) is another relevant 
metric used to evaluate FPGA based systems. It is pertinent to mention that the power 
required by a slice of an FPGA is defined by its operating frequency [27]. Thus, the time 
and power consumption of a system are inter-related for the same FPGA. A benchmark is 
required which can provide time and power measures simultaneously. 

Table-2 illustrate a comparison based on power, execution time and number of stages 
engaged by an architecture reported in the literature [4,12,14,18,28]. For the proposed 
system, the power consumption was calculated using the Xpower utility [29], whereas the 
time required for the same is measured from the post layout simulation. The last column 
of Table-2 was evaluated by using our proposed benchmark. The data in the fifth column 
represents the expression ,FSC ∗∗ where S is the number of slices, F is the maximum 
operating frequency, and C= 0.001475 or 0.001629 is a constant value related to power 
and deduced from the device data sheet for the Virtex2 and Spartan3E, respectively. The 
examination of Table-2 reveals that our proposed system produces the minimum value for 

FSC ∗∗  among all square root solutions. Furthermore, in comparison to [18] the great 
advantage of our proposed pipelined system is that it yields a four-fold speedup; the 28-
stage implementation of the former shows a 25% improved C*S*F product whereas its 
59-stage solution almost doubles the consumption in comparison to our solution. 

Furthermore, the proposed system has been exhaustively tested for accuracy. The 
maximum error and dB loss in the output, using a wide range of values, was simulated 
and shown in Table-3. The maximum and average dB losses are 9.20E-04 and 4.77E-4, 
respectively, compared to floating-point operations whereas the maximum observed error 
is 6.23E-2. The data in Table-3 show errors on the order of E-05 and E-04 for values less 
than unity and greater than unity, respectively. Of course, the input value range depends 
upon the bit-width of the architecture. The maximum input value supported by the 
proposed architecture is dependent upon the bit-width of the radicand register that takes 
only unsigned integers. Table-4 presents tradeoffs involving the resource consumption (in 
number of slices), execution time, mean square error (MSE) and average relative error 
(ARE) for a 0.02-0.99 data range. This range was chosen due to its special significance in 
digital communication receivers [1-3]. Table-4 shows that the MSE value is reduced with 
a larger slice occupancy and, thus the lowest MSE is observed for the 16-stage pipelined 
system. 
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Table 2. Performance comparison based on the power consumption and time for fixed and 
floating-point based systems and various devices (TESQR: Time to evaluate the square root). 

Architecture 
 

Stages 
 

Implementation TESQR(ns) 
C*S*F 
(mw) Device Slices/LE mW*ns 

32-bit non-restoring 
fixed-point [12] 

 
- 

Non-pipelined 1170 65.48 Altera 
10K20RC240-4 161 (LE) 76611.60 

32-bit modified 
non-restoring fixed-
point 

 
- 

Non-pipelined 
160 11.78 XC2VP2-7 63 1885.58 

Single Precision 
[28] 

 
- 

 
Pipelined 168 1309.19 XC2V1000 1313 219944.30 

Single-precision [4] 

 
15-

Stages 

 
Pipelined 1.8 6389.70 XC2V4000 4332 11501.46 

Double-precision 
[18] 

 
28-

Stages 

 
Pipelined 14.47 152.18 XC2V6000 1433 2202.11 

Double-precision 
[14] 

 
47-

Stages 

 
Pipelined 7 364.90 XC2VP2-7 1730 2554.30 

Double-precision 
[18] 

 
59-

Stages 

 
Pipelined 7.88 529.59 XC2V6000 2700 4173.19 

Fixed-point 
Modular array, 32-
bits [30] [31] 

 
16-

Stages 

 
Pipelined 101 30.37 XCV100E-8 312 3067.37 

Proposed fixed-
point 32-bit  

 
16-

Stages 

 
Pipelined 3.50 270.86 Virtex2 

XC2VP2-7 709 1002.17 

Proposed  fixed-
point 32-bit 

 
16-

Stages 

 
Pipelined 5.63 203 Spartan3E 

XC3S1600E-5 704 1142.89 

 

Table 3. Maximum error and dB loss of the proposed architecture for different radicand value 
ranges as compared to pure floating-point implementations. 

Range 
Max 

Error Max dB Loss 

0.02 to 0.99 1.53E-05 2.65E-05 

1 to 100 3.81E-03 9.20E-04 

100 to 1000 3.87E-03 1.24E-04 

1000 to 1E+6 6.23E-02 8.39E-04 
 

Carry save adder (CSA) technology was used in the parallel array square root (PASQRT) 
implementation that can be pipelined without resulting in WAR hazards [4]. Fast 
execution was achieved at the cost of high resource consumption [32-34]. This is evident 
in Table-2 since the C*S*F value for [4] is very high. Also, a non restoring 
implementation on a Xilinx FPGA was used to control AC and DC motors [26]. It 
involved an iterative implementation that is inherently slow and cannot be employed by 
fast communication systems. 
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Table 4. Tradeoffs on theVirtex2Pro involving resources, execution time, mean square error 
(MSE) and average relative error (ARE) for a radicand range from 0.02 to 0.99. 

