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Abstract

This paper presents a new design that implements the data-driven (i.e. dataflow) computation paradigm with intelligent memories. Also, a

relevant prototype that employs FPGAs is presented for the support of intelligent memory structures. Instead of giving the CPU the privileged

right to decide what instructions to fetch in each cycle (as is the case for control-flow CPUs), instructions in dataflow computers enter the

execution unit on their own when they are ready to execute. This way, the application-knowledgeable algorithm, rather than the application-

ignorant CPU, is in control. This approach could eventually result in outstanding performance and elimination of large numbers of redundant

operations that plague current control-flow designs. Control-flow and dataflow machines are two extreme computation paradigms. In their

pure form, the former machines follow an inherently sequential execution process while the latter are parallel in nature. The sequential nature

of control-flow machines makes them relatively easy to implement compared to dataflow machines, which have to address a number of issues

that are easily solved in the realm of the control-flow paradigm. Our dataflow design solves these issues at the intelligent memory level,

separating the processor from dataflow maintenance tasks. It is shown that using intelligent memories with basic components similar to those

of FPGAs produces a feasible approach. Expected improvements within the next few years in underlying intelligent memory and FPGA

technologies will have the potential to make the effect of our approach even more dramatic. q 2002 Elsevier Science B.V. All rights

reserved.
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1. Introduction

Program counter (PC)-driven or control-flow CPUs are

very widely used in all kinds of application environments.

Current designs are the result of more than 25 years of

evolution. Incremental performance improvements during

this period have been primarily the result of ever higher

transistor densities and larger chip sizes. Transistor densities

and single-chip processor performance double approxi-

mately every 18 months (Moore’s law). Impressed by these

facts, CPU designers have rarely attempted to circumvent

this evolutionary path. Reduced instruction set computers

(RISC) CPUs have basically the same structure with

complex instruction set computers (CISC) CPUs; they

differ only in the complexity of individual components and

instruction sets. Also, very large instruction word (VLIW)

CPUs are similar to RISCs, while relying heavily on the

compiler and their wide data buses for good performance.

All basic ideas built into CPUs have been around for more

than 20 years [7]. Current CPU designs are characterized by

numerous redundant operations, do not match well with the

natural execution of programs, have unreasonably high

complexity and consume significant power. For example,

the first phase of the instruction fetch operation is required

only because of the chosen computation model (i.e. PC-

driven); this CPU request to the memory is not part of any

application algorithm but is the result of centralized control

during program execution. To alleviate the corresponding

time overhead, current implementations use instruction

prefetching with an instruction cache; many hardware

resources (i.e. silicon transistors) are then wasted that

could, otherwise, be used in more productive (i.e. direct,

application-related) tasks. Another problem with current

designs is the fact that the operands do not often follow their

instructions to the CPU; the only exceptions are with

instructions that either use immediate data or their operands

reside in CPU registers. Additional fetch cycles may then be

needed to fetch these operands from either the main memory
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or the attached cache. However, these fetch cycles also

should be avoided, if possible.

Current high-end microprocessors implement wide

instruction issue, out-of-order instruction execution, aggres-

sive speculation and in-order retirement of instructions [14].

They generally implement on the fly only a small,

dynamically changing window of dataflow execution.

Under the pure data-driven (dataflow ) model/paradigm of

computation, an instruction is executed as soon as all its

operands become available [2]. Instructions are not ordered

and also carry with them their operands. Three steps

implement a dataflow instruction: (a) instruction issuance/

firing: it is the departure of the instruction for the execution

unit just after all its operands become available to it. (b)

token propagation: as soon as an instruction completes

execution, it makes copies of its result for all other

instructions, if any, that needs it. Different tokens that

contain the same result are then forwarded to different

instructions. (c) Instruction dissolvement: it is the destruc-

tion of the instruction just after it produces all tokens for

other receiving instructions. Loop instructions can be

treated differently, as discussed later.

The main advantages of dataflow computation are: (a)

instructions are executed according to the natural flow of

data propagated in the program. (b) Most often, there is a

high degree of embedded parallelism in programs and,

therefore, very high performance is possible. (c) It is free of

any side effects (because of the natural flow of data that

guides the execution of instructions). (d) It reduces the effect

of memory-access latency because all operands are attached

to their instructions. (e) It naturally supports very long,

distributed, and autonomous superpipelining because all

instruction packets flowing through execution units are

accompanied by all required information (including their

operands). (f) Based on the last observation, clock skewing

is not an issue and, therefore, there is no need to synchronize

all functional units. The main disadvantages of dataflow

computation are: (a) increased communication (or memory-

access) overhead because of explicit token passing. (b)

Instructions are forced to use their data (in incoming tokens)

when they arrive, even if they are not needed at that time. (c)

The manipulation of large data structures becomes cumber-

some because of the token-driven approach. Data access by-

reference only for such structures may be needed to achieve

high performance. (d) The hardware for matching recipient

instruction addresses in the memory with tokens may be

complex and expensive.

We do not yet know how to implement the dataflow

paradigm efficiently with current hardware design practices

and silicon technologies. Ref. [9] showed that the instruc-

tion firing rule can be implemented through state-dependent

instruction completion. They treated each memory refer-

ence as multiple instructions. Evaluating simple arithmetic

expressions was rather slow because it required two operand

fetch operations from the activation frame. An activation

frame is stored in the memory and allocated to an instruction

just before it starts executing; it facilitates the storage of

tokens. A token includes a value, a pointer to the instruction

that must be executed and a pointer to an activation frame.

