
 1

A Configurable Multiprocessor and
Dynamic Load Balancing for Parallel LU Factorization*

Xiaofang Wang and Sotirios G. Ziavras
Department of Electrical and Computer Engineering

 New Jersey Institute of Technology
Newark, NJ 07102

{xw23, ziavras}@njit.edu

Abstract

The exponentially increasing complexity of many

scientific applications and the high cost of
supercomputing force us to explore new, sustainable, and
affordable high-performance computing platforms.
Recent significant advances in FPGA technology and the
inherent advantages of configurable logic have brought
about new research efforts in the configurable computing
field: parallel processing on configurable chips. We
explore here parallel LU factorization of large sparse
block-diagonal-bordered (BDB) matrices on a
configurable multiprocessor that we have designed and
implemented. A dynamic load balancing strategy is
proposed and analyzed. Performance results for IEEE
power test systems are provided. Our research provides
evidence that configurable logic can be a viable
alternative to high-performance scientific computing.

Keywords: parallel processing, LU factorization, FPGA,
multiprocessor, dynamic load balancing.

1. Introduction

LU factorization is a fundamental method that is

widely employed to solve large systems of linear
equations appearing in many important application areas,
such as circuit simulation, power networks, structural
analysis, etc. Due to its high computational complexity,
O(N3) for a dense matrix, where N x N is the size of the
matrix, research efforts on parallel implementations have
been ongoing for several decades. However, due to the
scarce availability and the prohibitively high cost of
proprietary supercomputers and other parallel machines,
most of these research results are limited to a narrow
range of applications. The recent shrinking of the

* This work was supported in part by the U. S. Department of

Energy under grant ER63384.

supercomputer market makes this issue more prominent.
The desire for affordable high-performance parallel

computing inspired many research efforts in recent years
in COTS-based (commercial-off-the-shelf) platforms,
such as symmetric multiprocessing (SMP) clusters or
multiprocessors and Beowulf clusters. The community of
cluster computing continues to expand, with tera-scale
clusters now in production and peta-scale clusters in
design. However, these approaches do not deliver the
highest level of performance due to many inherent
disadvantages of the underlying sequential platforms,
such as the much greater communication latency between
processing nodes. Moreover, the computation demands of
many application algorithms increase at a higher rate than
Moore's Law [3]. The different requirements of general
computing and scientific applications convince us that we
should not rely heavily on COTS components at the
lowest architectural level for a bright future of high-
performance computing.

At the same time, FPGA-based configurable
computing is becoming more and more appealing and has
resulted in impressive achievements for many
computation-intensive applications [1-10, 14-16].
Recently available multi-million platform FPGAs with
richer embedded feature sets, such as plenty of on-chip
memory, DSP blocks and embedded hardware
microprocessor IP cores, have made it feasible to build
parallel systems on a programmable chip (PSOPC). Our
specific research motivation is to build cost-effective
high-performance parallel systems within FPGAs in order
to enable the solution of large sparse linear systems of
equations. We have implemented a scalable shared-
memory multiprocessor within a single FPGA based on
configurable processor IP cores; we investigated parallel
LU factorization of large sparse BDB matrices on our
machine [14]. The obtained performance provides
evidence that FPGA-based custom configurable machines
can be cost-effective platforms for high-performance
scientific computing.

 2

The BDB form has long been considered to be a
desirable structure for large sparse matrices due to its
inherent features for parallel implementation. In this form,
all non-zero elements are grouped into blocks along the
diagonal, and the right and bottom borders. As a result,
each diagonal block and the two border blocks on the
corresponding row and column can be factored
independently and in parallel with all other such 3-block
groups; this does not apply to the last diagonal block in
the lower right corner [14]. Parallel BDB LU factorization
includes a preprocessing phase where the input sparse
matrix is reordered and partitioned into the BDB form.
For most large sparse matrices, the obtained blocks are
irregular in size and sparsity. So, the floating-point
operations involved in every subtask vary and the
execution times are unpredictable. Moreover, fill-ins
(appearing when zero elements become non-zero
elements) that occur dynamically at runtime also add
more indeterminacy. Therefore, dynamic load balancing
is needed.

