
 1

Customized Kernel Execution on Reconfigurable Hardware for Embedded
Applications

Muhammad Z. Hasan
Engineering Technology and Industrial

Distribution Dept.
Texas A & M University

College Station, TX 77843, USA
hasan@entc.tamu.edu

Sotirios G. Ziavras

Electrical and Computer Engineering Dept.
New Jersey Institute of Technology

Newark, NJ 07102, USA
ziavras@adm.njit.edu

Abstract

To conserve space and power as well as to harness high
performance in embedded systems, high utilization of
the hardware is required. This can be facilitated
through dynamic adaptation of the silicon resources in
reconfigurable systems in order to realize various
customized kernels as execution proceeds. Fortunately,
the encountered reconfiguration overheads can be
estimated. Therefore, if the scheduling of time-
consuming kernels considers also the reconfiguration
overheads, an overall performance gain can be
obtained. We present our policy, experiments, and
performance results of customizing and reconfiguring
Field-Programmable Gate Arrays (FPGAs) for
embedded kernels. Experiments involving EEMBC
(EDN Embedded Microprocessor Benchmarking
Consortium) and MiBench embedded benchmark
kernels show high performance using our main policy,
when considering reconfiguration overheads. Our
policy reduces the required reconfigurations by more
than 50% as compared to brute-force solutions, and
performs within 25% of the ideal execution time while
conserving 60% of the FPGA resources. Alternative
strategies to reduce the reconfiguration overhead are
also presented and evaluated.

Keywords: System reconfiguration, embedded systems,
FPGA.

1. Introduction

Embedded systems are present virtually in all
aspects of everyday life. They normally consume small
power and occupy few resources. Numerous embedded
applications spend substantial time on a few software
kernels [1]. Executing these kernels on customized
hardware could reduce the execution time and energy
consumption as compared to software realizations [2,
3]. Given reconfigurable hardware, such as FPGAs, a
chosen area could accommodate exclusively such
kernels at different times to conserve resources, thus
saving space and possibly power. A Viterbi decoder
can use the same hardware configured differently to
implement several decoding schemes based on various
channel conditions [2]. Configurations to support

kernels can be created and stored in a database for
future use facilitating system adaptability for run-time
events. However, the reconfiguration time affects the
performance, especially for small data sets. Also, the
reconfiguration process draws power. To offset the
time-overhead encountered, we must employ various
techniques such as configuration pre-fetching or
overlapping reconfiguration with other tasks. To
reduce the energy consumption of reconfiguration, we
should reduce the number of realized reconfigurations.

For many embedded applications, general-purpose
processors exhibit poor performance compared to
custom hardware. Applications, such as register
reordering in the Fast Fourier Transform (FFT) and
register shuffling in the two-dimensional Discrete
Cosine Transform (2D-DCT) [4], fall in this class.
Thus, there is a clear demand for customized hardware
platforms to enhance the performance of such
embedded methods under various cost constraints; this
is very critical for embedded applications. Current
high-density FPGAs have the potential to satisfy this
demand [5, 6]. Also, it enables the hardware
implementation of a large design in a piecewise fashion
as the complete design may not fit in the system. Thus,
the reprogrammable features of FPGAs make it easy to
test, debug, and fine tune designs for even higher
performance of follow-up versions.

Partial reconfiguration support of current FPGA
architectures provides for configuring portions of the
hardware while the remainder is still in operation [7].
Switching configurations between implementations can
then be fast, as the partial reconfiguration bitstream
may be smaller than the entire device configuration
bitstream. Many dynamically reconfigurable systems
involve a host processor [2, 4, 8, 9, 10] mainly for
control oriented, less computation intensive tasks and
also for supporting reconfiguration decisions. In our
work we consider host-based dynamically embedded
systems that change behavior at run-time and/or
process time-varying work-loads. We target either a
single FPGA embedded with reconfigurable modules
or several individually reconfigurable FPGAs. Our
framework considers reconfiguration overheads in
making decisions for the execution of kernels either on
the host or the FPGA(s) ensuring performance gains.
Additionally, we present a kernel replacement policy
that reduces the number of required reconfigurations to

 2

conserve power. In this work, the FPGAs are used
when they can reduce the execution time of kernels as
compared to the host; we also ensure better space
utilization than ASICs. Considering the overhead of
reconfiguration, the FPGA execution of kernels may
not always be favorable, especially for small data sets.
Thus, we address the issue of selective FPGA
execution of kernels. Moreover, kernel execution
patterns may be dynamic (unknown) or static. So, we
also address this issue in designing our experiments.

The actual use of the partial FPGA reconfiguration
feature has been a rather recent trend. Static-time
reconfiguration decision is often targeted. [11]
observed that FPGAs were 2-3 times faster than
microprocessors for bit-level operations. Performance
improvement of 7-14 times has been cited for time-
multiplexed FPGA implementations over non-
multiplexed implementations for DCT [12]. Recent
works clearly support the idea of multiplexed FPGA
usage for higher performance. Two consecutive kernel
executions on an FPGA avoid intermediate data
uploading to the host. Generation of hardware cores
and a scheduler to download them on-demand into the
FPGA, as suggested in [13], motivated us towards the
present work.

A group of interdependent, elementary operations,
called collectively a kernel, is often identified for
hardware implementation when targeting speedups. [8]
considers a single thread of operations each time to
dynamically reconfigure the hardware for various
kernels. Multiple threads have been considered in [9,
10]. Most of these works employ simulation. [14]
concluded that a configuration prefetch unit is useful if
the reconfiguration time is large as compared to the
execution time. Architectures that provide easy
relocation of and efficient communication among
reconfigurable modules were proposed in [15]. An
algorithm was presented in [16] to produce an optimal
number of function units for a group of kernels while
considering application performance and area
requirements; it was concluded that a trade-off between
these two measures consistently produces better
results. In [17], the authors presented a static time
hardware-software partitioning technique that reduces
the number of reconfigurations. In contrast, we present
here a run-time heuristic for partitioning. The authors
of [18, 19] propose several communication
architectures to realize reconfigurable modules in an
FPGA. This work is more relevant to chip designers.
Our work involves existing FPGA architectures to
enhance run-time reconfiguration in speeding-up
applications.