The instruction contains an opcode (i.e. operation code); the

activation frame offset where the token address match will

occur, and the addresses of one or more instructions that

need the result of this instruction. Therefore, this implemen-

tation of dataflow computation is characterized by very

significant computation and storage overheads.

Past implementations of dataflow have been primarily

carried out on parallel computers [4], where dataflow is

basically applied among instructions running on different

processors; the latter processors are PC-driven. The

majority of the designs have made many compromises

because they are constrained into developing systems with

commercial off-the-shelf (COTS) processors [1,9]. In

contrast, a dataflow processor was introduced in Ref. [13]

that utilizes a self-timed pipeline scheme to achieve

distributed control. This design is based on the observation

that dataflow can accommodate very long pipelines that are

controlled independently, because packets flowing through

them always contain enough information and data on the

operations to be applied. However, this design also suffers

from several constraints imposed by current design

practices. Other related work appeared in Refs. [6,10,11].

Several dataflow architectures have been introduced for the

design of high performance ASIC devices [3]. Also, several

techniques have been developed for the implementation of

ASICs in VLSI when the dataflow graphs of algorithms are

given. However, these techniques employ straightforward

one-to-one mapping of nodes from the graph onto distinct

functional units in the chip.

Multithreading is now common in CPU designs; each

program is partitioned into a collection of instructions,

called threads. Instructions in a thread are issued according

to the von Neumann (i.e. PC-driven) model of computation

(i.e. they are run sequentially). Similarly to dataflow,

instructions between threads are run based on data

availability [6,12]. A large degree of thread-level paralle-

lism is derived through a combination of programmer,

compiler and hardware efforts (e.g. aggressive speculation).

COTS processors can implement non-preemptive multi-

threading, where a thread is left to run until completion.

However, the compiler must make sure that all data is

available to the thread before it is activated. For this reason,

the compiler must identify instructions that can be

implemented with split-phase operations. Such an instruc-

tion is a load from remote memory. Two distinct phases are

used for its implementation. The load operation is actually

initiated in the first phase (within the thread where the load

instruction appears). The instruction that requires the

returned value as input then resides in a different thread.

This split-phase technique guarantees the completion of the

first thread without extra memory-access delay.

Efficient architecture for running threads (EARTH) is a

multiprocessor that contains multithreaded nodes [8]. Each
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node contains a COTS RISC processor (called execution

unit (EU)) for executing threads sequentially and an ASIC

synchronization unit (SU) that supports dataflow-like thread

synchronizations, scheduling and remote memory requests.

A ready queue contains the IDs of threads ready to execute

and EU chooses a thread to run from this queue. EU

executes the thread to completion and then chooses the next

one from the ready queue. EU’s interface with the network

and SU is implemented with an event queue that stores

messages. SU manages the latter queue. The local memory

shared by EU and SU in the local node is part of the global

address space. A thread is activated when all its input data

become available. SU is in charge of finding out that all of

its data is available and sends its ID to the ready queue. A

sync(hronization) signal is sent by the producer of a value to

each of the corresponding consumers. The sync signal is

directed to a specific sync slot. Three fields constitute the

sync slot, namely reset count, sync count and thread ID. The

reset count is the total number of sync signals required to

activate the thread. The sync count is the current number of

sync signals still needed to activate the thread (this count is

decremented with each arriving sync signal). When it

reaches zero, it is set back to its original value and the thread

ID is placed in the ready queue. Frames are allocated

dynamically using a heap structure. Each frame contains

local variables and sync slots. The thread ID is actually a

pair containing the starting address of the corresponding

frame and a pointer to the first instruction in the thread. The

code can explicitly interlink frames by passing frame

pointers from one function to another. User instructions can

access only EU, not SU. The implementation of EU with a

COTS processor implies that its communication with SU is

made via loads and stores to special addresses. However,

multithreading does not implement dataflow at the instruc-

tion level and for the entire program. Also, multithreading

and prefetching significantly increase the memory band-

width requirements.

The conceptual simplicity of dataflow computation

strucks a chord in many computer designers, but the

lack of methods to efficiently implement dataflow has

been a great challenge. As discussed earlier, the

problem of implementing dataflow has been tackled

numerous times at the processor or multiprocessor

levels. Dataflow computers in the past have been

implemented by using a modified processor, often

called the processing element (PE), which was com-

posed of a processing unit along with memory to store

partially active instructions and tags. The PE would also

contain a matching unit for incoming tokens/tags and

was assigned the task of sending and receiving tags,

from/to other PEs. Most of the inactive instructions

would reside in some memory outside the PE.

Dataflow implementation at the intelligent memory level

has not yet been attempted. Each dataflow instruction in this

memory should have its own logic unit that determines

when the instruction is ready to execute. This approach

should incur lesser overhead than previous methods. Our

objective is to design and implement a proof-of-concept

dataflow computer based on intelligent memories that can

be prototyped with current FPGAs. Our prototype should

demonstrate the viability of our approach while future

FPGAs will have the potential to better match the

requirements of our solution.

