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Abstract 

To conserve space and power as well as to harness high 
performance in embedded systems, high utilization of 
the hardware is required. This can be facilitated 
through dynamic adaptation of the silicon resources in 
reconfigurable systems in order to realize various 
customized kernels as execution proceeds. Fortunately, 
the encountered reconfiguration overheads can be 
estimated. Therefore, if the scheduling of time-
consuming kernels considers also the reconfiguration 
overheads, an overall performance gain can be 
obtained. We present our policy, experiments, and 
performance results of customizing and reconfiguring 
Field-Programmable Gate Arrays (FPGAs) for 
embedded kernels. Experiments involving EEMBC 
(EDN Embedded Microprocessor Benchmarking 
Consortium) and MiBench embedded benchmark 
kernels show high performance using our main policy, 
when considering reconfiguration overheads. Our 
policy reduces the required reconfigurations by more 
than 50% as compared to brute-force solutions, and 
performs within 25% of the ideal execution time while 
conserving 60% of the FPGA resources. Alternative 
strategies to reduce the reconfiguration overhead are 
also presented and evaluated.  
 
Keywords: System reconfiguration, embedded systems, 
FPGA. 

1. Introduction  

Embedded systems are present virtually in all 
aspects of everyday life. They normally consume small 
power and occupy few resources. Numerous embedded 
applications spend substantial time on a few software 
kernels [1]. Executing these kernels on customized 
hardware could reduce the execution time and energy 
consumption as compared to software realizations [2, 
3]. Given reconfigurable hardware, such as FPGAs, a 
chosen area could accommodate exclusively such 
kernels at different times to conserve resources, thus 
saving space and possibly power. A Viterbi decoder 
can use the same hardware configured differently to 
implement several decoding schemes based on various 
channel conditions [2]. Configurations to support 

kernels can be created and stored in a database for 
future use facilitating system adaptability for run-time 
events. However, the reconfiguration time affects the 
performance, especially for small data sets. Also, the 
reconfiguration process draws power. To offset the 
time-overhead encountered, we must employ various 
techniques such as configuration pre-fetching or 
overlapping reconfiguration with other tasks. To 
reduce the energy consumption of reconfiguration, we 
should reduce the number of realized reconfigurations. 

For many embedded applications, general-purpose 
processors exhibit poor performance compared to 
custom hardware. Applications, such as register 
reordering in the Fast Fourier Transform (FFT) and 
register shuffling in the two-dimensional Discrete 
Cosine Transform (2D-DCT) [4], fall in this class. 
Thus, there is a clear demand for customized hardware 
platforms to enhance the performance of such 
embedded methods under various cost constraints; this 
is very critical for embedded applications. Current 
high-density FPGAs have the potential to satisfy this 
demand [5, 6]. Also, it enables the hardware 
implementation of a large design in a piecewise fashion 
as the complete design may not fit in the system. Thus, 
the reprogrammable features of FPGAs make it easy to 
test, debug, and fine tune designs for even higher 
performance of follow-up versions. 

Partial reconfiguration support of current FPGA 
architectures provides for configuring portions of the 
hardware while the remainder is still in operation [7]. 
Switching configurations between implementations can 
then be fast, as the partial reconfiguration bitstream 
may be smaller than the entire device configuration 
bitstream. Many dynamically reconfigurable systems 
involve a host processor [2, 4, 8, 9, 10] mainly for 
control oriented, less computation intensive tasks and 
also for supporting reconfiguration decisions. In our 
work we consider host-based dynamically embedded 
systems that change behavior at run-time and/or 
process time-varying work-loads. We target either a 
single FPGA embedded with reconfigurable modules 
or several individually reconfigurable FPGAs. Our 
framework considers reconfiguration overheads in 
making decisions for the execution of kernels either on 
the host or the FPGA(s) ensuring performance gains. 
Additionally, we present a kernel replacement policy 
that reduces the number of required reconfigurations to  
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conserve power. In this work, the FPGAs are used 
when they can reduce the execution time of kernels as 
compared to the host; we also ensure better space 
utilization than ASICs. Considering the overhead of 
reconfiguration, the FPGA execution of kernels may 
not always be favorable, especially for small data sets. 
Thus, we address the issue of selective FPGA  
execution of kernels. Moreover, kernel execution 
patterns may be dynamic (unknown) or static. So, we 
also address this issue in designing our experiments.  

The actual use of the partial FPGA reconfiguration 
feature has been a rather recent trend. Static-time 
reconfiguration decision is often targeted. [11] 
observed that FPGAs were 2-3 times faster than 
microprocessors for bit-level operations. Performance 
improvement of 7-14 times has been cited for time-
multiplexed FPGA implementations over non-
multiplexed implementations for DCT [12]. Recent 
works clearly support the idea of multiplexed FPGA 
usage for higher performance. Two consecutive kernel 
executions on an FPGA avoid intermediate data 
uploading to the host. Generation of hardware cores 
and a scheduler to download them on-demand into the 
FPGA, as suggested in [13], motivated us towards the 
present work.  

