
1

Novel Pipelined Architecture for Efficient
Evaluation of the Square Root Using a
Modified Non-Restoring Algorithm

I. Sajid, M. M. Ahmed
Department of Electronic Engineering,
Mohammad Ali Jinnah University,
Islamabad, 44000, Pakistan

JOURNAL OF SIGNAL PROCESSING
SYSTEMS,
SPRINGER PUBL.,
ACCEPTED FOR PUBLICATION.

Sotirios G. Ziavras
Electrical and Computer Engineering
Department, New Jersey Institute of
Technology, Newark, NJ 07102, USA

2

Abstract

The square root is a basic arithmetic operation in image and signal processing. We present a novel
pipelined architecture to implement N-bit fixed-point square root operation on an FPGA using a
non-restoring pipelined algorithm that does not require floating-point hardware. Pipelining hazards
in its hardware realization are avoided by modifying the classic non-restoring algorithm, thus
resulting in a 13% improved latency. Furthermore, the proposed architecture is flexible allowing
modification as per individual application needs. It is demonstrated that the proposed architecture
is approximately four times faster than its popular counterparts and at the same time it consumes
50% less energy for envelope detection at 268 MHz sampling rate.

Keywords; Pipelining, fixed-point arithmetic, square root, non-restoring algorithm,
Field-Programmable Gate Array (FPGA).

1. Introduction
In addition to the basic arithmetic operations (+, -, * and ÷), the square root is also an
essential operation frequently employed by signal and image processing applications.
Envelope detection is a simple but vital technique used to recover the original signal in
the demodulation process of a communications receiver [1-3]. The envelope detector uses
the square root operation numerous times for signal demodulation. In software
implementations, the envelope detector uses the floating-point square root operation
because of its precision, regardless of speed. Nevertheless, the floating-point square root
is costly in hardware realization compared to the integer square root operation because it
occupies more space on the chip and consumes higher number of cycles for the same non-
pipelined operation [4-8].

Fixed-point hardware with appropriate software support is often used to achieve low-cost
implementation of algorithms. This alternative approach usually provides accuracy very
close to that of floating-point hardware. Furthermore, the fixed-point accuracy heavily
depends upon the operand values and selection of q.n format for fixed-point operations.
Small or extremely large values of operands may produce minor errors for complex
operations due to the rounding and the truncation of least significant digits [9-11].
However, real-time portable applications emphasize time and power efficient solutions
since minor errors in the answer do not often affect the quality of the results.

Fixed-point addition and subtraction operations are relatively easy to implement on an
FPGA, while rounding and truncation errors are negligible. The multiplication, division
and square-root operations require complex procedures towards accuracy. They often rely
on special types of algorithm for embedded system realization. Out of these three
operations, the square root is the most complex one [8,12] because it usually involves
convergence or approximation algorithms, and thus becomes computationally intensive
[4,13-15].

Numerous techniques have been reported in the literature to implement the square root
operation on FPGAs [8,16-19]. FPGA implementations provide tradeoffs between general
purpose and ASIC solutions. They offer flexibility near that of a general purpose solution
and performance closer to an ASIC since they support low-level hardware design; also,
GPUs are not capable of such hardware specialization. They can even provide dynamic
reconfiguration capabilities for run-time architecture changes. They are cost effective for
customized applications and are commonly used for prototyping before ASIC realization
[20]. However, end products containing FPGAs are now commonly employed to create
time and power efficient designs for real-time portable applications.

3

It is worth mentioning that RISC microprocessors like the MIPS R4400, SUN Ultra
SPARC and Ultra SPARC T2 have high latency to throughput ratio for the square-root
operation [13,15]. Further, it is to be noted that some newer versions of microprocessors
avoid floating-point based square-root instructions in their instruction sets in order to
make the processor architecture more efficient [15,21,22]. On the other hand, the square-
root has a significant role in image and signal processing algorithms [23, 24], and thus it
is not advisable to omit it altogether from an instruction set for such application areas.