2. More dataflow computing challenges

It is difficult to implement on dataflow machines

simple programming constructs that are taken for

granted in von Neumann architectures, like conditionals,

loops and modules (procedures and functions). Accom-

modating loops and conditionals requires nodes that

implement controlled branching. For efficient implemen-

tation of loops, each iteration can be executed as a

separate instance/copy of the reentrant subgraph (repre-

senting the loop code). This code-copying method

requires facilities to create a new instance of a subgraph

and to direct tokens to the appropriate instance. A

potentially more efficient way to implement code-

copying is to share the node descriptions between the

different instances of a graph without confusing tokens

that belong to separate instances. This is accomplished

by attaching a tag to each token that identifies the

instance of the node that it is directed to. These tagged-

token architectures enable a node (instruction) if all its

input arcs contain tokens with identical tags. This

method increases concurrency but its implementation is

not easy and involves considerable overhead. Problems

with procedure calls are similar to those with re-

entrancy. The methods described above can still be

applied. In code-copying architectures, a copy of the

called procedure is made. In tagged-token architectures,

a new tag area is allocated for each procedure call so

that each invocation executes in its own context. Nested

procedure calls, recursion and co-routines can, therefore,

be implemented without any additional problems.

However, it is required to direct the output tokens of

the procedure to the proper calling location.

Machines that handle re-entrancy by the lock or

acknowledge method are called static. Those involving

code-copying or tagged tokens are called dynamic.

Static machines are much simpler to implement than

dynamic machines but for most algorithms their

effective concurrency is lower. The earliest design at

MIT had a two-stage structure with heterogeneous

functional units, where each enabling unit was dedicated

to one node [2]. It was later extended into a series of

machines differing in the way they handled re-entrancy

and data structures. They ranged from the elementary

Form I processor, which was static and could only

handle elementary data, to the full-fledged Form IV

processor, which had extensive structure facilities and
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could copy subgraphs on demand. Sandia National

Laboratories designed and implemented around 1990,

the epsilon static dataflow computer [5]. It was designed

as a scalable multiprocessor architecture, consisting of

epsilon processors and structure memory units con-

nected with a packet switched network. The whole

design was implemented on a single board using COTS

components.

3. Overview of our dataflow computer design

The basic structure of our dataflow computer is shown in

Fig. 1. It has three major components: the instruction

memory data flow memory (DFM), the intermediate buffer

instruction queue (IQ) and the execution unit processor pool

(PP). It also has minor components, such as the bank

arbitrator, bus and bus controller in DFM.

Fig. 1. The basic structure of our dataflow computer.

Fig. 2. Internal structure of an intelligent cell in DFM.
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3.1. Data flow memory

DFM is the heart of our design. It is a special kind of

memory, where each memory location is an intelligent cell

consisting of the instruction (memory cell ) and processing

element (PE) parts. The instruction part is in turn divided into

seven components as shown in Fig. 2, where dyadic operations

are assumed: instruction opcode (OPCODE), source of the

first operand (D1A), source of the second operand (D2A),

source of the clause operand (CAD), operand to be obtained

from the first source (OPD1), operand to be obtained from the

second source (OPD2) and flags that control the behavior of

the instruction (FLAGS). The little arrows within each cell in

Fig. 2 denote the direction of information flow between the cell

and the PE. The instruction bus and the result bus are also

shown along with the format in which the PE communicates

with them.

The result of an instruction that finishes executing is

immediately broadcasted to all cells in DFM. Each result

packet contains the result along with the address of the

instruction in DFM that produced it. The PE in each cell is

responsible for picking up broadcasted result packets sent

by the PP. If the address in a broadcasted result packet is

either equal to D1A or D2A for an instruction in DFM, then

the result is written into OPD1 or OPD2, respectively, and

appropriate flags are set. When both OPD1 and OPD2 are

available (determined by examining the appropriate flags) to

the dyadic instruction, the PE sends an executable packet

(composed of the instruction opcode, operands and cell

address of the sending PE) to the bank arbitrator. It is

important to point out here that the bus on which the result

packets are broadcasted is independent of the bus on which

executable packets are relayed to the bank arbitrator. This is

done to avoid congestion that would occur if only one bus

was used. The CAD field is used to store the address of an

instruction that sends the clause. A clause is a boolean value

stored as a flag in the flags field; it acts as a permission for

the instruction that needs it, i.e. an instruction will execute

only if its clause bit is 1. The clause is useful in the

construction and execution of conditional or looping

program constructs, as discussed later. The bus controller

(BC) in DFM controls the arbitration of the result packets

sent by the PP to DFM on the result bus.

3.2. Instruction queue

IQ is an intermediate buffer between DFM and PP. It is

made up of the bank arbitrator (BA) and multiple banks of

memory. The number of banks in IQ is equal to the number

of processors in PP. Each processor is assigned one bank

exclusively. This assures that all processors can access the

memory at the same time; it also keeps the initial design

simple. Ideally, a crossbar switch should be implemented so

that a processor could access any bank. No processor is busy

or idles all the time during the execution; this is because BA

makes sure that the number of executable instructions

allotted to each memory bank is the same, using a round

robin scheme.

3.3. Processor pool

PP is a pool of execution units. Each processor

sequentially executes ready instructions (executables)

from its assigned memory bank. The instructions are

executed in no particular order because all instructions in

the memory bank are waiting to be executed. When a

processor receives an instruction, it also gets the originating

address (OA) of that instruction. After execution, the

produced result along with OA is sent to the bus controller

of DFM in the form of a result packet; this packet is then

broadcasted to all cells via the result bus. This design is

suitable for small-scale dataflow computers, i.e. machines

having up to about 32 processors in the PP. This restriction

is foreseen due to two reasons. First, the number of memory

banks in IQ will increase linearly with the number of

processors, which for a large number of processors may be

unrealistic. Secondly, having a large number of processors

may increase the number of broadcasted messages causing

congestion on the bus.