A group of interdependent, elementary operations, 
called collectively a kernel, is often identified for 
hardware implementation when targeting speedups. [8] 
considers a single thread of operations each time to 
dynamically reconfigure the hardware for various 
kernels. Multiple threads have been considered in [9, 
10]. Most of these works employ simulation. [14] 
concluded that a configuration prefetch unit is useful if 
the reconfiguration time is large as compared to the 
execution time. Architectures that provide easy 
relocation of and efficient communication among 
reconfigurable modules were proposed in [15]. An 
algorithm was presented in [16] to produce an optimal 
number of function units for a group of kernels while 
considering  application performance and area 
requirements; it was concluded that a trade-off between 
these two measures consistently produces better 
results. In [17], the authors presented a static time 
hardware-software partitioning technique that reduces 
the number of reconfigurations. In contrast, we present 
here a run-time heuristic for partitioning. The authors 
of [18, 19] propose several communication 
architectures to realize reconfigurable modules in an 
FPGA. This work is more relevant to chip designers. 
Our work involves existing FPGA architectures to 
enhance run-time reconfiguration in speeding-up 
applications. 
 
2. Proposed Methodology  
 
2.1 Objectives and Prior Work 
 

In a host-based reconfigurable system, the 
reconfiguration time and the communication time 

between the host processor and the FPGA may become 
a performance bottleneck for many applications 
involving several types of disparate kernels. As such, it 
is imperative to judiciously select kernel 
implementations involving either host software or 
reconfigurable hardware so that a net performance gain 
can be obtained. Moreover, since the available 
reconfigurable hardware resources cannot often 
accommodate simultaneously all the application 
kernels, the replacement of kernels realized in 
hardware is necessary. As this replacement process 
involves additional power requirements, a befitting 
kernel updating strategy for reconfigurable hardware 
should be in place reducing the number of 
reconfigurations. 

In order to selectively implement application 
kernels and to appropriately replace kernels, a 
methodology is proposed here that makes 
reconfiguration decisions at run time. Similar work [8] 
focuses on reducing the number of reconfigurations; 
however, the overheads were not considered in 
reporting performance improvement figures. [9] as 
well involves the scheduling of kernels and reveals 
performance improvement by considering only the 
complexity of the application algorithm. But, it falls 
short of considering other overheads. In [10], a novel 
method of assigning merit to kernel implementations is 
presented, reporting reduction in the population of 
reconfigurations. Their work also does not consider 
any overheads involved and does not report any 
performance improvement figures. In contrast, we 
consider here reconfiguration and communication 
overheads when scheduling kernels. We also account 
for kernel execution patterns in order to reduce the 
number of reconfigurations. Test cases were formed 
from published benchmark kernels. 
 
2.2 Methodology Details 

 
We assume customized kernel execution that 

involves medium- to coarse-grain tasks. Each 
application is represented by a data-dependence 
program graph G(V, E), where V and E represent the 
sets of vertices and edges, respectively. The vertices 
represent tasks and the edges represent dependencies 
between tasks. Each task involves a group of  
operations (e.g., a thread of contiguous instructions) to 
be executed by the system. The system contains R 
FPGAs of known type (i.e., their exact counts of 
various resources are known). Alternatively, we can 
also consider R partially reconfigurable modules in an 
FPGA. It is required to schedule the execution of the 
|V| tasks on the FPGA(s) such that the overall 
execution time approaches the minimum.  

The benchmark suites enlist kernels that often 
involve predictable, discrete data sizes. For example, 
FFT and 2D-DCT operations are often carried out on 
matrices of dimension 1024, 2048, and 4096. For RGB 
to YIQ conversion, with images of 320*240 pixels, we 



 3

may choose 1, 2, or 3 consecutive images. A database 
of execution times for different data sizes could be 
developed over a period of time after initial system 
deployment. The communication time between the host 
and the FPGA can be calculated using the units of data 
transferred and the clock period of the bus. The units of 
data depend on the size of the data bus between the 
host and the FPGA. 

Our analysis of the problem begins by considering a 
host processor and several FPGAs. Each task in the 
program graph is termed a kernel and can be executed 
as a single entity (e.g., as a thread) either on the host or 
on the FPGA. We assume that each FPGA can be 
programmed from the host. Also, the execution time of 
the current kernel for the full set of data on the host is 
tH and on the FPGA is tFPGA, the time to reconfigure the 
FPGA from its present configuration to the one 
required by the kernel is toverhead, and the corresponding 
communication overhead involving the host is tcomm. A 
kernel is ‘ready-to-execute’ if all its predecessors in the 
program graph have completed execution successfully. 
If there are multiple ready-to-execute kernels, then we 
choose the one with the smallest identification number. 
There can be various kernel configurations with 
different performance and power metrics [9]. We 
assume a trade-off version that provides the best 
throughput. Our initial scheduling/reconfiguration 
policy, called Break-Even (BE) policy, contains the 
following steps for a given kernel; these steps are 
repeated until all the kernels of the application 
(program graph) are scheduled: 
1. Estimate the execution time tH on the host of the 
ready-to-execute kernel. 
2. Check if the present FPGA configuration is the one 
required by the kernel. If ‘yes’, then set toverhead = 0  and 
go to the next step.  
3. If tH ≤  toverhead + tcomm + tFPGA, then execute the 
kernel on the host and exit. Else, proceed to the next 
step. 
4. Reconfigure, if toverhead ≠ 0, an appropriate FPGA 
with the customized kernel configuration. 
5. Transfer any necessary data from the host to the 
FPGA for execution. 
6. Upload the results from the FPGA. 