2. Proposed Methodology

2.1 Objectives and Prior Work

In a host-based reconfigurable system, the
reconfiguration time and the communication time

between the host processor and the FPGA may become
a performance bottleneck for many applications
involving several types of disparate kernels. As such, it
is imperative to judiciously select kernel
implementations involving either host software or
reconfigurable hardware so that a net performance gain
can be obtained. Moreover, since the available
reconfigurable hardware resources cannot often
accommodate simultaneously all the application
kernels, the replacement of kernels realized in
hardware is necessary. As this replacement process
involves additional power requirements, a befitting
kernel updating strategy for reconfigurable hardware
should be in place reducing the number of
reconfigurations.

In order to selectively implement application
kernels and to appropriately replace kernels, a
methodology is proposed here that makes
reconfiguration decisions at run time. Similar work [8]
focuses on reducing the number of reconfigurations;
however, the overheads were not considered in
reporting performance improvement figures. [9] as
well involves the scheduling of kernels and reveals
performance improvement by considering only the
complexity of the application algorithm. But, it falls
short of considering other overheads. In [10], a novel
method of assigning merit to kernel implementations is
presented, reporting reduction in the population of
reconfigurations. Their work also does not consider
any overheads involved and does not report any
performance improvement figures. In contrast, we
consider here reconfiguration and communication
overheads when scheduling kernels. We also account
for kernel execution patterns in order to reduce the
number of reconfigurations. Test cases were formed
from published benchmark kernels.

2.2 Methodology Details

We assume customized kernel execution that

involves medium- to coarse-grain tasks. Each
application is represented by a data-dependence
program graph G(V, E), where V and E represent the
sets of vertices and edges, respectively. The vertices
represent tasks and the edges represent dependencies
between tasks. Each task involves a group of
operations (e.g., a thread of contiguous instructions) to
be executed by the system. The system contains R
FPGAs of known type (i.e., their exact counts of
various resources are known). Alternatively, we can
also consider R partially reconfigurable modules in an
FPGA. It is required to schedule the execution of the
|V| tasks on the FPGA(s) such that the overall
execution time approaches the minimum.

The benchmark suites enlist kernels that often
involve predictable, discrete data sizes. For example,
FFT and 2D-DCT operations are often carried out on
matrices of dimension 1024, 2048, and 4096. For RGB
to YIQ conversion, with images of 320*240 pixels, we

 3

may choose 1, 2, or 3 consecutive images. A database
of execution times for different data sizes could be
developed over a period of time after initial system
deployment. The communication time between the host
and the FPGA can be calculated using the units of data
transferred and the clock period of the bus. The units of
data depend on the size of the data bus between the
host and the FPGA.

Our analysis of the problem begins by considering a
host processor and several FPGAs. Each task in the
program graph is termed a kernel and can be executed
as a single entity (e.g., as a thread) either on the host or
on the FPGA. We assume that each FPGA can be
programmed from the host. Also, the execution time of
the current kernel for the full set of data on the host is
tH and on the FPGA is tFPGA, the time to reconfigure the
FPGA from its present configuration to the one
required by the kernel is toverhead, and the corresponding
communication overhead involving the host is tcomm. A
kernel is ‘ready-to-execute’ if all its predecessors in the
program graph have completed execution successfully.
If there are multiple ready-to-execute kernels, then we
choose the one with the smallest identification number.
There can be various kernel configurations with
different performance and power metrics [9]. We
assume a trade-off version that provides the best
throughput. Our initial scheduling/reconfiguration
policy, called Break-Even (BE) policy, contains the
following steps for a given kernel; these steps are
repeated until all the kernels of the application
(program graph) are scheduled:
1. Estimate the execution time tH on the host of the
ready-to-execute kernel.
2. Check if the present FPGA configuration is the one
required by the kernel. If ‘yes’, then set toverhead = 0 and
go to the next step.
3. If tH ≤ toverhead + tcomm + tFPGA, then execute the
kernel on the host and exit. Else, proceed to the next
step.
4. Reconfigure, if toverhead ≠ 0, an appropriate FPGA
with the customized kernel configuration.
5. Transfer any necessary data from the host to the
FPGA for execution.
6. Upload the results from the FPGA.

The time complexity of the Break-Even policy is
O(|V|); it grows linearly with the graph size making it
suitable for implementation on the host at runtime.
Also, the reconfiguration process is controlled by the
host processor. It involves checking a small database
(its size is equal to the number of resources) and
making a comparison. In practice these operations take
negligible amount of time and it may not be possible to
measure their times using the operating system time
stamp (it can only measure times at the precision of 1
msec). To place a ready-to-execute kernel in an
appropriate FPGA, we can follow these steps:
1. Check if any FPGA is completely available. If ‘yes’,
then place the kernel in this FPGA and exit. Else,
proceed to the next step.

2. For each FPGA, compare the present kernels with
the tasks/kernels in a window containing a preset
number of kernels following the current kernel in the
task graph. If there is a match, proceed to the next
FPGA to repeat this process. Else, implement the
kernel on this FPGA.

The time complexity of this replacement policy is
O(R*W), where W is the window size in number of
kernels and R is the number of FPGAs. For practical
systems, R is fixed and lies between 1 and 15. So, the
time grows linearly with the window size. We assume
that the partial execution flow in the task graph is
known in order to identify the kernels in the window.
The assumption is valid for applications with fixed
execution sequence of kernels. For example in JPEG
encoding, the DCT kernel is always executed after the
RGB to YCbCr conversion kernel. For applications
without this sequencing information, the required
number of reconfigurations could be more. However,
even those applications can still benefit from the
selective FPGA execution of kernels ensured in the
first part of the algorithm.
 Implementation of the above policy involves
finding out tH, tFPGA, toverhead, and tcomm experimentally
for various embedded kernels and data sizes. In our
case, EEMBC [20] and MiBench [21], and JPEG [20,
22] embedded benchmark kernels are employed. We
present results for implementations of such kernels on
an innovative multi-FPGA system. We consider two
types of application cases: 1) dynamic, random task
graphs where the kernel sequence is unknown and a
kernel may depend on more than one kernel before
execution; 2) static, linear task graphs where the kernel
sequence is known and a kernel depends on only one
kernel before execution. The realization of our
methodology was carried out on a multi-FPGA system
in a manner that emulates efficiently a large, partially
reconfigurable system; our choice was due to the
unavailability of a partially reconfigurable FPGA
platform of large size with good implementation
features for partial reconfiguration. This execution
model of the multi-FPGA system is suitable for a clean
performance analysis that avoids undesirable
implementation overheads present in chosen FPGA
platforms.