The Newton-Raphson, SRT-redundant and non-restoring division techniques form the
bases of the three main categories of algorithms used for the evaluation of the square root.
The Newton-Raphson method has self-correcting capability and provides relatively better
precision but requires an initial guess using a seed generator while it converges
quadratically [25]. Furthermore, it is based on an iterative approximation technique which
requires frequent multiplications so a pipelined implementation of Newton’s method
requires large multipliers which may not be a feasible option. On the other hand, the
SRT-redundant and non-redundant algorithms are both recursive in nature and their
implementation is costly especially for higher order radices [12].

A square root implementation involving the non-restoring algorithm is a simple and
efficient technique [26] because it employs addition/subtraction and shift operations only.
There are many research articles in the literature describing the pipelined implementation
of the non-restoring algorithm. Pipelining is usually adopted to make a system time
efficient but requires extra effort to resolve timing and data hazards.

In this article we present a pipelined implementation of the square root using the non-
restoring algorithm and fixed-point arithmetic. The proposed pipelined architecture
avoids data dependence hazards by employing a modified non-restoring division
algorithm. This architecture shows a time and power efficient evaluation of the square
root compared to floating-point architectures. Furthermore, the proposed pipeline yields a
four-fold speedup in the evaluation of the square root and almost doubles the efficiency
of a digital communication receiver.

2. Pipelining of Non-Restoring Algorithm
In digital applications, pipelining is the most common parallel scheme used to improve
the throughput. A complex task is divided into subtasks which are implemented
independently in their respective execution stages. It is required that the output of each
subtask become available to the subsequent unit as and when needed. A write-after-read
(WAR) hazard may arise if a stage in a pipelined system tries to read data from a register
written by an instruction that follows in program order.

The non-restoring division technique can be used to evaluate the square root without
restoring the remainder of a division [26]. It generates one bit of the result iteratively
using two bits of data. Let D = DN DN-1…..D1 represent an N-bit radicand of an unsigned
number. By using the non-restoring algorithm, the square root of D may be represented
by Q = QN/2 QN/2-1….Q1 after the N/2th-iteration. The remainder R = R(N/2)+2 R(N/2)+1… R1
has (N/2)+2 bits. The relation among R, D and Q is R = D-Q2, where D is less than
(Q+1)2 because R < 2Q+1. A functional block representation of the non-restoring based
square root evaluation is given in Figure-1. The figure shows that there are only
addition/subtraction and shift operations involved in the evaluation of the square root.

4

2.1 Pipelining Hazard

The conventional non-restoring algorithm was implemented for XC2VP2 Xilinx FPGA
and the results were simulated in Integrated Simulated Environment (ISE) 8.2 and
ModelSim 5.7 XE. Figure-2 shows the post layout simulation for a 2-stage pipelined
implementation. Instability in the q2 signal representing Q2 was observed, which is
associated with the fact that a register is receiving data from a stage while the next stage
is trying to read the same register in the same clock cycle (this represents a WAR hazard).

Q (N/2-bits) D (N-bits)

R (N/2+2)

Shift left twoShift left one

N/2+2

N/2 211

N/2

N/2

addition/
subtraction

Figure. 1. Block diagram with non-restoring division.

5

Figure.2. Unstable output due to a WAR hazard for the non-restoring algorithm (pipelined implementation
with the XC2VP2 FPGA device).

Unstable

Let D be an N-bit unsigned integer, Q be a k-bit unsigned integer and R be a (k+2)-bit unsigned
integer

Declare R1=R2=......Rk and Q1=Q2=…..Qk=0

// (R and Q registers are initially filled with zeros to aviode the junk values).

#Define Con = Concatenation (x,y)

// (In HDL the bits of two variables x and y are concatenated using curly brackets by comma i.e.
{x,y})

loop i=1:k

 if (i=1)

 Ri=Con(k zeros, D[N-2(i-1)-1:N-2(i-1)-2]) - Con(k+1 zeros,1), sel=0

 else

 sel = Ri-1[k-1]

 if(sel=0)

 Ri=Con(R(i-1)[k-1:0],D[N-2(i-1)-1:N-2(i-1)-2])– Con(Q(i-1),R(i-1) [k-1],1);

 Qi=Con(Q(i-1)[i-1:1], Ri
’ [k+1]);

 else

 Ri=Con(R(i-1)[k-1:0],D[N-2(i-1)- 1:N-2(i-1)-2])+Con(Q(i-1) , R(i-1) [k-1],1);

 Qi=Con(Q(i-1)[i-1:1], Ri
’ [k+1]);

 endif

Figure. 3. Modified non-restoring algorithm for pipelined fixed-point based N-bit square root
realization.