The time complexity of the Break-Even policy is 
O(|V|); it grows linearly with the graph size making it 
suitable for implementation on the host at runtime. 
Also, the reconfiguration process is controlled by the 
host processor. It involves checking a small database 
(its size is equal to the number of resources) and 
making a comparison. In practice these operations take 
negligible amount of time and it may not be possible to 
measure their times using the operating system time 
stamp (it can only measure times at the precision of 1 
msec). To place a ready-to-execute kernel in an 
appropriate FPGA, we can follow these steps: 
1. Check if any FPGA is completely available. If ‘yes’, 
then place the kernel in this FPGA and exit. Else, 
proceed to the next step. 

2. For each FPGA, compare the present kernels with 
the tasks/kernels in a window containing a preset 
number of kernels following the current kernel in the 
task graph. If there is a match, proceed to the next 
FPGA to repeat this process. Else, implement the 
kernel on this FPGA. 

The time complexity of this replacement policy is 
O(R*W), where W is the window size in number of 
kernels and R is the number of FPGAs. For practical 
systems, R is fixed and lies between 1 and 15. So, the 
time grows linearly with the window size. We assume 
that the partial execution flow in the task graph is 
known in order to identify the kernels in the window. 
The assumption is valid for applications with fixed 
execution sequence of kernels. For example in JPEG 
encoding, the DCT kernel is always executed after the 
RGB to YCbCr conversion kernel. For applications 
without this sequencing information, the required 
number of reconfigurations could be more. However, 
even those applications can still benefit from the 
selective FPGA execution of kernels ensured in the 
first part of the algorithm.  
     Implementation of the above policy involves 
finding out tH, tFPGA, toverhead, and tcomm experimentally 
for various embedded kernels and data sizes. In our 
case, EEMBC [20] and MiBench [21], and JPEG [20, 
22] embedded benchmark kernels are employed. We 
present results for implementations of such kernels on 
an innovative multi-FPGA system. We consider two 
types of application cases: 1) dynamic, random task 
graphs where the kernel sequence is unknown and a 
kernel may depend on more than one kernel before 
execution; 2) static, linear task graphs where the kernel 
sequence is known and a kernel depends on only one 
kernel before execution. The realization of our 
methodology was carried out on a multi-FPGA system 
in a manner that emulates efficiently a large, partially 
reconfigurable system; our choice was due to the 
unavailability of a partially reconfigurable FPGA 
platform of large size with good implementation 
features for partial reconfiguration. This execution 
model of the multi-FPGA system is suitable for a clean 
performance analysis that avoids undesirable 
implementation overheads present in chosen FPGA 
platforms.  

 
3. Experimental Setup 
 

The platform used to implement the embedded 
kernels and to test our methodology is the Starbridge 
Systems HC-62 Hypercomputer [23]. This system is a 
programmable, high-performance, scalable, and 
reconfigurable computer. It consists of eleven Virtex II 
FPGAs, of which ten are user programmable. In 
conjunction with the host, the HC-62 uses FPGAs to 
process complex algorithms. VHDL designs can be 
imported into this environment by creating appropriate 
EDIF net list files. Xilinx tools were used to create 
configuration bit streams for the FPGAs. These bit files 
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can be used to program them using a utility. The host 
can communicate with the FPGAs using appropriate 
PCI interface hardware and a second utility.   
     Application profiling of various EEMBC [20] 
benchmarks resulted in kernel identification. Due to 
our earlier work on vector processing for embedded 
applications [7], we focus on such kernels. They are: 
Autocorrelation between two vectors, RGB to YIQ 
conversion, and High Pass Grey Filtering (HPG). 
MiBench [21] is a similar suite from the University of 
Michigan. The chosen kernels from this suite are: 2D-
DCT shuffling and FFT reordering. The details of the 
implementations of these kernels can be found in [24]. 
The key operations for these kernels are presented here 
for easy reference. 

Autocorrdata [k] = 1/N 
1

0

N

n

−

=
∑ Data [n] * Data [n + k],  

for k = 0, 1, 2,…, (K-1); N is the size of the vector. 

 
RGB to YIQ conversion: 
Y = (0.299×R) + (0.587×G) + (0.114×B) 
I = (0.596×R) – (0.275×G) – (0.321×B) 
Q = (0.212×R) – (0.523×G) – (0.311×B) 
 
PelValue (in HPG) = F11*P(c-w-1) + F21*P(c-w) + 
F31*P(c-w+1) + F12*P(c-1) + F22*P(c) + F32*P(c+1) 
+        F13*P(c+w-1) + F23*P(c+w) + F33*P(c+w+1) 
 
FFT reordering: 
A((2*i)+1)  =  A((2*i)+ 2n-1) and A((2*i)+ 2n-1)  = 
A((2*i)+1).  
 