3. Experimental Setup

The platform used to implement the embedded
kernels and to test our methodology is the Starbridge
Systems HC-62 Hypercomputer [23]. This system is a
programmable, high-performance, scalable, and
reconfigurable computer. It consists of eleven Virtex II
FPGAs, of which ten are user programmable. In
conjunction with the host, the HC-62 uses FPGAs to
process complex algorithms. VHDL designs can be
imported into this environment by creating appropriate
EDIF net list files. Xilinx tools were used to create
configuration bit streams for the FPGAs. These bit files

 4

can be used to program them using a utility. The host
can communicate with the FPGAs using appropriate
PCI interface hardware and a second utility.
 Application profiling of various EEMBC [20]
benchmarks resulted in kernel identification. Due to
our earlier work on vector processing for embedded
applications [7], we focus on such kernels. They are:
Autocorrelation between two vectors, RGB to YIQ
conversion, and High Pass Grey Filtering (HPG).
MiBench [21] is a similar suite from the University of
Michigan. The chosen kernels from this suite are: 2D-
DCT shuffling and FFT reordering. The details of the
implementations of these kernels can be found in [24].
The key operations for these kernels are presented here
for easy reference.

Autocorrdata [k] = 1/N
1

0

N

n

−

=
∑ Data [n] * Data [n + k],

for k = 0, 1, 2,…, (K-1); N is the size of the vector.

RGB to YIQ conversion:
Y = (0.299×R) + (0.587×G) + (0.114×B)
I = (0.596×R) – (0.275×G) – (0.321×B)
Q = (0.212×R) – (0.523×G) – (0.311×B)

PelValue (in HPG) = F11*P(c-w-1) + F21*P(c-w) +
F31*P(c-w+1) + F12*P(c-1) + F22*P(c) + F32*P(c+1)
+ F13*P(c+w-1) + F23*P(c+w) + F33*P(c+w+1)

FFT reordering:
A((2*i)+1) = A((2*i)+ 2n-1) and A((2*i)+ 2n-1) =
A((2*i)+1).

2D-DCT shuffling:
for i = 0 to (n-1)/2 do {
Tmp [i] = data[i] + data[n-i]
Tmp [n-i] = data[i] - data[n-i] }

 More specifically, some kernels (like
autocorrelation, RGB to YIQ, and HPG conversion)
involve combinations of additions and multiplications.
Therefore, these operations are of fine granularity.
Others (like FFT reordering and 2D-DCT shuffling)
involve the manipulation of registers in a particular
manner. The latter operations cannot be realized by
primitive arithmetic hardware or a single assembly-
language instruction, and do not require very complex
hardware. Therefore, these operations are of medium
granularity.
 The above five kernels were implemented on the
HC-62 system and their functionality was tested. The
synthesis report shows an operating frequency of more
than 300 MHz for all the kernels. However, due to the
limitation of the PCI clock, we tested them at 66 MHz.
We considered various data sizes for each kernel,
emulating dynamic load during execution. The data
chosen for FFT and 2D-DCT are square matrices of
dimension 1024, 2048, and 4096. For the

Autocorrelation function, an array size of 30,000
elements was chosen and 5, 10, and 15 functional
values were considered. For RGB to YIQ conversion
and High Pass Grey Filtering, an image size of
320*240 was chosen and 1, 2, and 3 consecutive image
calculations were considered. The execution times on
an HC-62 FPGA (XC2V6000) and on the host (Xeon
processor operating at 2.6 GHz and having 1GB of
RAM) are shown in Figure 1 through Figure 4 for these
kernels. A higher end host computer (such as one with
an Intel dual-core processor and 2 GB of RAM
memory) would not be suitable for embedded systems
due to its large size and energy consumption. Each
kernel behavior was coded in C/C++ and the code was
executed in advance on the host processor to measure
th. The communication time, tcomm, was calculated
considering the data volume to be transferred, the PCI
bus interface clock frequency (66/133 MHz), and the
bus size (64-bits). The resulting values are quite
accurate for the HC-62 host-FPGA system and can be
used to validate the BE policy with experimental data.

Figure 1. FFT reordering kernel execution times

Figure 2. 2D-DCT shuffling kernel execution times

 It is evident that, for these kernels the FPGA
execution time is smaller than the host execution time.
The performance gap increases for larger matrix sizes.

 5

The measured full-configuration time for an FPGA in
the HC-62 system is 162 ms. The minimum host
communication overhead is 30 ms. For larger data
sizes, this value varies. However, we can increase the
operating frequency to 133 MHz as supported by the

Autocorrelation

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10 12 14 16

Function Values

Ti
m

e
(m

s)

Host Time FPGA Time

Figure 3. Autocorrelation kernel execution times

RGB to YIQ

0

100

200

300

400

500

600

0 0.5 1 1.5 2 2.5 3 3.5

Color Images

Ti
m

e
(m

s)

Host Time FPGA Time

 Figure 4. RGB to YIQ kernel execution times

PCI bus. With this clock frequency and 64-bit data
transfers, the maximum data size (for a 4096 square
matrix) would need about 16 ms. So, for all the cases
we consider the host communication overhead to be 30
ms (as the worst case). Consideration of these
overheads would imply that host execution is preferred
over FPGA execution for all the kernels with small
data sizes.
 Many application test cases were first created by
randomly generating task graphs from the above
kernels. A publicly available program called Task
Graphs For Free (TGFF) was used to generate these
graphs [14]. The generated task graphs have many
forks. These synthetically generated application task
graphs were run on the host only, FPGA only, and on
both following our proposed Break-Even policy. As the
actual setup of the HC-62 system unfortunately does
not support partial reconfiguration, we considered
kernel implementations on individual FPGAs to
evaluate our policies. We developed a simulator that
takes the task graph, actual (host and FPGA) execution
times, and the overheads (reconfiguration and data
communication) as inputs. It mimics various execution

behaviours of the system and calculates the respective
execution times, number of reconfigurations, and the
percentage improvement for the Break-Even policy.
The developed simulation environment is shown in
Figure 5.