4. Field-programmable gate arrays

Fastest performance is achieved when a design is

implemented directly on silicon, with dedicated/specialized

logic for all units. Since the major objective of our prototype

was to prove the viability of our intelligent memory based

implementation of dataflow, the performance of the

prototype was to be of secondary importance. Hence, a

device was needed that could easily be reconfigured, if

design flaws were detected. In addition, this device is

required to have sufficient logic to be able to accommodate

the different components and also implement intelligent

memory. The ideal solution for prototyping the dataflow

computer was to use field-programmable gate arrays

(FPGAs) that have recently achieved tremendous techno-

logical advances.

FPGAs are user-programmable devices, which are now

widely accepted as an excellent technology for implement-

ing and prototyping moderately large digital circuits. They

offer a cost-effective solution for prototyping because they

have a fast turn around time (i.e. short design and

development cycles). Since FPGAs can be reprogrammed

an unlimited number of times, they can be used in

innovative designs where hardware is changed dynamically

and must be adapted to different user applications. Though

dynamically changeable hardware is not a consideration in

this project, this feature is particularly useful when

prototyping, where the design is constantly being changed

and updated. In terms of speed, most FPGAs are slower than

complex programmable logic devices. However, rapid

advances in FPGA technology are quickly closing the gap
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on speed and denseness. One prominent disadvantage of

FPGA technology is that circuit propagation delays are

dependent on the performance of the design implementation

tools used, which is not a major handicap for this project.

The internal architecture of an FPGA consists of several

uncommitted logic blocks in which the design is to be

encoded. These logic blocks consist of several universal

gates that can be programmed to operate like multiplexers,

decoders, registers, random access memory (RAM) and as

many other digital logic devices. The logic blocks are

connected through a set of programmable interconnects that

implement buses and direct connections. FPGAs have

elaborate clocking schemes and optimization methods

(programs) can be used to use faster hardware with fewer

logic blocks. Since logic blocks are independent, a single

FPGA can be used to implement multiple units, all of which

can work independently and in parallel (a key factor in the

design of a dataflow computer).

The FPGAs used for our prototype are those made by

Altera Corp. Three Altera devices were chosen to

implement the three major components of our dataflow

computer: DFM was implemented on a FLEX10KE, IQ and

the bank arbitrator were implemented on an ACEX1K and

PP was implemented on a MAX9000. The FLEX10KE was

a good candidate for implementing DFM because each

device provides up to 98,304 RAM bits that can be

configured as dual-port memory. Also, each device contains

sufficient logic, up to 200,000 gates depending on the device

chosen, to implement the PEs in DFM. All these are

connected together by a fast interconnect network that has

predictable interconnect delays. The ACEX1K is a less

powerful relative of the FLEX10KE. It has the same

features as the FLEX10KE, except there is less of every-

thing. The largest ACEX1K has 49,152 RAM bits and about

100,000 gates. Since the logic and memory requirements for

IQ are less than those for DFM, this was a good choice. The

MAX9000 is the smallest of the three devices used. It

contains no memory bits, but has sufficient logic gates and

flip-flops, up to 12,000 and 772, respectively, to implement

PP.

A major factor in deciding to use Altera’s FPGAs to

develop the prototype was the availability of a free

development kit from Altera called MAX þ PLUS II

BASELINE version 10. In addition, Altera has a university

support program through which it is possible to get free

manuals on how to use the software, a programming

language reference and tutorial on Altera hardware

description language (AHDL), and sample boards for

hardware development. In conclusion, Altera FPGAs

provided a low cost, highly configurable solution along

with a simple environment to develop the dataflow

prototype.

5. DFM description

For our prototype, DFM is divided into the queue buffer

(QB), DFM cells and PEs, as shown in Fig. 3. The internal

structure of a DFM cell is shown in Fig. 4. Each DFM

memory cell is broken up into four sections, cell sections

CS1 through CS4. Each cell section holds a piece of the

instruction to be executed. Controlling each CS is a logic

unit (LU). The LUs, LU1 through LU4, manage CS1

through CS4, respectively, and constitute a PE. The bits in

CSs are grouped, so that minimum communication is

needed between different LUs controlling different CSs. By

having an LU controlling only one CS, work on CSs is done

Fig. 3. Dataflow memory (DFM) structure.

Fig. 4. DFM cell structure.
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independently and in parallel, avoiding potential waits that

would arise if an LU controlled more than one CS across the

cell.

5.1. Cell section 1

Cell section 1 (CS1) is made up of nine fields. Each field

is described below.

† Operand1 (OPD1). It holds the first operand, which is

received from the instruction whose address matches the

value in D1A (source of operand1). OPD1 is copied into

CS1 after LU3 picks up a result packet and makes a

match between the originating address (OA) in the

packet and D1A.

† Operand2 (OPD2). It holds the second operand, which is

received from the instruction whose address matches the

value in D2A (source of operand2). OPD2 is copied into

CS1 after LU4 picks up a result packet and makes a

match between OA in the packet and D2A.

† Opcode (OP). The opcode of the instruction to be

executed.

† Operand1Obtained (D1O). A one-bit flag set by LU1

when LU1 receives OPD1 from LU3. This bit may be set

at compile or run time. If it is set at compile time, then the

operand is already available (immediate value).

† OPRD2 Obtained (D2O). A one-bit flag set by LU1 when

LU1 receives OPD2 from LU4. This bit may be set at

compile or run time. If it is set at compile time, then the

operand is already available (immediate value).