2D-DCT shuffling: 
for i = 0 to (n-1)/2 do {  
Tmp [i] = data[i] + data[n-i] 
Tmp [n-i] = data[i] - data[n-i] } 
 
     More specifically, some kernels (like 
autocorrelation, RGB to YIQ, and HPG conversion) 
involve combinations of additions and multiplications. 
Therefore, these operations are of fine granularity. 
Others (like FFT reordering and 2D-DCT shuffling) 
involve the manipulation of registers in a particular 
manner. The latter operations cannot be realized by 
primitive arithmetic hardware or a single assembly-
language instruction, and do not require very complex 
hardware. Therefore, these operations are of medium 
granularity. 
     The above five kernels were implemented on the 
HC-62 system and their functionality was tested. The 
synthesis report shows an operating frequency of more 
than 300 MHz for all the kernels. However, due to the 
limitation of the PCI clock, we tested them at 66 MHz. 
We considered various data sizes for each kernel, 
emulating dynamic load during execution. The data 
chosen for FFT and 2D-DCT are square matrices of 
dimension 1024, 2048, and 4096. For the 

Autocorrelation function, an array size of 30,000 
elements was chosen and 5, 10, and 15 functional 
values were considered. For RGB to YIQ conversion 
and High Pass Grey Filtering, an image size of 
320*240 was chosen and 1, 2, and 3 consecutive image 
calculations were considered. The execution times on 
an HC-62 FPGA (XC2V6000) and on the host (Xeon 
processor operating at 2.6 GHz and having 1GB of 
RAM) are shown in Figure 1 through Figure 4 for these 
kernels. A higher end host computer (such as one with 
an Intel dual-core processor and 2 GB of RAM 
memory) would not be suitable for embedded systems 
due to its large size and energy consumption. Each 
kernel behavior was coded in C/C++ and the code was 
executed in advance on the host processor to measure 
th. The communication time, tcomm, was calculated 
considering the data volume to be transferred, the PCI 
bus interface clock frequency (66/133 MHz), and the 
bus size (64-bits). The resulting values are quite 
accurate for the HC-62 host-FPGA system and can be 
used to validate the BE policy with experimental data.  
      

 
Figure 1. FFT reordering kernel execution times 

 
     

 
Figure 2. 2D-DCT shuffling kernel execution times 

     It is evident that, for these kernels the FPGA 
execution time is smaller than the host execution time. 
The performance gap increases for larger matrix sizes. 
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The measured full-configuration time for an FPGA in 
the HC-62 system is 162 ms. The minimum host 
communication overhead is 30 ms. For larger data 
sizes, this value varies. However, we can increase the 
operating frequency to 133 MHz as supported by the 
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Figure 3. Autocorrelation kernel execution times 
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 Figure 4. RGB to YIQ kernel execution times 
 
PCI bus. With this clock frequency and 64-bit data 
transfers, the maximum data size (for a 4096 square 
matrix) would need about 16 ms. So, for all the cases 
we consider the host communication overhead to be 30 
ms (as the worst case). Consideration of these 
overheads would imply that host execution is preferred 
over FPGA execution for all the kernels with small 
data sizes. 
     Many application test cases were first created by 
randomly generating task graphs from the above 
kernels. A publicly available program called Task 
Graphs For Free (TGFF) was used to generate these 
graphs [14]. The generated task graphs have many 
forks. These synthetically generated application task 
graphs were run on the host only, FPGA only, and on 
both following our proposed Break-Even policy. As the 
actual setup of the HC-62 system unfortunately does 
not support partial reconfiguration, we considered 
kernel implementations on individual FPGAs to 
evaluate our policies.  We developed a simulator that 
takes the task graph, actual (host and FPGA) execution 
times, and the overheads (reconfiguration and data 
communication) as inputs. It mimics various execution 

behaviours of the system and calculates the respective 
execution times, number of reconfigurations, and the 
percentage improvement for the Break-Even policy. 
The developed simulation environment is shown in 
Figure 5.  

Task Graph

Task Scheduler

Run time System

Results

ExecutionFPGA Host

 Figure 5. Simulation environment 

     The task scheduler generates a correct sequence of 
executions for task-kernels appearing in the graph. It 
takes into account the dependencies among them to 
prepare the correct execution sequence. The run-time 
system decides whether to execute a kernel on the host 
or on the FPGA in order to ensure performance 
improvement. It also chooses an appropriate FPGA (or 
a module) that should be reconfigured, when 
necessary, in order to minimize the number of 
reconfigurations. We compared the performance of the 
Break-Even policy with that of the FPGA-only policy. 
The latter policy always executes kernels on an FPGA 
and replaces the kernels in the FPGA using FIFO. We 
consider application cases that solely consist of 
computation-intensive kernels and involve large data 
exchanges. A kernel can be executed on the host (as 
software) or on the FPGA (as hardware). The choice is 
finalized at runtime by estimating the overall execution 
time (without ignoring the overheads) of that kernel for 
the known data size. Therefore, some kernel 
realizations will rely on software whereas others will 
rely exclusively on hardware. As such, there is no 
explicit need to pre-partition the application into 
hardware and software modules. The simulator was 
developed from scratch using an object-oriented 
programming environment (C/C++). It does not use 
any precompiled library routines from any other 
sources. 
 

4. Performance Results and Analysis 
Random task graphs with 10 to 149 nodes were 

generated, with node degrees (number of outgoing 
links) between 1 and 7. The distribution of various 
node degrees is furnished in Table 1 for a few selected 
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Maximum Node Degree (MND) cases with a task 
graph size of 249. The majority of the nodes have 
degree 3 or less.  
      