Task Graph

Task Scheduler

Run time System

Results

ExecutionFPGA Host

 Figure 5. Simulation environment

 The task scheduler generates a correct sequence of
executions for task-kernels appearing in the graph. It
takes into account the dependencies among them to
prepare the correct execution sequence. The run-time
system decides whether to execute a kernel on the host
or on the FPGA in order to ensure performance
improvement. It also chooses an appropriate FPGA (or
a module) that should be reconfigured, when
necessary, in order to minimize the number of
reconfigurations. We compared the performance of the
Break-Even policy with that of the FPGA-only policy.
The latter policy always executes kernels on an FPGA
and replaces the kernels in the FPGA using FIFO. We
consider application cases that solely consist of
computation-intensive kernels and involve large data
exchanges. A kernel can be executed on the host (as
software) or on the FPGA (as hardware). The choice is
finalized at runtime by estimating the overall execution
time (without ignoring the overheads) of that kernel for
the known data size. Therefore, some kernel
realizations will rely on software whereas others will
rely exclusively on hardware. As such, there is no
explicit need to pre-partition the application into
hardware and software modules. The simulator was
developed from scratch using an object-oriented
programming environment (C/C++). It does not use
any precompiled library routines from any other
sources.

4. Performance Results and Analysis
Random task graphs with 10 to 149 nodes were

generated, with node degrees (number of outgoing
links) between 1 and 7. The distribution of various
node degrees is furnished in Table 1 for a few selected

 6

Maximum Node Degree (MND) cases with a task
graph size of 249. The majority of the nodes have
degree 3 or less.

Table 1. Node distribution for given MNDs
Maximum

node
degree

Number of nodes

Degree
1

Degree
2

Degree
3

Degree
4

Degree
5

Degree
6

Degree
7

3 90 71 88 - - - -

4 121 55 27 46 - - -

5 132 43 34 23 17 - -

6 146 46 16 13 9 19 -

7 163 35 10 7 11 10 13

 To emulate partially reconfigurable modules, we
considered a subset (3) of the available FPGAs. This
number was intentionally kept smaller than the
available kernel types (5) to enforce reconfiguration at
runtime. In most of the cases, the Break-Even policy
provided more than 50% performance improvement as
compared to the host-only execution scheme.
Performance results for Break-Even in comparison to
the FPGA-only policy are presented in Figure 6 for
task graphs with MND=3. The average performance
improvement is in favour of the Break-Even policy.
Although there is a dip and a peak in the improvement,
it appears to stabilize for larger numbers of tasks.

Effects of BE Policy

0
5

10
15
20
25
30
35
40

0 20 40 60 80 100 120 140 160

Random Tasks

Performance Improvement (%) Reconfiguration Reduction

Figure 6. BE compared to the FPGA-only policy

(MND=3)
 There is a steady increase in reconfiguration
reductions for larger numbers of tasks under the BE
policy. So, our proposed policy greatly reduces the
required reconfigurations for better performance.
Typically, processors implemented on FPGAs consume
more energy than processors implemented with fixed
logic [25]. Moreover, each FPGA reconfiguration

consumes more than 100 mA and lasts for hundreds of
milliseconds [26]. As such, it is essential to reduce the
number of required reconfigurations on the FPGA in
order to be power-competitive.
 Experiments were also conducted with variable
sizes of reconfigurable resources. Various sizes of task
graphs with MND=5 were considered and the number
of reconfigurable resources varied between 2 and 4. It
is true that performance degrades with reduced
resources. However, our work shows that this
degradation is worse under the brute-force policy than
it is under the BE policy. Also, we do not cache
reconfiguration bit-streams on the board. They are
stored in the host memory. There were five different
kernel types this time, producing fifteen different types
of nodes in the task graphs. The fifth kernel is for
High-Pass Grey filtering (HPG), from the consumer
category of the EEMBC suite. Results are summarized
in Table 2.

 Table 2. Performance of the proposed policy

33.4832.4927.1033.8834.26Performance
improvement

(%)

12598694926Reduction in
reconfigurations

2 units of
resources

28.3325.5320.5132.0836.21Performance
improvement

(%)

9267474025Reduction in
reconfigurations

3 units of
resources

13.779.257.8315.1610.85Performance
improvement

(%)

493225199Reduction in
reconfigurations

4 units of
resources

2491991529951

Number of tasks (nodes) in the graph
(Maximum node degree = 5)

Types of nodes = 15
(Types of hardware

kernels = 5)

 This table shows the performance of our BE policy
in comparison to the reference FPGA-only policy. For
example, the rightmost column reveals performance
improvements with 249 tasks. With four reconfigurable
resources, the BE policy reduces the number of
reconfigurations by 49 while providing 13.77% better
performance as compared to the FPGA-only policy.
For the same number of tasks, if the reconfigurable
units are reduced to two, then the BE policy reduces
the number of reconfigurations by 125 while providing
33.48% better performance as compared to the
reference policy. Thus, the BE policy demonstrates
much better performance (in comparison to the brute-
force FPGA-only policy) for resource constrained
reconfigurable systems.
 In order to facilitate better overall reliability,
uniformity in resource usage is required that reduces
the localization of temperature increases in the system.