6

To overcome this WAR hazard, we modified the design as shown in Figure-3. k is a
variable related to the bit-width of the R and Q registers, as required by the algorithm.
With this modification, the ‘if condition’ of the conventional version [4, 12] has been
replaced with a simple NOT gate. The shift operation, which is an integral part of the
non-restoring algorithm, works well in the non-pipelined implementation where only one
Q register is required as shown in Figure-1.

In the proposed pipelined implementation, an arrangement has been made for the proper
placement of bits in the Q register from different wires in the same clock cycle without a
shift operation. This provides stable and correct data for subsequent stages in the pipeline
without losing clock cycle.

Figure-4 shows a conceptual flow of the pipelined implementation for the modified non-
restoring algorithm. However, more Q registers for a pipelined implementation are
required and their exact number depends upon the number of stages involved in the
pipelined system. Two bits are fed to each stage from a D input register whose length is
equal to N radicand bits. In stage-1, the two most significant bits (MSBs) are directly
connected to M1 and there are no pipeline registers. In stage-2, there are three pipeline
registers, five pipeline registers in stage-3, and so on.

Figure. 4. N-bit pipelined architecture for fixed point based square root implementation.

7

The circuitry associated with the M-modules of Figure-4 is shown in Figure-5. In this
figure, Sn is a computing unit (ALU) and is labeled as S1 for stage-1, S2 for stage-2, and so
on.

rn[n-2:0]

Preg (1)

Preg (2n-2)

Rn

Rn

1 10

2K

1K+1

0

K

K

Sn Sn

2

1

1

MSB

1

- 0

K+2
k+2

MSB

n-1

M2 M1

D[N-2(n-1)-1:N-2(n-1)-2]

1

1

K+2-bits

K+2-bits

D as input Register

n-bits Qn

Qn[0]

n-bits Qn

Qn[n-1:1]

Qn[0]

Rn(MSB)

N-bitsN-1 N-2 0

n : stage #

(n = 1)(n = 2)

+ 1
- 0

K = N/2

+ 1

0

K = no. of stages

D[N-2(n-1)-1:N-2(n-1)-2]

Figure. 5. The details of the M1and M2 modules and their inter-connections.

8

S1 gets the two LSB bits from the D register as its right operand, while the remaining bits
of the left and right operands are initialized with one’s and zero’s as shown in Figure-5;
on the other hand, the LSB of the left operand of S2 is fixed as one whereas the remaining
bits are fed from the previous stage of the pipeline. S1 is treated as a subtractor in stage-1
because its select bit is always low. S2 could be a subtractor or adder depending upon the
select bit whose value is defined by the MSB of the R1 register.

To demonstrate the validity of the modified non-restoring realization, the concept in
Figure-4 for N=32 was implemented on XC2VP2 and XC3S100 Xilinx devices. The
software tools are ISE 8.2 and ModelSim 5.7 XE. For N = 32, the number of stages
defining the pipeline architecture is 16. In Figure-4, Preg1&2 act as padding registers
while the r2 receives data from stage-1. For n stages in the pipelined architecture, 2n-2
Preg registers are required plus a register rn which receives data from the previous stage,
where n is the stage number. The rn register is primarily used to store partial results from
the Qn-1 register of the previous stage and provides the same data to the Qn+1 register of
the subsequent stage in the pipeline. Therefore, the WAR hazard, which is related to read
and write timing the Q register in Figure-2, has been solved.