† Clause Answer (CAN). A one-bit flag which holds the

boolean answer that LU2 picked up from the packet it

received from the instruction whose OA matches the

value in CAD. This bit is used during execution of

conditional and loop constructs. It is set to 1 at compile if

a clause is not required by the instruction.

† Operand1 Reuse (D1U) and Operand2 Reuse (D2U).

Fields D1U, D2U and LP (described below) are used to

implement loops. Often instructions inside a loop require

values from outside the loop, but instructions from

outside the loop execute and transmit their values only

once (i.e. an instruction is fired only once). Hence, the

instruction inside the loop will receive that value only

once and will normally fire only once. To overcome this

problem, the reuse bit is used. Setting this bit at compile

time allows LU1 to realize that the received value has to

be reused, and will not change the D1O/D2O bit of the

firing instruction whose D1U/D2U bit(s) is (are) set.

† Loop (LP). Loops are difficult to manage in dataflow

machines, but they also are the most commonly used

constructs in programming. Usually the value of the

loop-controlling variable is checked before a loop is

entered (e.g. ‘while’ and ‘for’ loops). Thus, the first time

the value of the variable is obtained from outside the loop

and every subsequent time it is obtained from inside the

loop. Hence, we need a primitive to obtain the same

variable from two different sources. Also, dataflow

machines are runaway machines; firing one instruction

subsequently fires many instructions in different parts of

the code. In particular, when a dataflow computer

executes a loop it is highly probable that the machine

may be simultaneously executing different iterations of

the same loop. This would not be a problem if there were

no dependencies between consecutive iterations, but

would be a disaster if there were any. Some way to

control the execution of the loop is needed. To

accomplish this control, the 2-bit flag LOOP (LP) is

used to implement loop constructs. It can only be set at

compile time with a value from 0 to 3. Only instructions

that enclose a loop have their LP values greater than 0.

All other instructions inside and outside the loop have

LP ¼ 0: The LP values of 1 through 3 are not used to

distinguish between different types of loop constructs but

to control how a loop executes, as follows:

† LP ¼ 1 is used to initiate a loop. The instruction which

has its LP set to 1 is the SPecial instruction SP. It is not

actually an instruction at all (it is never sent for

execution). For a loop, there would be an SP instruction

whose LP value would be 1; its D1A field would contain

the OA from where the value of the loop-controlling

variable is obtained the first time and D2A would contain

the OA from where the value is obtained all other times.

The ‘firing’ of SP does not require the instruction to

proceed to PP.

† An SP instruction is always followed by a conditional

instruction in the program graph. The latter fires only if

SP has received a value. The result of this conditional

instruction is sent out as a clause to all instructions inside

the loop. This instruction has LP ¼ 2; because if it is

treated as a regular instruction (LP ¼ 0), upon execution

its CAN bit will be reset instantly and this instruction will

not execute again (until its CAN bit is set). LP ¼ 2

instructs LU1 to leave the CAN bit intact after instruction

firing.

† An instruction with LP ¼ 3 is used along with SP to

avoid situations where the runaway effect will cause a

problem due to data dependencies between consecutive

loop iterations. With LP ¼ 3, a process similar to when

LP ¼ 1 goes into action, except that instead of firing SP

after the value of the variable is obtained from either

D1A or D2A, SP will fire only when the value is obtained

from both D1A and D2A. D1A is always the address of

the SP instruction with LP ¼ 1 (beginning of loop) and

D2A is always the address of the instruction which must

be executed before the next iteration starts.

5.2. Cell section 2

Cell section 2 (CS2) is made up of two fields.

† Clause Address (CAD). It stores the address of the

instruction that sends a clause. This instruction will
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execute only if its CAN field contains 1 (claused

received). If the instruction does not need a clause,

then its CAN field is set to 1 at compile time and the

value in the CAD field is irrelevant.

† Clause Required (CR). A one-bit flag set to 1 at compile

time if the instruction requires a clause.

5.3. Cell section 3

Cell section 3 (CS3) is made up of two fields.

† Operand1 Address (D1A). It holds the address of the

instruction from which the value of the first operand is

Fig. 5. Implementation of DFM cells.

Fig. 6. Internal structure of a DFM block.
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expected. If the first operand is an immediate value, then

the address in this field is irrelevant.

† Operand1 Required (D1R). A one-bit flag set at compile

time to let LU3 know if this instruction needs to receive

the first operand. When OPD1 is an immediate value, this

bit is set to 0.

Cell Section 4 is similar to CS3. The fields are D2A

(Operand2 Address) and D2R (Operand2 Required).

5.4. Queue buffer

It is a repository where result packets coming on the

result bus are deposited if the results are coming faster than

they can be absorbed. As LUs become free, QB sends

queued result packets in the order that they were received.

6. Detailed implementation

This section covers the actual implementation of the

different components in the dataflow computer, and the

design decisions that were made that did not completely

conform to the design presented earlier. The reasons for

these decisions are also discussed. Very detailed diagrams

are included in Appendix A.

6.1. DFM implementation

The structure of a single DFM cell was shown in Fig. 4. It

is 61 bits long and all addresses are 11 bits long, thus giving

a total addressable memory of 2Kwords. All operands are

seven bits wide. This small operand size is not considered a

limitation because our main purpose is to prove the viability

of our design. While implementing DFM, some design

decisions were made so that it would fit in a single Altera

device. One in particular was the implementation of the PE,

i.e. units LU1–LU4. Ideally, each intelligent cell should

have its own set of LU1–LU4, but that required more logic

than would fit in a single Altera device. Thus, each LU was

assigned to a group of cells called a sub-block, as shown in

Fig. 5. Each LU controls a sub-block of 256 cells; LU1

controls a sub-block of 256 CS1s, LU2 controls a sub-block

of 256 CS2s, and so on. The group of five sub-blocks formed

by LU1–LU5 is called a block. There are eight blocks in this

design, thus giving a total space of 2K memory words.