Architecture Stages MHz 
Slices  

(out of 1408) 
Execution 
time (ns) MSE 

 
ARE 

32-bit 16 285 709 3.5 9.0E-05 2.91E-05 

16-bit 8 310 164 3.2 2.2 E-02 8.08E-03 

8-bit 4 368 44 2.7 3.75E-01 1.17E-01 

4-bit 2 489 11 2 5.26E-01 1.7E0 

 

In a recent attempt, an ASIC has been developed by employing 90 nm CMOS technology 
for the evaluation of square root [8]. It has two pipelined architectures simultaneously. As 
a result, it consumes ~18 % of the total area on the ASIC just for the square root circuit 
and produces answer in 4 nsec while our approach takes 3.5 nsec that too on an FPGA; an 
inherently slower device.  

Envelope detection is a simple technique to recovery the original signal in a demodulation 
process of a communications receiver [1-3]. The original signal is extracted by using

22)( QIty += , where I and Q are the phase components at time t as shown in Figure-8. 
In general, the modulation frequency of a communications system is on the order of 
100MHz. It implies that a billion operations per signal per second are required. Therefore, 
an improved throughput for the successive evaluation of the square root can substantially 
improve the demodulation process and hence the envelope detection. Table-5 shows time 
and power comparison for a digital communications receiver. Its entries are computed for 
a 60 sec signal using best floating-point system and our proposed fixed-point architecture.  

 

 

 

 

 

 

 

The input domain range of radicand values for envelope detection depends upon the 
application type. The quadrature phase shift keying (QPSK) modulation scheme is often 
used in cellular communications. The value of the ( 22 QI + ) signal is usually less than 
unity. For this range of radicands, the MSE, ARE and dB loss values for the proposed 
system are 9.01E-05, 2.91E-05 and 2.65E-05, respectively, as shown in Table-3 and 
Table-4.   

 

BPF 
 

Amplifier 
Cosw0nT 

Band pass filter 

LO 
 
 
Local Oscillator 

 Sinw0nT 

Figure 8.  Schematic diagram of a digital signal communications receiver using envelope detection. 

Output 
Signal 
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Table 5. Time comparison to evaluate the square root using purely floating-point (FL) realization 
and the proposed fixed-point based systems for a digital communications receiver and a minute 
signal length. 

Operating 
Frequency 

Sampling 
Rate 

Time FL SQR 
(ms) 

Time FX 
SQR (ms) 

Power FL SQR 
(mW) 

Power FX 
SQR (mW) 

1 KHz 2 KHz 1.74 0.45 4.23 2.09 

1 MHz 2 MHz 1736.4 444 4227.35 2091.55 

10 MHz 20 MHz 17364 4440 42273.50 20915.50 

36 MHz 72 MHz 62510.40 1598.40 152184.60 75295.80

134 MHz 268 MHz 232677.60 59496 566464.90 280267.70 
 

5. Conclusions   

Our proposed pipelined architecture for square root evaluation yields high throughput that 
can match to the needs of real-time applications. The proposed architecture is 
reconfigurable to radicand precision, as per user requirements. The accuracy of the 
system was tested for various ranges of radicand values, resulting in an average loss of 
4.77E-4 dB compared to floating-point calculations. Time-power efficiency of the 
proposed architecture was two times better than the best known floating-point realization 
of the square root. With this efficiency and accuracy, the proposed system is a viable 
candidate for digital communications receivers.  
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Figure 1.  Block diagram with non-restoring division. 

Figure 2. Unstable output due to a WAR hazard for the non-restoring algorithm 
(pipelined implementation with the XC2VP2 FPGA device).  

Figure 3.  Modified non-restoring algorithm for pipelined fixed-point based N-bit 
square root realization. 

Figure 4.  N-bit pipelined architecture for fixed point based square root 
implementation. 

Figure 5. The details of the M1and M2 modules and their inter-connections. 

Figure 6. Dry run for an example using a 4-stage pipelined system (8-bit 
radicand). 

Figure 7. Post layout simulation of the proposed algorithm (a) using a non-
pipelined architecture operating at 8 ns on the Virtex2Pro (b) using a pipelined 
architecture operating at approximately 3.5 ns on the Virtex2Pro (c) using a 
pipelined architecture at 5.63 ns on the Spartan3E. 

Figure 8.  Schematic diagram of a digital signal communications receiver using 
envelope detection. 
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radicand value ranges as compared to pure floating-point implementations. 
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