3. Operation
To observe the operations in the proposed pipeline system, one stage at a time, consider
Figure-5 with N=4. In the first clock cycle (T1) the two MSB bits of the D register are
transferred into the LSB positions of the right operand of S1. The remaining k MSBs in
the right operand of S1 are fixed to zeros. The k as a variable is equal to half of the
radicand bits and k+1 bits are concatenated with 1 for the left operand of S1. The result of
the above operation is not immediately available from S1 to R1 because of the
combinational delay in S1. After that delay, k+2 bits from S1 are available in R1 but not
placed in R1. Furthermore, the MSB of S1, after passing through an inverter, is available at
Q1 during T1, but is not placed in Q1 registers because the sequential units operate in a
clock edge-triggered manner. Furthermore, in T1 the two LSBs from the input D register
are transferred into the Preg(1) which is a part of stage-2.

In T2, Preg.(2) receives data from Preg.(1), Q1 from the inverter and R1 from S1 which is
available to S2 and ready for computation because S2 is a combinational unit. The LSB of
the left operand for S2 is always high and its next bit is defined by the MSB of R1 (it
determines addition or subtraction) after T2 (because data from Preg.(2) is available to
S2).

In T3, S2 performs addition or subtraction and the pipeline register r2 receives data from
Q1. Register r2 contains just one bit and is part of stage-2. In this cycle, data is not placed
in R2 due to the delay in S2, and similarly data from r2 is not available to Q2. In T4, the
final result will be computed and will become available in Q2 after receiving data from S2
and r2.

Figure-6 shows a dry run of the proposed system. It explains the stage-wise changes in
the R and Q registers per cycle, once the pipeline is filled. The answer is available at Q4
for 8-bit data. Similarly extending the same logic, the answer for a 32-bit radicand will be
available in Q16.

9

4. Results and Discussion
Figure-7 (a&b) shows post layout results of non-pipelined and pipelined implementations
of non-restoring algorithm on a Virtex2Pro (XC2VP2) device. Figure-7(c) represents
once again pipelined implementation of the same algorithm on a Spartan3E (XC3S100)
device. The post layout simulations shown in Figure-7 were generated after the place-
and-route process of the Xilinx tools. In this figure, data_in and data_out show the input
and output data, respectively. To demonstrate the validity of the proposed system,
hundreds of randomly selected radicand values for the evaluation of the square root were
used in simulations. The same output from various Xilinx devices shows that the
proposed architecture is device independent. The total latency of the system was
evaluated for various devices. This latency of the modified non-restoring algorithm is
about 118 nsec whereas it is 135 nsec on the Virtex2Pro for the classical version, as
shown in Figure-7 (a). Therefore, the proposed system demonstrates a 13% improved
latency with respect to the classical system.

Table-1 shows time to evaluate a square root with non-pipelined and pipelined systems
using Virtex2Pro from Xilinx and Flex from Altera. It is useful to consider power
consumption along with the execution time because they are reciprocally dependent upon
each other.

Various performance metrics have been reported for the evaluation of FPGA-based
square root systems, but they are not comparable [18,19]. Throughput (the inverse of the
clock period for the slowest pipelined stage) is used as a performance metric. The
throughput of a pipelined system is dependent upon number stages. Thus, a system
comprising on larger number of stages will require higher resources and as a result it will
consume more power.

Figure. 6. Dry run for an example using a 4-stage pipelined system (8-bit radicand).

and

10

Outputs

Inputs

(a

Outputs

Input (b

(c

Figure.7. Post layout simulation of the proposed algorithm (a) using a non-pipelined
architecture operating at 8 ns on the Virtex2Pro (b) using a pipelined architecture operating at
approximately 3.5 ns on the Virtex2Pro (c) using a pipelined architecture at 5.63 ns on the
Spartan3E.

11

Table 1. Throughput of non-pipelined (NP) and the proposed pipelined (PL) architecture.