Notice that a new LU, namely LU5, was introduced. LU5

controls QB in a block and is not part of the PE, which is

made up of LU1–LU4; it takes no part in the manipulation

of instructions.

6.1.1. Block

Fig. 6 shows the internal structure of a block. Instructions

are loaded into each block using the LOAD, LOAD ADDR

and LOAD DATA lines. Each block waits for a result to

arrive before an instruction is fired. The result comes on the

result bus; it may arrive from any of the processors in PP,

any of the LU1s or an external source (user input, interrupt,

etc.). To put a result on the result bus, the sender should get

permission from the result bus controller. This controller

manages the information flow into LU5 of each block,

which in turn determines if the result packet should be

queued or sent straight through to LU2, LU3 and LU4. Once

an LU5 gets a result off the result bus, it broadcasts this

information to the LU2, LU3 and LU4 units (to be

collectively referred to in the future as LU234) in its

respective block, if LU234 are not busy. If LU234 are busy,

then the incoming result is queued into QB to be dispatched

later when LU234 are free.

Upon reception of the result by LU234, each LU checks if

any of the instructions contained in its cell section requires the

result. If an LU finds an instruction that needs the result, it

dispatches the result to LU1. The Operand bus controller

controls the dispatching of results by LU234 to LU1. On

receiving a result, LU1 dispatches the executable for execution

if all its operands are available. LU1 uses the Instr_Send_Req

line to confirm if it is safe to send an instruction for execution.

The three most significant bits of an 11-bit address determine

the block number. Address 255 was used to initiate execution

by sending a positive clause on the result bus. Finally, the

block was broken up into two parts because it could not be fit in

a single Altera device (Appendix A).

6.1.2. Logic units

An LU1 keeps tabs on which instructions have already

been fired and those that need to refire (loop instructions).

LU234 process anything that is sent by LU5 in the format

shown in Fig. 7. LU1 is also in charge of dispatching

instructions for firing when all operands/clauses become

available. It sends them on the instruction bus in the format

shown in Fig. 8. LU1 processes operands and clauses sent

by LU234 in the format of Fig. 9.

6.2. Instruction queue

The IQ is composed of the bank arbitrator (BA) and

memory banks. A memory bank within IQ is shown in Fig.

Fig. 7. Result arrival format.

Fig. 8. Instruction firing dispatch format.
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10. Each bank has two pointers, the new instruction load

pointer (NILP) and next instruction execute pointer (NIEP)

to implement a circular queue. NILP holds the address of the

next available location where the bank arbitrator can insert

an executable coming from DFM. NIEP holds the address of

the next instruction that is ready to execute. The processor

associated with the bank uses this address to fetch the next

instruction. For the sake of simplicity, we implemented two

processors. Memory controller (MC) in each bank uses two

signals to communicate with its processor. Instr_RD is used

by a bank to indicate to its processor that a new

instruction(s) is (are) available for execution. When an

instruction has finished executing, the processor notifies its

MC via Instr_done, upon which MC increments NIEP, if

NIEP – NILP. Each memory bank is implemented using a

dual port memory, allowing BA to send instructions to it

while its processor can read from it. BA puts instructions

into each bank using a round robin scheme. Each bank has

16 words in its circular queue. The number of memory

words in each bank is not an optimized number, but an

arbitrary number was chosen to build the prototype.

6.3. Processor pool

Each processor is associated with only one memory bank

in the memory pool, and vice versa. The processors are more

like execution units than general-purpose processors. When

a processor is ready for execution, it looks for the Instr_RD

signal from its corresponding memory bank. When it sees

the signal go high, it reads the instruction from its memory

bank and executes it. An instruction is always executed with

OPD1 on the left side and OPD2 on the right (e.g. OPD1–

OPD2, OPD1/OPD2, check if OPD1 . OPD2, etc.). The

processor then sends a request to the result bus controller in

DFM, asking permission to send the result to DFM. Upon

acknowledgement, the requesting processor sends the result

over to DFM in the format shown in Fig. 7 and sends an

Instr_done signal to its bank, which in turn readies a new

instruction for execution. Since all dataflow maintenance

work is relegated to DFM, either processor is blindly

executing instructions and sending signals, independently of

the other. The instructions that the processor can currently

execute are set to the bare minimum, just enough to make

this dataflow machine work. The instructions and their

corresponding opcodes are shown in Table 1.

7. Programming the dataflow computer

All instructions are commonly used instructions, except

for SP and LK. This computer has six compare instructions,

which is unlike most machines that usually have four. The

two compare instructions not usually found in other

computers are CGE and CLE, because these two instruc-

tions can normally be made up by combining other compare

instructions (e.g. CGT and CEQ for CGE). However, this is

not suitable in our architecture, e.g. when a combination of

instructions are used to build a conditional instruction to

control a loop, each instruction within the loop should be

capable of receiving two clauses and fire if either one is true.

This ability to receive two clauses is not provided in this

implementation because it would make the DFM design

Fig. 9. Format of data sent from LU234 to LU1 (operand type 00 is not used).

Fig. 10. (a) A memory bank in IQ; (b) contents of a cell.