Table 1. Node distribution for given MNDs 
Maximum 

node
degree

Number of nodes

Degree
1

Degree
2

Degree
3

Degree
4

Degree
5

Degree
6

Degree
7

3 90 71 88 - - - -

4 121 55 27 46 - - -

5 132 43 34 23 17 - -

6 146 46 16 13 9 19 -

7 163 35 10 7 11 10 13

  
 
     To emulate partially reconfigurable modules, we 
considered a subset (3) of the available FPGAs. This 
number was intentionally kept smaller than the 
available kernel types (5) to enforce reconfiguration at 
runtime. In most of the cases, the Break-Even policy 
provided more than 50% performance improvement as 
compared to the host-only execution scheme. 
Performance results for Break-Even in comparison to 
the FPGA-only policy are presented in Figure 6 for 
task graphs with MND=3. The average performance 
improvement is in favour of the Break-Even policy. 
Although there is a dip and a peak in the improvement, 
it appears to stabilize for larger numbers of tasks. 
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Figure 6. BE compared to the FPGA-only policy 

(MND=3) 
     There is a steady increase in reconfiguration 
reductions for larger numbers of tasks under the BE 
policy. So, our proposed policy greatly reduces the 
required reconfigurations for better performance. 
Typically, processors implemented on FPGAs consume 
more energy than processors implemented with fixed 
logic [25]. Moreover, each FPGA reconfiguration 

consumes more than 100 mA and lasts for hundreds of 
milliseconds [26]. As such, it is essential to reduce the 
number of required reconfigurations on the FPGA in 
order to be power-competitive. 
     Experiments were also conducted with variable 
sizes of reconfigurable resources. Various sizes of task 
graphs with MND=5 were considered and the number 
of reconfigurable resources varied between 2 and 4. It 
is true that performance degrades with reduced 
resources. However, our work shows that this 
degradation is worse under the brute-force policy than 
it is under the BE policy. Also, we do not cache 
reconfiguration bit-streams on the board. They are 
stored in the host memory. There were five different 
kernel types this time, producing fifteen different types 
of nodes in the task graphs. The fifth kernel is for 
High-Pass Grey filtering (HPG), from the consumer 
category of the EEMBC suite. Results are summarized 
in Table 2.   
 
    Table 2. Performance of the proposed policy 

33.4832.4927.1033.8834.26Performance 
improvement 

(%)

12598694926Reduction in 
reconfigurations

2 units of 
resources

28.3325.5320.5132.0836.21Performance 
improvement 

(%)

9267474025Reduction in 
reconfigurations

3 units of 
resources

13.779.257.8315.1610.85Performance 
improvement 

(%)

493225199Reduction in 
reconfigurations

4 units of 
resources

2491991529951

Number of tasks (nodes) in the graph
(Maximum node degree = 5)

Types of nodes = 15
(Types of hardware 

kernels = 5)

 
    
    This table shows the performance of our BE policy 
in comparison to the reference FPGA-only policy. For 
example, the rightmost column reveals performance 
improvements with 249 tasks. With four reconfigurable 
resources, the BE policy reduces the number of 
reconfigurations by 49 while providing 13.77% better 
performance as compared to the FPGA-only policy. 
For the same number of tasks, if the reconfigurable 
units are reduced to two, then the BE policy reduces 
the number of reconfigurations by 125 while providing 
33.48% better performance as compared to the 
reference policy. Thus, the BE policy demonstrates 
much better performance (in comparison to the brute-
force FPGA-only policy) for resource constrained 
reconfigurable systems.  
     In order to facilitate better overall reliability, 
uniformity in resource usage is required that reduces 
the localization of temperature increases in the system. 
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This means that in a partially reconfigurable multi-
module FPGA (or in a multi-FPGA system), the 
amount of time each resource is used should be almost 
the same or within an acceptable range. To test the 
effectiveness of the BE policy towards this end, we 
carried out an experiment to measure the amount of 
time each resource unit is used in the HC-62 system to 
completely execute a certain task graph. We considered 
three units of FPGA resources to enforce 
reconfigurations for task graphs with five kernels. To 
clearly observe the diversity in FPGA unit-usage, we 
define as peak disparity in FPGA usage (ms) the 
difference between the maximum and the minimum 
unit-usage for each task group under the two policies. 
This peak disparity is plotted against the number of 
tasks in Figure 7.  
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Figure 7. Diversity in FPGA usage 
 
     Our proposed policy has lower disparity in FPGA 
unit-usage compared to the reference policy for all test 
cases, as seen from this figure. Also, the rate of 
disparity growth, as a function of the number of tasks, 
is less than the FPGA-only policy. This generally 
demonstrates that the BE policy ensures better 
uniformity in the amount of time a reconfigurable unit 
is used, in addition to reducing the number of 
reconfigurations.  
 