 Time per square root evaluation (ns)
Number of
operations NP PL

1.00E+00 1.60E+02 1.25E+02

1.00E+01 1.60E+02 1.56E+01

1.00E+02 1.60E+02 4.71E+00

1.00E+03 1.60E+02 3.62E+00

1.00E+04 1.60E+02 3.51E+00

1.00E+05 1.60E+02 3.50E+00

1.00E+06 1.60E+02 3.50E+00

1.00E+07 1.60E+02 3.50E+00

Million floating-point operations per second per slice (MFLOPS/slice) is another relevant
metric used to evaluate FPGA based systems. It is pertinent to mention that the power
required by a slice of an FPGA is defined by its operating frequency [27]. Thus, the time
and power consumption of a system are inter-related for the same FPGA. A benchmark is
required which can provide time and power measures simultaneously.

Table-2 illustrate a comparison based on power, execution time and number of stages
engaged by an architecture reported in the literature [4,12,14,18,28]. For the proposed
system, the power consumption was calculated using the Xpower utility [29], whereas the
time required for the same is measured from the post layout simulation. The last column
of Table-2 was evaluated by using our proposed benchmark. The data in the fifth column
represents the expression ,FSC ∗∗ where S is the number of slices, F is the maximum
operating frequency, and C= 0.001475 or 0.001629 is a constant value related to power
and deduced from the device data sheet for the Virtex2 and Spartan3E, respectively. The
examination of Table-2 reveals that our proposed system produces the minimum value for

FSC ∗∗ among all square root solutions. Furthermore, in comparison to [18] the great
advantage of our proposed pipelined system is that it yields a four-fold speedup; the 28-
stage implementation of the former shows a 25% improved C*S*F product whereas its
59-stage solution almost doubles the consumption in comparison to our solution.

Furthermore, the proposed system has been exhaustively tested for accuracy. The
maximum error and dB loss in the output, using a wide range of values, was simulated
and shown in Table-3. The maximum and average dB losses are 9.20E-04 and 4.77E-4,
respectively, compared to floating-point operations whereas the maximum observed error
is 6.23E-2. The data in Table-3 show errors on the order of E-05 and E-04 for values less
than unity and greater than unity, respectively. Of course, the input value range depends
upon the bit-width of the architecture. The maximum input value supported by the
proposed architecture is dependent upon the bit-width of the radicand register that takes
only unsigned integers. Table-4 presents tradeoffs involving the resource consumption (in
number of slices), execution time, mean square error (MSE) and average relative error
(ARE) for a 0.02-0.99 data range. This range was chosen due to its special significance in
digital communication receivers [1-3]. Table-4 shows that the MSE value is reduced with
a larger slice occupancy and, thus the lowest MSE is observed for the 16-stage pipelined
system.

12

Table 2. Performance comparison based on the power consumption and time for fixed and
floating-point based systems and various devices (TESQR: Time to evaluate the square root).

Architecture

Stages

Implementation TESQR(ns)
C*S*F
(mw) Device Slices/LE mW*ns

32-bit non-restoring
fixed-point [12]

-

Non-pipelined 1170 65.48 Altera
10K20RC240-4 161 (LE) 76611.60

32-bit modified
non-restoring fixed-
point

-

Non-pipelined
160 11.78 XC2VP2-7 63 1885.58

Single Precision
[28]

-

Pipelined 168 1309.19 XC2V1000 1313 219944.30

Single-precision [4]

15-

Stages

Pipelined 1.8 6389.70 XC2V4000 4332 11501.46

Double-precision
[18]

28-

Stages

Pipelined 14.47 152.18 XC2V6000 1433 2202.11

Double-precision
[14]

47-

Stages

Pipelined 7 364.90 XC2VP2-7 1730 2554.30

Double-precision
[18]

59-

Stages

Pipelined 7.88 529.59 XC2V6000 2700 4173.19

Fixed-point
Modular array, 32-
bits [30] [31]

16-

Stages

Pipelined 101 30.37 XCV100E-8 312 3067.37

Proposed fixed-
point 32-bit

16-

Stages

Pipelined 3.50 270.86 Virtex2

XC2VP2-7 709 1002.17

Proposed fixed-
point 32-bit

16-

Stages

Pipelined 5.63 203 Spartan3E

XC3S1600E-5 704 1142.89

Table 3. Maximum error and dB loss of the proposed architecture for different radicand value
ranges as compared to pure floating-point implementations.