S. Ingersoll, S.G. Ziavras / Microprocessors and Microsystems 26 (2002) 263–280272



more complex. SP is not really an instruction because it is

never sent to the PP for execution. Though its opcode is

0000, it is irrelevant. SP is a directive for LU1 as explained

earlier, instructing it to forward all values it receives for SP

to other cells in DFM. What constitutes an SP instruction is

the value of LP in an instruction; if the value of LP is 1, LU1

realizes that this is a directive and treats it accordingly.

Currently, SP is used exclusively as part of a loop construct.

When LP ¼ 1, LU1 sends the operands it receives from

either LU3 or LU4 out onto the operand bus, if the CAN bit

of SP is 1. SP always has its D1R and D2R bits set, but

unlike other instructions where LU1 will wait for both

operands to arrive before dispatching them, LU1 dispatches

the arriving operands immediately.

LK also is a directive that has its LP set to 3 (opcode

irrelevant). While setting LP to 1 makes SP transmit any

operand it receives (from either LU3 or LU4) onto the

Operand bus, setting LP to 3 causes LU1 to transmit OPD1

(the value it receives from LU3), but only after LK has

received both operands and the CAN bit is set to one. LK is

particularly useful in loop constructs where before incre-

menting the control variable of a loop it may be necessary to

check if all instructions within the loop have been executed.

This is to avoid race conditions, which would start a new

iteration before the completion of an earlier one. Concur-

rently executing multiple iterations of a loop is often

required in parallel computing, but it is disastrous if there

are dependencies between iterations.

Before we present an example program, it is important to

learn to interpret the nodes of dataflow graphs. Fig. 11

shows three primitives that are used to represent nodes. Fig.

11(d) is a variation of Fig. 11(a). Arrows going in and out of

a node are divided into four categories based on arc type,

arrowhead, label type and tail. Table 2 shows the

classification of arrows. The INSTR node is used to

implement every kind of instruction this dataflow computer

offers, except for SP and LK which have their own

representations. The two solid headed arrows coming into

the top of each node represent the two operands required by

the node. The operand arrow on the left is OPD1 and the

operand arrow on the right is OPD2. The hollow headed

arrow on the side of a node is the clause needed by the node

and the solid headed arrow at the bottom of each node is the

result pushed out by the node.

This style of representing a dataflow program is new.

Though the nodes bear some similarity to earlier represen-

tations, their interpretation is completely different. One may

use only solid lines for the arcs to show less detail, but all

other components are absolutely important to show

reusability of an arc; the two different arrowheads to show

the difference between values and clauses, and the single tail

to indicate an LP value of 2. Using dashed and solid lines

shows what state a program is in, when it is loaded into

memory, giving a clue of the operands that are available to

this program and those that it is waiting for. Labeling the

arcs with memory addresses does have the drawback of not

being able to draw the flow graph until the program has

already been written. Eliminating all memory address labels

overcomes this problem but reduces the amount of

information the graph conveys. Some output arcs of

conditionals get converted into clause arcs for some

nodes; this is allowed because the result from the execution

of a conditional is either 0 or 1, thus it can be a clause arc for

a node.

Table 3 shows a program segment that contains

conditional statements, reentrant code and reusable vari-

ables. The code is presented in two formats, in high-level

pseudo-code and pseudo-assembly code. The equivalent

program in dataflow machine language is presented in Table

4. A dataflow language and compiler were not developed for

our machine, so the code in Table 4 is not how one would

write the program for this computer to be compiled but is

actually the code resident in DFM. The flow graph for this

code is shown in Fig. 12.

The two loops execute concurrently and the values being

used by them are not interdependent. In a von Neumann

machine, it would be quite difficult to concurrently execute

the two loops because the variable x is needed by both loops;

while one (FOR) uses variable x, the other (WHILE)

modifies x. The FOR loop must finish executing before the

WHILE loop starts. However, in the dataflow machine each

loop is sent its own copy of x, thus allowing the loops to

Table 1

Instruction set

INSTR OPCODE INSTR OPCODE

ADD 0001 ! Addition CGT 1010 ! Compare if Greater than

SUB 0010 ! Subtraction CLT 1011 ! Compare if Less than

MUL 0011 ! Multiplication CGE 1100 ! Compare if Greater or Equal to

DIV 0100 ! Division CLE 1101 ! Compare if Less or Equal

CEQ 1000 ! Compare if Equal SP 0000 ! SPecial

CNE 1001 ! Compare if Not Equal LK 0000 ! LocK

Fig. 11. Primitives of program dataflow graphs.
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execute concurrently. The FOR loop is bounded by an LK

instruction because there are dependencies between con-

secutive iterations of the loop. Such dependencies do not

exist between consecutive iterations of the WHILE loop,

hence no LK instruction is needed to bind the loop. Writing

a program for the dataflow machine is tricky and tedious

because the programmer has to be aware of the data

dependencies in the program. This issue can, however, be

overcome using an intelligent compiler.

8. Conclusions and remarks

A new hardware design was presented for dataflow

computers. The incorporation of intelligent memories is at

the core of the proposed design, so that processing can be

separated from all other dataflow related operations. Recent

advances in FPGAs were taken advantage of to prototype

our design. The logic capabilities of FPGAs allow the

implementation of intelligent memories for a proof-of-

concept approach. Our results prove that our approach is

valid and further technological improvements in FPGAs

and/or intelligent memories may make our design even

more attractive in a few years’ time.

Higher primitives such as code-copying and tagged

tokens were not implemented here, hence procedure

invocation and indirect memory addressing are not currently

possible. However, it is possible to add these features into

the current architecture by making some modifications in

the design. There is one feature of this architecture that

eliminates a problem faced by past dataflow designs, and

that is the problem of data fan out. In past designs, the data

fan out of an instruction was limited, usually to two or three.