 7

This means that in a partially reconfigurable multi-
module FPGA (or in a multi-FPGA system), the
amount of time each resource is used should be almost
the same or within an acceptable range. To test the
effectiveness of the BE policy towards this end, we
carried out an experiment to measure the amount of
time each resource unit is used in the HC-62 system to
completely execute a certain task graph. We considered
three units of FPGA resources to enforce
reconfigurations for task graphs with five kernels. To
clearly observe the diversity in FPGA unit-usage, we
define as peak disparity in FPGA usage (ms) the
difference between the maximum and the minimum
unit-usage for each task group under the two policies.
This peak disparity is plotted against the number of
tasks in Figure 7.

Peak Disparity in FPGA unit Usage

0

5000

10000

15000

20000

25000

30000

0 50 100 150 200 250 300

Tasks in the Graph

Pe
ak

 D
is

pa
rit

y
(m

s)

FPGA-only (FIFO) Break-even

Figure 7. Diversity in FPGA usage

 Our proposed policy has lower disparity in FPGA
unit-usage compared to the reference policy for all test
cases, as seen from this figure. Also, the rate of
disparity growth, as a function of the number of tasks,
is less than the FPGA-only policy. This generally
demonstrates that the BE policy ensures better
uniformity in the amount of time a reconfigurable unit
is used, in addition to reducing the number of
reconfigurations.

5. Comparison with Optimal Performance

 We can setup several yardsticks in order to fairly
evaluate the execution performance of the Break-Even
policy. One such yardstick could be the estimated
optimal execution time in a system with sufficient
FPGA resources to accommodate all the kernels
simultaneously. This is an ideal situation that would
require setting up only one implementation of the
hardware configuration for each kernel present in the
task graph. The other yardstick could be the execution
time on a system with FPGA resources that can
accommodate less than the maximum number of
kernels. This is a constrained situation and may

represent a sub-optimal execution time. As the
dynamic system has no knowledge of the complete task
graph at runtime, these execution times can be
estimated off-line after actual execution, exclusively
for the sake of comparison. In the latter case, we
assume a practical system that can accommodate
simultaneously in hardware 40% of the kernels. For
this system, we calculate the host execution time for
different kernels and 40% of the kernels with highest
execution times are targeted for FPGA implementation.
These kernel-configurations maintain hardware
realization throughout the entire execution of the task
whereas the other kernels are executed on the host. We
compare the performance of the Break-even policy
against these two yardsticks. Results are shown in
Figure 8.

60

Comparison with Best Performance

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 50 100 150 200 250 300

Number of Tasks

Ratio to Ideal Best Time Ratio to Practical Best Time

Figure 8. BE compared to optimal performance

 As evident from Figure 6, the proposed policy
degrades the performance by about 21-26% for almost
all the test cases as compared to the ideal performance.
But, this degradation is reasonable in a resource-
constrained embedded environment where this
performance is achieved with 60% savings in
reconfigurable resources. Even for a number of tasks
smaller than 50, the BE policy performs better than the
ideal and sub-optimal policies. The reason is that the
first yardstick assumes that all the kernels are always
configured into FPGAs, leading to the highest
reconfiguration time that may not be justified in this
case. But, the BE policy judiciously reconfigures the
FPGA only if can ensure performance improvement.
Also, it can be seen from Figure 6 that our policy
generally performs better than the practical sub-optimal
performance, providing a 2-18% speedup. These
results demonstrate that the BE policy operates close to
the first defined yardstick and even better than the
second defined yardstick in a dynamically-challenged
resource constrained embedded environment with a
good trade-off between performance and resources.

 8

6. Application with Fixed Execution
 Sequence

 JPEG image encoding, involving fixed-sequence
kernels, becomes our next chosen application. It
consists of the following kernels: RGB to YCbCr, 2D-
DCT, Quantization, Run-Length Encoding (RLE), and
Huffman encoding. Their contributions to the total
execution time on a PC with a Xeon processor are
shown in Table 3 [22]. This table justifies the
implementation of the shortest DCT-kernel on the host.
Following is a brief description of this application.
 A still image is converted into a compressed
representation by JPEG encoding. Partial information
is lost and the recovered image is an approximation of
the original image. Our input is an image of 320 pixels
by 240 lines represented in the Red-Green-Blue (RGB)
colour space, with each component having an eight-bit

Table 3. Breakdown of JPEG encoding time

13.3Others

86.7Total kernel contribution

35.9Encoding (RLE+Huffman)

31.8Quantization

8DCT

11RGB-YCbCr

Execution Time (%)JPEG Kernels

value. This image is converted to the YCbCr colour
space involving a straightforward matrix multiply-
accumulate calculation, similar to the RGB-YIQ
conversion, as shown below. The image is then
processed as 8*8 pixel blocks.

Y = (0.299×R) + (0.587×G) + (0.114×B)
Cb = – (0.169×R) – (0.331×G) + (0.500×B)
Cr = (0.500×R) – (0.418×G) – (0.082×B)

 Then a two-dimensional discrete cosine transform
(2D-DCT) is performed on this data to produce
frequency domain coefficients. As this process seems
to take the least amount of time on the host [22], we
decided to always implement it on the host, using the
FPGAs to implement other time-consuming kernels.
During quantization, each of these frequency domain
coefficients is divided by a scale factor reducing a
large number of them to zero. Then ‘zig-zag’ scanning

is performed. The number of zero coefficients
preceding a nonzero one is represented as the ‘run’.
The nonzero coefficient value is represented as the
‘size’. This is referred to as run-length encoding
(RLE).
 Then, each run-size combination is assigned a
unique Huffman code generated from a look-up table
as in [20]. These JPEG encoding kernels were
implemented in our test environment on the HC-62
system that contains Virtex II FPGAs (XC2V6000);
their software counterpart was realized on a Dell PC
with a 2GHz Pentium IV processor and 256 MB of
RAM. Static execution times are shown in Table 4.

Table 4. Execution time of various JPEG kernels

210140701.310.870.44Huffman

360240120963RLE

54036018015105QUANT.