Range
Max

Error Max dB Loss

0.02 to 0.99 1.53E-05 2.65E-05

1 to 100 3.81E-03 9.20E-04

100 to 1000 3.87E-03 1.24E-04

1000 to 1E+6 6.23E-02 8.39E-04

Carry save adder (CSA) technology was used in the parallel array square root (PASQRT)
implementation that can be pipelined without resulting in WAR hazards [4]. Fast
execution was achieved at the cost of high resource consumption [32-34]. This is evident
in Table-2 since the C*S*F value for [4] is very high. Also, a non restoring
implementation on a Xilinx FPGA was used to control AC and DC motors [26]. It
involved an iterative implementation that is inherently slow and cannot be employed by
fast communication systems.

13

Table 4. Tradeoffs on theVirtex2Pro involving resources, execution time, mean square error
(MSE) and average relative error (ARE) for a radicand range from 0.02 to 0.99.

Architecture Stages MHz
Slices

(out of 1408)
Execution
time (ns) MSE

ARE

32-bit 16 285 709 3.5 9.0E-05 2.91E-05

16-bit 8 310 164 3.2 2.2 E-02 8.08E-03

8-bit 4 368 44 2.7 3.75E-01 1.17E-01

4-bit 2 489 11 2 5.26E-01 1.7E0

In a recent attempt, an ASIC has been developed by employing 90 nm CMOS technology
for the evaluation of square root [8]. It has two pipelined architectures simultaneously. As
a result, it consumes ~18 % of the total area on the ASIC just for the square root circuit
and produces answer in 4 nsec while our approach takes 3.5 nsec that too on an FPGA; an
inherently slower device.

Envelope detection is a simple technique to recovery the original signal in a demodulation
process of a communications receiver [1-3]. The original signal is extracted by using

22)(QIty += , where I and Q are the phase components at time t as shown in Figure-8.
In general, the modulation frequency of a communications system is on the order of
100MHz. It implies that a billion operations per signal per second are required. Therefore,
an improved throughput for the successive evaluation of the square root can substantially
improve the demodulation process and hence the envelope detection. Table-5 shows time
and power comparison for a digital communications receiver. Its entries are computed for
a 60 sec signal using best floating-point system and our proposed fixed-point architecture.

The input domain range of radicand values for envelope detection depends upon the
application type. The quadrature phase shift keying (QPSK) modulation scheme is often
used in cellular communications. The value of the (22 QI +) signal is usually less than
unity. For this range of radicands, the MSE, ARE and dB loss values for the proposed
system are 9.01E-05, 2.91E-05 and 2.65E-05, respectively, as shown in Table-3 and
Table-4.

BPF

Amplifier
Cosw0nT

Band pass filter

LO

Local Oscillator

 Sinw0nT

Figure 8. Schematic diagram of a digital signal communications receiver using envelope detection.

Output
Signal

LFP

LFP

22 QI +

14

Table 5. Time comparison to evaluate the square root using purely floating-point (FL) realization
and the proposed fixed-point based systems for a digital communications receiver and a minute
signal length.

Operating
Frequency

Sampling
Rate

Time FL SQR
(ms)

Time FX
SQR (ms)

Power FL SQR
(mW)

Power FX
SQR (mW)

1 KHz 2 KHz 1.74 0.45 4.23 2.09

1 MHz 2 MHz 1736.4 444 4227.35 2091.55

10 MHz 20 MHz 17364 4440 42273.50 20915.50

36 MHz 72 MHz 62510.40 1598.40 152184.60 75295.80

134 MHz 268 MHz 232677.60 59496 566464.90 280267.70

5. Conclusions

Our proposed pipelined architecture for square root evaluation yields high throughput that
can match to the needs of real-time applications. The proposed architecture is
reconfigurable to radicand precision, as per user requirements. The accuracy of the
system was tested for various ranges of radicand values, resulting in an average loss of
4.77E-4 dB compared to floating-point calculations. Time-power efficiency of the
proposed architecture was two times better than the best known floating-point realization
of the square root. With this efficiency and accuracy, the proposed system is a viable
candidate for digital communications receivers.