5. Comparison with Optimal Performance 
 
     We can setup several yardsticks in order to fairly 
evaluate the execution performance of the Break-Even 
policy. One such yardstick could be the estimated 
optimal execution time in a system with sufficient 
FPGA resources to accommodate all the kernels 
simultaneously. This is an ideal situation that would 
require setting up only one implementation of the 
hardware configuration for each kernel present in the 
task graph. The other yardstick could be the execution 
time on a system with FPGA resources that can 
accommodate less than the maximum number of 
kernels. This is a constrained situation and may 

represent a sub-optimal execution time. As the 
dynamic system has no knowledge of the complete task 
graph at runtime, these execution times can be 
estimated off-line after actual execution, exclusively 
for the sake of comparison. In the latter case, we 
assume a practical system that can accommodate 
simultaneously in hardware 40% of the kernels. For 
this system, we calculate the host execution time for 
different kernels and 40% of the kernels with highest 
execution times are targeted for FPGA implementation. 
These kernel-configurations maintain hardware 
realization throughout the entire execution of the task 
whereas the other kernels are executed on the host. We 
compare the performance of the Break-even policy 
against these two yardsticks. Results are shown in 
Figure 8.  
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Figure 8. BE compared to optimal performance 

 
     As evident from Figure 6, the proposed policy 
degrades the performance by about 21-26% for almost 
all the test cases as compared to the ideal performance. 
But, this degradation is reasonable in a resource-
constrained embedded environment where this 
performance is achieved with 60% savings in 
reconfigurable resources. Even for a number of tasks 
smaller than 50, the BE policy performs better than the 
ideal and sub-optimal policies. The reason is that the 
first yardstick assumes that all the kernels are always 
configured into FPGAs, leading to the highest 
reconfiguration time that may not be justified in this 
case. But, the BE policy judiciously reconfigures the 
FPGA only if can ensure performance improvement. 
Also, it can be seen from Figure 6 that our policy 
generally performs better than the practical sub-optimal 
performance, providing a 2-18% speedup. These 
results demonstrate that the BE policy operates close to 
the first defined yardstick and even better than the 
second defined yardstick in a dynamically-challenged 
resource constrained embedded environment with a 
good trade-off between performance and resources. 
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6. Application with Fixed Execution  
    Sequence 
 
     JPEG image encoding, involving fixed-sequence 
kernels, becomes our next chosen application. It 
consists of the following kernels: RGB to YCbCr, 2D-
DCT, Quantization, Run-Length Encoding (RLE), and 
Huffman encoding. Their contributions to the total 
execution time on a PC with a Xeon processor are 
shown in Table 3 [22]. This table justifies the 
implementation of the shortest DCT-kernel on the host. 
Following is a brief description of this application.  
     A still image is converted into a compressed 
representation by JPEG encoding. Partial information 
is lost and the recovered image is an approximation of 
the original image. Our input is an image of 320 pixels 
by 240 lines represented in the Red-Green-Blue (RGB) 
colour space, with each component having an eight-bit        

 
Table 3. Breakdown of JPEG encoding time 

13.3Others

86.7Total kernel contribution

35.9Encoding (RLE+Huffman)

31.8Quantization

8DCT

11RGB-YCbCr

Execution Time (%)JPEG Kernels

     
 
value. This image is converted to the YCbCr colour 
space involving a straightforward matrix multiply-
accumulate calculation, similar to the RGB-YIQ 
conversion, as shown below. The image is then 
processed as 8*8 pixel blocks. 
 

Y   =    (0.299×R) + (0.587×G) + (0.114×B) 
Cb = – (0.169×R) – (0.331×G) + (0.500×B) 
Cr  =    (0.500×R) – (0.418×G) – (0.082×B) 

 
     Then a two-dimensional discrete cosine transform 
(2D-DCT) is performed on this data to produce 
frequency domain coefficients. As this process seems 
to take the least amount of time on the host [22], we 
decided to always implement it on the host, using the 
FPGAs to implement other time-consuming kernels. 
During quantization, each of these frequency domain 
coefficients is divided by a scale factor reducing a 
large number of them to zero. Then ‘zig-zag’ scanning 

is performed. The number of zero coefficients 
preceding a nonzero one is represented as the ‘run’. 
The nonzero coefficient value is represented as the 
‘size’. This is referred to as run-length encoding 
(RLE). 
     Then, each run-size combination is assigned a 
unique Huffman code generated from a look-up table 
as in [20]. These JPEG encoding kernels were 
implemented in our test environment on the HC-62 
system that contains Virtex II FPGAs (XC2V6000); 
their software counterpart was realized on a Dell PC 
with a 2GHz Pentium IV processor and 256 MB of 
RAM. Static execution times are shown in Table 4. 

 
Table 4. Execution time of various JPEG kernels 

210140701.310.870.44Huffman

360240120963RLE

54036018015105QUANT.

1501005015010050
DCT (on 

host)

4903601603.482.321.16RGB-
YCbCr

3-images2-images 1-image 3-images2-images1-image

Execution time on host (ms)Execution time on HC-62 FPGA 
(ms)JPEG 

Kernels

 
      
     JPEG encoding is then simulated in our simulation 
environment, as described in section 3, under various 
schemes. In these cases, the task graph is linear and 
static. We compared the performance of the BE policy 
for executing the JPEG encoder with the host and the 
two previously defined yardsticks of Section 5. These 
results are summarized in Figure 9.  
     This plot represents the ratio of BE performance to 
other yardsticks for various image sizes. A value less 
than one reveals better performance under the BE 
policy. As we can see from this figure (the curve with 
triangular points), the BE policy provides much better   
performance   compared   to   host execution especially 
for larger data sizes. However, this performance gain is 
smaller than that seen in Table 4 at the kernel level as 
the (re)configuration and communication overheads 
add to the total execution time on the FPGA. Still the 
policy results in execution time savings of 46% for 3-
images compared to host execution. 
     The BE policy performs close to the defined best 
possible scenario. Actually, it performs better than 
them in most cases (the curves with diamond and 
rectangular points). The reason is that the first 
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Figure 9. BE compared to optimal performance for 