1501005015010050
DCT (on

host)

4903601603.482.321.16RGB-
YCbCr

3-images2-images 1-image 3-images2-images1-image

Execution time on host (ms)Execution time on HC-62 FPGA
(ms)JPEG

Kernels

 JPEG encoding is then simulated in our simulation
environment, as described in section 3, under various
schemes. In these cases, the task graph is linear and
static. We compared the performance of the BE policy
for executing the JPEG encoder with the host and the
two previously defined yardsticks of Section 5. These
results are summarized in Figure 9.
 This plot represents the ratio of BE performance to
other yardsticks for various image sizes. A value less
than one reveals better performance under the BE
policy. As we can see from this figure (the curve with
triangular points), the BE policy provides much better
performance compared to host execution especially
for larger data sizes. However, this performance gain is
smaller than that seen in Table 4 at the kernel level as
the (re)configuration and communication overheads
add to the total execution time on the FPGA. Still the
policy results in execution time savings of 46% for 3-
images compared to host execution.
 The BE policy performs close to the defined best
possible scenario. Actually, it performs better than
them in most cases (the curves with diamond and
rectangular points). The reason is that the first

 9

Figure 9. BE compared to optimal performance for

JPEG encoding

yardstick assumes that all the kernels are always
configured into FPGAs, leading to the highest
reconfiguration time, as stated in Section 5. The second
yardstick also assumes that the two highest execution-
time kernels are always configured into FPGAs,
leading to a relatively higher reconfiguration time also.
In contrast, the BE policy only reconfigures the FPGA
if this leads to performance improvement. As such,
when the data size is increased, a higher execution time
justifies the reconfiguration overheads and the
performance of the yardstick policies reaches closer
that of the BE policy. However, for 3-images of input
data, the execution times of the kernels on the host are
large; this degrades the performance of the second
yardstick. As a result, it exhibits performance loss
compared to BE for 3-images (the curve with
rectangular points). Thus, these results extend the
viability of the BE policy for static, linear task graphs
as well. So, it can be safely concluded that the
proposed policy can ensure good performance both for
random, dynamic (as presented in Sections 4 and 5) as
well as linear, static task graphs involving embedded
kernels.

7. Compensation Techniques for

Reconfiguration Overheads

 To completely hide the reconfiguration latency or to
minimize its effects, a partial overlap should be
attempted with the current kernel execution. This way,
only the time of the first configuration remains exposed
in its entirety as overhead. Successive reconfigurations
could be pipelined for their overhead to be hidden
either fully or partly. Such techniques have not been
considered in [27] for high reconfiguration policy like
the FPGA-only policy. In order to implement this
concept of reconfiguration overlap, the Block RAMs
embedded in the Virtex II FPGAs of the HC-62 system
were used. As such, the host can transfer data into
these RAMs, start the execution of the hardware kernel

associated with these RAMs, and then start
reconfiguring another unit for next kernel execution.
After processing the data, the hardware kernels put
back the results into these RAMs for host access. All
these RAMs have been implemented in the HC-62
system as FIFO memories. These FIFO memories
wrap-up the hardware kernel, such as an FFT
reordering kernel, within the FPGA. Experimental
results of overlapping reconfiguration for one kernel
with the execution of another under the BE policy are
presented in Table 5. Various tasks with 16 to 249
nodes and maximum node degree of five were chosen.
Only two units of reconfigurable resources were used
within a quad of the HC-62 system to enforce more
reconfigurations.

Table 5. Effect of Reconfiguration Overlapping in BE

Policy

3303426362233791310065222075
Non-

overlapped

3093724498216221246759271825Overlapped

6.357.077.524.839.1212.05Improvement
(%)

Execution Time of BE policy (ms)

249199152995116
Tasks

(Degree = 5,
5-Kernels)

 It can be seen from this table that in all the cases the
overlapping technique results in performance
improvement compared to non-overlapped execution.
It should be noted that the BE policy significantly
reduces the number of required reconfigurations (by
more than 50%) as compared to brute-force
reconfigurations. The technique is powerful and can
lead to significant performance acceleration for
application cases with many kernels and limited
reconfigurable resources that could otherwise generate
plenty of reconfigurations. This experiment of
reconfiguration overlapping was extended to the
FPGA-only policy under the same conditions as with
the BE policy. The results are presented in Table 6.
Performance improvements are much higher from the
non-overlapped to overlapped cases than the BE
policy, as the FPGA-only policy generates a lot of
reconfigurations. However, the actual application
performance for each case is still in favor of the BE
policy, as seen from Tables 5 and 6. The benefits of
overlapping depend on the exact time that the next
kernel is uniquely identified. For non-deterministic
systems, if it is identified early on in the execution of
the immediately preceding kernel, then the benefit of

 10

overlapping the former’s execution with the
reconfiguration for the next kernel can be substantial or
tremendous (even zeroing the effect of
reconfiguration). However, if the next kernel is
identified late in the execution of the immediately
preceding kernel, then the overlapping technique may
provide marginal benefit or no benefit at all.

 When multiple tasks are ready for execution, a
straight forward way to schedule the tasks is by
ranking their ID numbers. In these experiments, the
lowest ID task was chosen for execution in such
situations. However, the runtime system could check
for the presence of their constituent kernels in the
FPGA configuration. It should choose a task, if
possible, that has its required kernel already present in
the hardware. This would, in turn, reduce the number
of required reconfigurations to run the application on
the system. For policies that generate huge numbers of
reconfigurations, such as the FPGA-only reference
policy, this refined scheduling technique could prove
beneficial. This technique is named as Kernel-presence
scheduling. Experiments were carried out to measure

Table 6. Effect of Reconfiguration Overlapping in

FPGA-only Policy

4966139049320721981399212417
Non-

overlapped

4045231486265061614381472175Overlapped

18.5419.3717.3518.5217.8810.01Improvement
(%)

Execution Time of FPGA-only policy (ms)

249199152995116
Tasks

(Degree = 5,
5-Kernels)

the application performance under Lowest-ID and
Kernel-presence scheduling for the FPGA-only policy.
The results are furnished in Tables 7 and 8. The first
table shows the execution times under the two schemes
for various application task graphs. The second one
shows the number of required reconfigurations for
them.
 As seen from Table 7, the Kernel-presence
scheduling technique provides marginal performance
improvements. Although these figures are nominal, this
scheduling technique results in reducing the number of
required reconfigurations, as evident from Table 8.
This reduction is larger for bigger task graphs, which
implies larger savings of reconfiguration energy under
the Kernel-presence scheduling scheme.