References
[1] Sklar, B. (2001). Digital communications fundamentals and applications (2nd ed.), Person

Education.
[2] Rappaport, T. S. (2002). Wireless communications principles and pPractice, (2nd ed.),

Prentice Hall Communication.
[3] Frerking, M. (2003). Digital signal processing in communications systems, (9th ed.),

Kluwer publisher.
[4] Li, Y. & Chu, W. (1997). Implementation of single precision floating point square root on

FPGAs, Proceeding of the 5th IEEE symposium on FPGA-based custom computing
Machines, pp. 226-232.

[5] Liao, J.R. (2000). Real-time image reconstruction for spiral mri using fixed-point
calculation, IEEE Transactions on Medical Imaging, (19) 7, pp. 690-698.

[6] Oberstar, E. L. (2007). Fixed-point representation & fractional math,
http://www.superkits.net/whitepapers.htm.

[7] Sajid, I., Ahmed, M.M., Taj, I., & Humayun M. (2008). Design of high performance fpga
based face recognition system, Proceeding of Progress In Electromagnetic Research
Symposium (PIERS) in Cambridge USA, pp.504-510.

[8] Kwon, T. & Draper, J. (2009). Floating point division and square root using a Taylor-
series expansion algorithm, Microelectronics Journal, (40) 11, pp. 1601-1605.

[9] Wilkinson J. H. (1962). Error analysis of eigenvalue techniques based on orthogonal
transformations, Journal of the Society for Industrial and Applied Mathematics, (10) 1,
pp. 162-195.

[10] Ortega, J. M. (1963). An error analysis of Householder's method for the symmetric
Eigenvalue problem, Numerische Mathematik, (5) 1, pp. 1-225.

[11] Burden, R. L. & Faires, J. D. (2005). Numerical analysis, (7th ed.), Thomson.

15

[12] Piromsopa, K., Arporntewan, C., & Chongstitvatana, P. (2001). An FPGA
implementation of a fixed-point square root operation, Proceedings of the International
Symposium on Communications and Information Technology, ChiangMai, Thailand, pp.
587-589.

[13] Soderquist, P., & Leeser, M. (1996). Area and performance tradeoffs in floating-point
divide and square-root implementations, ACM Computing Surveys, (28) 3, pp. 518-564.

[14] Ronald, S. & Viktor, P.K. (2004). Computing Lennard-Jones potentials and forces with
recogfigurable hardware, International Conference on Engineering of Reconfigurable
Systems and Algorithms, pp. 284-290.

[15] Soderquist, P. & Leeser, M. (1997). Division and square root choosing the right
implementation, IEEE Micro, pp. 52-66.

[16] Louca L., Cook, T. A., & Johnson, W. H. (1996). Implementation of IEEE single
precision floating point addition and multiplication on FPGAs, Proceeding of IEEE
Symposium on FPGAs for Custom Computing Machines, IEEE Computer Society Press,
pp. 107-116.

[17] Shirazi, N., Walters, A., & Athanas, P. (1995). Quantitative analysis of floating point
arithmetic on FPGA based custom computing machines, Proceeding of IEEE Symposium
on FPGAs for Custom Computing Machines, IEEE Computer Society Press, pp. 155-162.

[18] Thakkar, A. J., & Ejnioui, A. (2006). Design and implementation of double precision
floating point division and square root on FPGAs, IEEE proceeding Aerospace
Conference.

[19] Thakkar, A. J., & Ejnioui, A. (2006). Pipelining of double precision floating point
division and square root operations, Proceedings of the 44th annual Southeast regional
conference, pp. 488-493.

[20] Deschamps, J., Jean, G., & Sutter, G. (2006). Synthesis of arithmetic circuits FPGA,
ASIC, and embedded systems, John Wiley & Sons.