JPEG encoding 
 
yardstick assumes that all the kernels are always 
configured into FPGAs, leading to the highest 
reconfiguration time, as stated in Section 5. The second 
yardstick also assumes that the two highest execution-
time kernels are always configured into FPGAs, 
leading to a relatively higher reconfiguration time also. 
In contrast, the BE policy only reconfigures the FPGA 
if this leads to performance improvement. As such, 
when the data size is increased, a higher execution time 
justifies the reconfiguration overheads and the 
performance of the yardstick policies reaches closer 
that of the BE policy. However, for 3-images of input 
data, the execution times of the kernels on the host are 
large; this degrades the performance of the second 
yardstick. As a result, it exhibits performance loss 
compared to BE for 3-images (the curve with 
rectangular points). Thus, these results extend the 
viability of the BE policy for static, linear task graphs 
as well. So, it can be safely concluded that the 
proposed policy can ensure good performance both for 
random, dynamic (as presented in Sections 4 and 5) as 
well as linear, static task graphs involving embedded 
kernels.   
 
7. Compensation Techniques for 

Reconfiguration Overheads 
 
     To completely hide the reconfiguration latency or to 
minimize its effects, a partial overlap should be 
attempted with the current kernel execution. This way, 
only the time of the first configuration remains exposed 
in its entirety as overhead. Successive reconfigurations 
could be pipelined for their overhead to be hidden 
either fully or partly. Such techniques have not been 
considered in [27] for high reconfiguration policy like 
the FPGA-only policy. In order to implement this 
concept of reconfiguration overlap, the Block RAMs 
embedded in the Virtex II FPGAs of the HC-62 system 
were used. As such, the host can transfer data into 
these RAMs, start the execution of the hardware kernel 

associated with these RAMs, and then start 
reconfiguring another unit for next kernel execution. 
After processing the data, the hardware kernels put 
back the results into these RAMs for host access. All 
these RAMs have been implemented in the HC-62 
system as FIFO memories. These FIFO memories 
wrap-up the hardware kernel, such as an FFT 
reordering kernel, within the FPGA. Experimental 
results of overlapping reconfiguration for one kernel 
with the execution of another under the BE policy are 
presented in Table 5. Various tasks with 16 to 249 
nodes and maximum node degree of five were chosen. 
Only two units of reconfigurable resources were used 
within a quad of the HC-62 system to enforce more 
reconfigurations. 
 
Table 5. Effect of Reconfiguration Overlapping in BE 

Policy 

3303426362233791310065222075
Non-

overlapped

3093724498216221246759271825Overlapped

6.357.077.524.839.1212.05Improvement 
(%)

Execution Time of BE policy (ms) 

249199152995116
Tasks

(Degree = 5, 
5-Kernels)

 
 
  It can be seen from this table that in all the cases the 
overlapping technique results in performance 
improvement compared to non-overlapped execution. 
It should be noted that the BE policy significantly 
reduces the number of required reconfigurations (by 
more than 50%) as compared to brute-force 
reconfigurations. The technique is powerful and can 
lead to significant performance acceleration for 
application cases with many kernels and limited 
reconfigurable resources that could otherwise generate 
plenty of reconfigurations. This experiment of 
reconfiguration overlapping was extended to the 
FPGA-only policy under the same conditions as with 
the BE policy. The results are presented in Table 6. 
Performance improvements are much higher from the 
non-overlapped to overlapped cases than the BE 
policy, as the FPGA-only policy generates a lot of 
reconfigurations. However, the actual application 
performance for each case is still in favor of the BE 
policy, as seen from Tables 5 and 6. The benefits of 
overlapping depend on the exact time that the next 
kernel is uniquely identified. For non-deterministic 
systems, if it is identified early on in the execution of 
the immediately preceding kernel, then the benefit of 
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overlapping the former’s execution with the 
reconfiguration for the next kernel can be substantial or 
tremendous (even zeroing the effect of 
reconfiguration). However, if the next kernel is 
identified late in the execution of the immediately 
preceding kernel, then the overlapping technique may 
provide marginal benefit or no benefit at all. 
 