So, programs to be run on such machines had to be written

Table 2

Classification of arrows associated with dataflow graph nodes

Arrowhead Solid Head Indicates an incoming operand or an outgoing result

Hollow Head Indicates an incoming clause

Arc Type Solid Arc Value along that arc is not yet available

Dotted Arc Value along that arc is available

Label Type Lower Case Value associated with arc (immediate value)

Upper Case Address associated with arc (incoming or outgoing)

Tail Single Tail LP value of the instruction is 2

Double Tail Reuse value on the arc

Table 3

Sample code

Calculation of functions F1 and F2 in pseudo-high level language Equivalent pseudo-assembly language code

† Get (Y)

Get (y ) ˆ Get y from user MOV X, Y (X) ˆ (Y)

x ¼ yp9 2 15 ˆ Reuse variable (x ) MUL X, #9 X ˆ X p 9

If x – 0 then ˆ Conditional SUB X, #15

F1 ¼ 0 CMP X, #0

F2 ¼ 1 BEQ DN2

For i ¼ 1 to x ˆ Loop MOV R1,#0

F1 ¼ F1 þ xpði þ 2Þ MOV R2,#1

End For MOV R3,#0

While x . 1 ˆ Loop LP1: CMP R2, X For loop: R1 is F1, R2 is i, R3 is temp

F2 ¼ F2px BGT DN1

x ¼ x 2 1 ADD R3,R2

Endwhile ADD R3,#2

Endif MUL R3, X

† ADD R1,R3

† CLR R3

† ADD R2,#1

BRA LP1

DN1: MOV R2,#1

LP2: CMP X, #1 While loop: R2 is F2

BEQ DN2

BLT DN2

MUL R2,X

SUB X,#1

BRA LP2

DN2: †
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Table 4

Equivalent dataflow machine code

ADDRESS CS4 CS3 CS2 CS1

OPERAND2

ADDR.

(D2A)

OPERAND2

REQD.

(D2R)

OPERAND1

ADDR.

(D1A)

OPERAND1

REQD.

(D1R)

CLAUSE

ADDR.

(CAD)

CLAUSE

REQUIRED

(CR)

OPERAND2

(OPD2)

OPERAND1

(OPD1)

OPCODE

(OP)

LOOP

(LP)

OPERAND2

REUSE

(D2U)

OPERAND1

REUSE

(DIU)

OPRD2

OBTAINED

(D2O)

OPRD1

OBTAINED

(D1O)

CLAUSE

ANSWER

(CAN)

†

†

A GET (X)

B 0 0 A 1 0 0 9 0 MUL 0 0 0 1 0 1 Calculate

X

C 0 0 B 1 0 0 15 0 SUB 0 0 0 1 0 1

D 0 0 C 1 0 0 0 0 CNE 0 0 0 1 0 1 If stmt.

E 0 0 0 0 D 1 1 0 ADD 0 0 0 1 1 0 Initialize i

F L 1 E 1 D 1 0 0 SP 1 0 0 0 0 0 For Loop

G C 1 F 1 D 1 0 0 CLE 2 1 0 0 0 0 Start

H 0 0 F 1 G 1 2 0 ADD 0 1 0 1 0 0 Calculate

F1

I C 1 H 1 G 1 0 0 MUL 0 1 0 0 0 0

J C 1 I 1 G 1 0 0 ADD 0 0 0 1 0 0 Lock instr

K J 1 F 1 G 1 0 0 LK 3 0 0 0 0 0

L J 0 K 1 G 1 1 0 ADD 0 1 0 1 0 0 Increment

i

M 0 1 C 1 D 1 0 0 SP 1 0 0 0 0 0 While

loop

N P 0 M 1 D 1 1 0 CGT 2 1 0 1 0 0 Start

O 0 1 M 1 N 1 1 0 MUL 0 0 0 1 0 0 Calculate

F2

P 0 0 M 1 N 1 1 0 SUB 0 1 0 1 0 0
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Fig. 12. Flow graph of the code presented in Table 3.
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adhering to this restriction. Of course, this was a major

drawback and different schemes were developed to over-

come this restriction. Two ways that were devised to nullify

this restriction were through hardware, as implemented in

the epsilon dataflow processor [5] with a repeat hardware

unit that circulates the result value using a tagging scheme.

The second method uses specialized instructions, which

hold addresses of additional instructions (beyond the

allowed limit) that need the result. The address of the

special instruction is on the list of addresses that

the executing instruction needs to send the result to. When

the special instruction receives the result, it forwards this

result to its list of destination addresses. However, no such

means need be employed in our architecture, since no

instruction maintains a list of destination addresses to send

the result to; instead, each instruction has the addresses of the

sources for its two operands. When a result packet is sent out,

all instructions pick up the packet and compare the source

addresses they have with the originating address in the result

packet. All the instructions that make a positive match absorb

the result (this eliminates the data fan out problem).

Our removing the processor from dataflow memory

maintenance tasks has the advantage of simpler processors

and the ability to easily replace simpler execution units with

powerful ones having a compatible interface. Besides,

dataflow in DFM is performed using only the flag bits, thus

offering opcode independence. Hence, a compatible

language can be used to write the same program or new

opcodes can be added to the existing language without

affecting dataflow; of course, a compatible processor needs

be used to execute different or new instructions.

Appendix A

See Figs. 13–15.
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