[21] Power PC processor reference guide, (2003). Embedded development kit.
[22] Oberman, S. F., & Flynn, M. J. (1997). Design issues in division and other floating-point

operations, IEEE Trans. Computers, (46) 2, pp. 154–161.
[23] Bravo, I., Jimenez, P., Mazo, M., Lazaro, J. L., & Gardel, A. (2006). Implementation in

FPGAS of Jacobi Method to Solve the Eigenvalue and Eigenvector Problem, Proceeding
of International Conference on Field Programmable Logic and Applications, pp. 1-4.

[24] Ray, A. (1998). A survey of CORDIC algorithms for FPGA based computers, Proceeding
of the ACM/SIGDA 6th International Symposium on Field-Programmable Gate Arrays,
pp.191-200.

[25] Karp, A. H., & Markstein, P. (1997). High-precision division and square root, ACM
Transactions on Mathematical Software, (23) 4, pp. 561-589.

[26] Mailloux, G. J., Simard, S., & Beguenance, R. (2007). Implementaion of division and
square root using XSG for FPGA-based vector control drives, International Journal of
Electrical and Power Engineering, (5) 1, pp. 524-529.

[27] Shang L., Kaviani, A. S., & Bathala, K. (2002). Dynamic power consumption in Virtex-II
FPGA family, Proceedings of the 2002 ACM/SIGDA tenth international symposium on
Field-programmable gate arrays, USA, pp. 157-164.

[28] Wang, X., & Nelson, B. E. (2003). Tradeoffs of designing floating point division and
square root on Virtex FPGAs, IEEE Proceeding of Symposium on Field Programmable
Custom Computing Machines, pp. 195-203.

[29] Altera Application note 74, (2001). Evaluating Power for Altera Devices.
[30] Samavi, S., Sadrabadi, A., & Fanian, A. (2008). Modular array structure for non-restoring

square root circuit, Journal of System Architecture, (54), pp. 957-966.
[31] DS003-1, Virtex 2.5 field programmable gate arrays, 2001.
[32] Li, Y., and Chu, W. (1997). Parallel-array implementations of a non-restoring square root

algorithm, International Conference on Computer Design, Texas, USA, pp.690–695.
[33] Li, Y., & Chu, W. (1996). A new non-restoring square root algorithm and its VLSI

implementations, International Conference on Computer Design,USA, pp. 538-544.
[34] Chu, W., & Li,Y. (1999). Cost/performance tradeoff of n-select square root

implementations, in: Fifth Australasian Computer Architecture Conference, pp. 9–16.

16

List of Figure Captions
Figure 1. Block diagram with non-restoring division.

Figure 2. Unstable output due to a WAR hazard for the non-restoring algorithm
(pipelined implementation with the XC2VP2 FPGA device).

Figure 3. Modified non-restoring algorithm for pipelined fixed-point based N-bit
square root realization.

Figure 4. N-bit pipelined architecture for fixed point based square root
implementation.

Figure 5. The details of the M1and M2 modules and their inter-connections.

Figure 6. Dry run for an example using a 4-stage pipelined system (8-bit
radicand).

Figure 7. Post layout simulation of the proposed algorithm (a) using a non-
pipelined architecture operating at 8 ns on the Virtex2Pro (b) using a pipelined
architecture operating at approximately 3.5 ns on the Virtex2Pro (c) using a
pipelined architecture at 5.63 ns on the Spartan3E.

Figure 8. Schematic diagram of a digital signal communications receiver using
envelope detection.

17

List of Table Captions
Table 1. Throughput of non-pipelined (NP) and the proposed pipelined (PL)
architecture.

Table 2. Performance comparison based on power consumption and time for fixed
and floating-point based systems and various devices. (TEQR: Time to evaluate
the square root).

Table 3. Maximum error and dB loss of the proposed architecture for different
radicand value ranges as compared to pure floating-point implementations.

Table 4. Tradeoffs on theVirtex2Pro involving resources, execution time, mean
square error (MSE) and average relative error (ARE) for a radicand range from
0.02 to 0.99.

Table 5. Time comparison to evaluate the square root using purely floating-point
(FL) realization and the proposed fixed-point based systems for a digital
communications receiver and a minute signal length.