 Table 7. Execution Time for Various Tasks under Two
Scheduling Schemes

4966139049320721981399212417Lowest ID
Scheduling

4706936943314241916597592417
Kernel

Presence
Scheduling

5.225.392.023.271.630.0Improvement
(%)

Execution Time of FPGA-only policy (ms)

249199152995116
Tasks

(Degree = 5,
5-Kernels)

Table 8. Number of Required Reconfigurations under

Two Scheduling Schemes

1471168860336Lowest ID
Scheduling

1311038456326
Kernel

Presence
Scheduling

16134410Improvement

Required Reconfigurations of FPGA-only policy

249199152995116
Tasks

(Degree = 5,
5-Kernels)

 Alternatively, the runtime system could also choose
the kernel with the highest execution time or the
smallest reconfiguration time, when multiple tasks are
ready for execution. This opens up the possibility to
partially overlap or fully eliminate reconfigurations in
the FPGA-only policy, as mentioned earlier. As such,
the experiments were extended with the scheduler
checking the execution time of the currently scheduled
kernel with that of the next two; all are ready for
execution. If any subsequent kernel has a higher
execution time, it is selected for execution. However,
this refinement in scheduling generated more
reconfigurations than the original schedule. For
example, a task graph with 100 tasks generated 62
reconfigurations with this refinement whereas the
original schedule generated 60 reconfigurations. Thus,
it can be concluded that although reconfiguration
overlapping improved the application performance for
policies generating huge reconfigurations, the
improvement is better when the overlapping technique
is applied to the original schedule.

 11

8. Conclusions

 Embedded systems require power efficient,
compact designs. These systems are exposed to events
that may or may not be known at design time. Thus,
incorporating efficient dynamic adaptability is often
important. Reconfiguring programmable hardware at
runtime to alternatively execute various kernels could
conserve space in embedded systems, thus providing a
balance between performance and area. A policy was
presented for dynamic reconfiguration of FPGA
resources based on evaluating each time the value of a
reconfiguration. Two approaches were considered in
our evaluation: random-dynamic and linear-static task
graphs. Benchmarking shows significant improvements
in execution time, even when considering overheads.
Also, our methodology reduces the number of
reconfigurations for an application, thus having the
potential to reduce the overall energy requirements
compared to the brute-force policy. In addition, the
proposed reconfiguration policy also ensures more
uniform usage of the reconfigurable resources. For
both dynamic and static task-loads, the obtained
performance is comparable to the best possible cases,
demonstrating a good trade-off between performance
and resource consumption. Alternate scheduling
strategies that alleviate reconfiguration overhead were
also considered. Two extensions to the proposed policy
improve application performance in systems that
require large number of reconfigurations. In such
systems, reconfiguration overlapping demonstrates
reduction in the application execution time whereas the
Kernel-presence scheduling technique reveals
reduction in the number of required reconfigurations.

9. Future Work

Hybrid hardware-software systems containing
reconfigurable resources provide many benefits in the
embedded systems domain and are expected to
penetrate a growing number of new applications. In
such systems, the reconfiguration overheads will be
substantial until a new FPGA technology or
architecture is developed to reduce or eliminate their
effect. It is wise to accept their existence and work
around these overheads to still satisfy the high
performance objectives of various applications. Based
on our presented work, we propose the following
extensions.

Representative applications for real dynamic behavior:
A video encoding system could be considered that
employs MPEG or JPEG depending on whether movie
transmission or videoconferencing is chosen. This
multifunction system could represent real dynamic
behavior.

Load balancing between the host and the
reconfigurable platform: Instead of executing a kernel
solely on the host or on the reconfigurable resources, it
might be worth splitting the workload between them.
This type of load distribution might further boost
application performance.

Pursuing uniform utilization: The runtime system
could keep statistics for the utilization of each
reconfigurable unit (either a partially reconfigurable
module or a complete FPGA). The ones with lower
utilization should be the target for the next kernel
implementation. This would not only balance the usage
of all the reconfigurable resources but could also
reduce the localization of temperature increases in the
system.

Acknowledgment

This research was supported in part by the U.S. Dept.
of Energy under grant DE-FG02-03CH11171.

References

[1] R. Krashinsky, et al., "The Vector-Thread

Architecture", 31st Intern. Symp. Computer
Architecture., Munich, Germany, June 19-23, 2004.

[2] I. Robertson and J. Irvine, “A Design Flow for Partially
Reconfigurable Hardware”, ACM Trans. Embedded
Computing Systems, 3(2), 2004, 257-283.

 [3] F. Barat, et al., “Reconfigurable Instruction Set
Processors from a Hardware/Software Perspective”,
IEEE Trans. Software Engineering, 28(9), 2002, 847-
862.

[4] R. Lysecky, G. Stitt, and F. Vahid, “Warp Processors”,
ACM Transactions on Design Automation of Electronic
Systems, 11(3), 2006, 659-681.

[5] X. Wang and S.G. Ziavras, “A Framework for
Dynamic Resource Management and Scheduling on
Reconfigurable Mixed-Mode Multiprocessor”, IEEE
Intern. Conf. Field-Programmable Technology,
Singapore, Dec. 11-14, 2005.

[6] X. Wang and S.G. Ziavras, “Exploiting Mixed Mode
Parallelism for Matrix Operations on the HERA
Architecture through Reconfiguration,” IEEE Proc.
Computers Digital Techniques, 153(4), 2006, 249-260.

[7] M.Z. Hasan and S.G. Ziavras, “Runtime Partial
Reconfiguration for Embedded Vector Processors,”
Intern. Conf. Information Technology New
Generations, Las Vegas, Nevada, April 2-4, 2007.