     When multiple tasks are ready for execution, a 
straight forward way to schedule the tasks is by 
ranking their ID numbers. In these experiments, the 
lowest ID task was chosen for execution in such 
situations. However, the runtime system could check 
for the presence of their constituent kernels in the 
FPGA configuration. It should choose a task, if 
possible, that has its required kernel already present in 
the hardware. This would, in turn, reduce the number 
of required reconfigurations to run the application on 
the system. For policies that generate huge numbers of 
reconfigurations, such as the FPGA-only reference 
policy, this refined scheduling technique could prove 
beneficial. This technique is named as Kernel-presence 
scheduling. Experiments were carried out to measure 

 
Table 6. Effect of Reconfiguration Overlapping in 

FPGA-only Policy 

4966139049320721981399212417
Non-

overlapped

4045231486265061614381472175Overlapped

18.5419.3717.3518.5217.8810.01Improvement 
(%)

Execution Time of FPGA-only policy (ms) 

249199152995116
Tasks

(Degree = 5, 
5-Kernels)

 
 
the application performance under Lowest-ID and 
Kernel-presence scheduling for the FPGA-only policy. 
The results are furnished in Tables 7 and 8. The first 
table shows the execution times under the two schemes 
for various application task graphs. The second one 
shows the number of required reconfigurations for 
them.  
    As seen from Table 7, the Kernel-presence 
scheduling technique provides marginal performance 
improvements. Although these figures are nominal, this 
scheduling technique results in reducing the number of 
required reconfigurations, as evident from Table 8. 
This reduction is larger for bigger task graphs, which 
implies larger savings of reconfiguration energy under 
the Kernel-presence scheduling scheme.  

 

 Table 7. Execution Time for Various Tasks under Two 
Scheduling Schemes 

4966139049320721981399212417Lowest ID 
Scheduling

4706936943314241916597592417
Kernel 

Presence 
Scheduling

5.225.392.023.271.630.0Improvement 
(%)

Execution Time of FPGA-only policy (ms) 

249199152995116
Tasks

(Degree = 5, 
5-Kernels)

 
 
Table 8. Number of Required Reconfigurations under 

Two Scheduling Schemes 

1471168860336Lowest ID 
Scheduling

1311038456326
Kernel 

Presence 
Scheduling

16134410Improvement

Required Reconfigurations of FPGA-only policy

249199152995116
Tasks

(Degree = 5, 
5-Kernels)

 
 
     Alternatively, the runtime system could also choose 
the kernel with the highest execution time or the 
smallest reconfiguration time, when multiple tasks are 
ready for execution. This opens up the possibility to 
partially overlap or fully eliminate reconfigurations in 
the FPGA-only policy, as mentioned earlier. As such, 
the experiments were extended with the scheduler 
checking the execution time of the currently scheduled 
kernel with that of the next two; all are ready for 
execution. If any subsequent kernel has a higher 
execution time, it is selected for execution. However, 
this refinement in scheduling generated more 
reconfigurations than the original schedule. For 
example, a task graph with 100 tasks generated 62 
reconfigurations with this refinement whereas the 
original schedule generated 60 reconfigurations. Thus, 
it can be concluded that although reconfiguration 
overlapping improved the application performance for 
policies generating huge reconfigurations, the 
improvement is better when the overlapping technique 
is applied to the original schedule.  
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8. Conclusions  
 
     Embedded systems require power efficient, 
compact designs. These systems are exposed to events 
that may or may not be known at design time. Thus, 
incorporating efficient dynamic adaptability is often 
important. Reconfiguring programmable hardware at 
runtime to alternatively execute various kernels could 
conserve space in embedded systems, thus providing a 
balance between performance and area. A policy was 
presented for dynamic reconfiguration of FPGA 
resources based on evaluating each time the value of a 
reconfiguration. Two approaches were considered in 
our evaluation: random-dynamic and linear-static task 
graphs. Benchmarking shows significant improvements 
in execution time, even when considering overheads. 
Also, our methodology reduces the number of 
reconfigurations for an application, thus having the 
potential to reduce the overall energy requirements 
compared to the brute-force policy. In addition, the 
proposed reconfiguration policy also ensures more 
uniform usage of the reconfigurable resources. For 
both dynamic and static task-loads, the obtained 
performance is comparable to the best possible cases, 
demonstrating a good trade-off between performance 
and resource consumption. Alternate scheduling 
strategies that alleviate reconfiguration overhead were 
also considered. Two extensions to the proposed policy 
improve application performance in systems that 
require large number of reconfigurations. In such 
systems, reconfiguration overlapping demonstrates 
reduction in the application execution time whereas the 
Kernel-presence scheduling technique reveals 
reduction in the number of required reconfigurations.  
 
9. Future Work 
 
Hybrid hardware-software systems containing 
reconfigurable resources provide many benefits in the 
embedded systems domain and are expected to 
penetrate a growing number of new applications. In 
such systems, the reconfiguration overheads will be 
substantial until a new FPGA technology or 
architecture is developed to reduce or eliminate their 
effect. It is wise to accept their existence and work 
around these overheads to still satisfy the high 
performance objectives of various applications. Based 
on our presented work, we propose the following 
extensions.  
 
Representative applications for real dynamic behavior:  
A video encoding system could be considered that 
employs MPEG or JPEG depending on whether movie 
transmission or videoconferencing is chosen. This 
multifunction system could represent real dynamic 
behavior. 
 

Load balancing between the host and the 
reconfigurable platform: Instead of executing a kernel 
solely on the host or on the reconfigurable resources, it 
might be worth splitting the workload between them. 
This type of load distribution might further boost 
application performance. 
 
Pursuing uniform utilization: The runtime system 
could keep statistics for the utilization of each 
reconfigurable unit (either a partially reconfigurable 
module or a complete FPGA). The ones with lower 
utilization should be the target for the next kernel 
implementation. This would not only balance the usage 
of all the reconfigurable resources but could also 
reduce the localization of temperature increases in the 
system. 
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