[8] S. Ghiasi, et al., “An Optimal Algorithm for
Minimizing Run-time Reconfiguration Delay”, ACM
Trans. Embedded Computing Systems, 3(2), 2004, 237-
256.

[9] W. Fu and K. Compton, “An Execution Environment
for Reconfigurable Computing”, 13th IEEE Symp.
Field-Programmable Custom Computing Machines,
Napa, California, April 17-20, 2005.

 12

[10] B. Greskamp, and R. Sass, “A Virtual Machine for
Merit Based Run-time Reconfiguration”, 13th IEEE
Symp. Field-Programmmable Custom Computing
Machines, Napa, California, April 17-20, 2005.

 [11] D. Wentzlaff and A. Agarwal, “A Quantitative
Comparison of Reconfigurable, Tiled and
Conventional Architectures on Bit Level
Computation”, IEEE Symp. Field-Programmable
Custom Computing Machines, Napa, California, April
20-23, 2004.

[12] H. Amano, et al., “Performance and Cost Analysis of
Time Multiplexed Execution on the Dynamically
Reconfigurable Processor”, IEEE Symp. Field-
Programmable Custom Computing Machines, Napa,
California, April 17-20, 2005.

[13] D. Mesquita, et al., “Remote and Partial
Reconfiguration of FPGAs: Tools and Trends”, Intern.
Parallel and Distributed Processing Symp., Nice,
France, April 22-26, 2003.

[14] J. Noguera, and R.M. Badia, “Multitasking on
Reconfigurable Architecture: Micro Architecture
Support and Dynamic Scheduling”, ACM Trans.
Embedded Computing Systems, 3(2), 2004, 385-406.

[15] C. Bobda, et al., “The Erlangen Slot Machine: A
Highly Flexible FPGA Based Reconfigurable
Platform”, 13th IEEE Symp. Field-Programmable
Custom Computing Machines, Napa, California, April
17-20, 2005.

[16] K. Eguro, and S. Hauck, “Issues and Approaches to
Coarse Grain Reconfigurable Architecture
Development”, 11th IEEE Symp. Field-Programmable
Custom Computing Machines, Napa California, April
8-11, 2003.

[17] J. Harkin, T.M. McGinnity, and L.P. Ma,
 “Modeling and Optimizing Run-Time Reconfiguration
 Using Evolutionary Computation”, ACM Transactions
 on Embedded Computing Systems, 3(4), November
 2004, 661–685.
[18] T. Pionteck, C. Albrecht, R. Koch, E. Maehle, M.

Hiibner, and J. Becker, “Communication Architectures
for Dynamically Reconfigurable FPGA Designs”, 21st
IEEE International Parallel and Distributed
Processing Symposium, Long Beach, California, March
26-30, 2007.

[19] M. Hubner, C. Schuck, M. Kuhnle, and J. Becker,
“New 2-Dimensional Partial Dynamic Reconfiguration
Techniques for Real-Time Adaptive Microelectronic
Circuits,“ IEEE International Symposium on VLSI,
Karlsruhe, Germany, March 2-3, 2006.

[20] The EDN Consortium, http://www.eembc.org/.
[21] M.R. Guthaus, et al., “MiBench: A free, Commercially

Representative Embedded Benchmark Suite”, 4th IEEE
Annual Workshop on Workload Characterization,
Austin, Texas, Dec. 2, 2001.

 [22] S. Gerding, “The Extreme Benchmark Suite:
Measuring High-Performance Embedded
Systems,” MS Thesis, MIT, September 2005.

[23] Starbridge Systems, http://www.
starbridgesystems.com/.

[24] M.Z. Hasan and S.G. Ziavras, "Resource Management
for Dynamically-Challenged Reconfigurable Systems,"
12th IEEE Conf. Emerging Technology and Factory
Automation, Patras, Greece, Sept. 25-28, 2007, 119-
126.

[25] R. Lysecky and F. Vahid, “A Study of the Speedups
and Competitiveness of FPGA Soft Processor Cores
using Dynamic Hardware/Software Partitioning,” IEEE
Design Automation and Test in Europe, Munich,
Germany, May 7-11, 2005, 18-23.

[26] X. Wang, S.G. Ziavras and J. Hu, “System-Level
Energy Modeling for Heterogeneous Reconfigurable
Chip Multiprocessors,” IEEE International Conference
on Computer Design, San Jose, California, Oct. 1-4,
2006.

[27] M.Z. Hasan and S.G. Ziavras, “Reconfiguration
Framework for Multi-kernel Embedded Applications,”
2nd Annual Reconfigurable and Adaptive Architecture
Workshop (in conjunction with the 40th Annual
IEEE/ACM International Symposium on
Microarchitecture), Chicago, Illinois, Dec. 2007.

Muhammad Zafrul Hasan received the B.Sc. in
Electrical and Electronic Engineering from Bangladesh
University of Engineering and Technology in 1988. He
received the Master of Electronic Engineering from
Eindhoven University of Technology (The
Netherlands) in 1991 under a Philips postgraduate
scholarship program. He subsequently held several
faculty positions in an engineering college and in a
university in Malaysia. He obtained the Ph.D. in
Computer Engineering from New Jersey Institute of
Technology. He was awarded the NJIT Hashimoto
Fellowship in the academic year 2005-06. He is
currently an Assistant Professor of Engineering
Technology and Industrial Distribution at TAMU. His
research interests include the design and
implementation of dynamically reconfigurable
computing systems, computer architecture and
behavioral synthesis of digital systems.

Sotirios G. Ziavras received the Diploma in EE from
the National Technical University of Athens, Greece,
in 1984 and the Ph.D. in Computer Science from
George Washington University in 1990. He was also
with the Center for Automation Research at the
University of Maryland, College Park, from 1988 to
1989, performing research in parallel computer vision
on Connection Machine supercomputers. He was a
visiting Professor at George Mason University in
Spring 1990. He is currently a Professor of Electrical
and Computer Engineering at NJIT and the Director of
the Computer Architecture and Parallel Processing
Laboratory. He has authored more than 120 papers. His
major research interests are advanced computer
architecture, reconfigurable computing, and parallel
processing.