In this paper, we further improve our hardware design
for the configurable multiprocessor and explore dynamic
load balancing for parallel LU factorization of large
sparse BDB matrices. In contrast to our approach in [14],
the factorization of the last block also is parallelized
efficiently on our new architecture. We introduce the
improved multiprocessor architecture and hardware
design details with a focus on the memory system in
Section 2. Section 3 presents parallel LU factorization of
sparse BDB matrices on our machine. We explore the
load balancing strategy for this algorithm on our machine
in Section 4. A theoretical performance analysis is also
included in this section. Experimental results for IEEE
power flow test cases with up to 7 processors are
presented in Section 5. A summary is given in Section 6.

2.FPGA-based configurable multiprocessors

2.1 Recent FPGA developments

With increases in logic resources per chip and

improved architectures, FPGA-based configurable
computing recently became very appealing and has
resulted in many impressive achievements. It is
anticipated that chips with 50 million gates of
reconfigurable logic will be available by 2005 at
substantially lower costs. Limited resources are no longer
a major hurdle for the design of large FPGA-based
systems. The flexibility, re-programmability and run-time
reconfigurability of FPGAs have great potential to offer
an alternative computing platform for high-performance
computing.

Configurable RISC processor IP cores have recently
become available to greatly empower FPGA-based
system implementations. Configurable processors add

another dimension in programmability and flexibility. We
can tailor the processor to the specific requirements of the
application and include only those features that are
needed by the application. The instruction set architecture
(ISA), register file, software development APIs
(application programming interfaces), memory hierarchy
and size, and communication channels can all be
configured and extended. Also, standard and user
customized logic engines can be easily added, modified or
extended, as needed. We can identify critical instructions
in the application code that affect performance the most
and implement them in hardware. Configurable processor
cores also provide us with more flexibility to integrate
them in an SOPC environment with other IPs, compared
to fixed processor cores. New generation FPGAs can host
dozens of RISC processor cores, which shows the
feasibility of building parallel systems in a single FPGA.

Moreover, the performance and efficiency of
algorithms highly depend on their good match with the
target architecture. New FPGA-based configurable
computing strategies provide the system designer with
several dimensions to optimize the design for application-
specific performance. Full control is viable over most of
the resources and enormous opportunities appear during
the overall design process. However, most of the current
FPGA development kits are based on similar design flows
and languages with ASIC design methods. Although some
groups work on high-level C/C++-like languages to close
the gap between hardware and software design
methodologies, the performance is often still one or two
orders of magnitude lower than that of manually
optimized implementations [1, 6]. There are no effective
design methodologies and development tools available for
this new codesign model, in particular for parallel
systems. It requires the designer to be proficient in
algorithms, system-level design, software/hardware
partitioning, architecture design, and software/hardware
coding.

2.2 Our multiprocessor architecture model

Fig. 1 shows our processor-based system model for the

parallel BDB LU factorization algorithm [14]. For the
sake of brevity, this algorithm is presented along with its
implementation on our system in the next section. As the
feature size of silicon processes enters the submicron
range, the wire delay becomes even more significant
compared to the logic delay, and it can even dominate the
system's performance due to the reverse scaling of wires
compared to transistors. The routing of chip-level and
clock signals tends to become more cumbersome in
complex multi-million gate SOPC designs. In contrast,
our binary tree network for data communications
eliminates global transfers. Our clustered binary tree
topology has been chosen by the communication patterns

 3

in our algorithm (details are in Section 3). The control
channel is a star connection between the SC (system
controller) and every PE. There is also a direct
communication channel between the SC and every parent
of the binary tree. We implemented serial and TCP
connections between the multiprocessor and the host
computer.

2.2.1. Processing element (PE). The PE lies in the core
of any computing machine. We used a 32-bit Nios IP
processor from Altera as the PE. The system controller is
also implemented with Nios. The Nios RISC processor is
fully configurable and runs at over 125 MHz in the Altera
Stratix FPGA. It utilizes a 5- stage pipeline and conforms
to a modified Harvard memory architecture. With
configurable processors we need to carry out trade-offs
between the processing power and resources used. A
typical Nios processor in our machine consumes about
1600 logic elements in the APEX20KE device. The
number of PEs in our computing model is scalable, as
shown in Fig. 1. The operation of every PE is guided by
the SC that utilizes the boot code in the on-chip individual
program memory of PEs and its interrupt connection to
individual PEs. Our multiprocessor targets in general
complex matrix algorithms that require floating-point
arithmetic to deal with dynamic data of wide range. Our
applications also apply some trigonometric functions,
such as sine and cosine, which take considerable time if
implemented in software. We implemented floating-point
arithmetic and these functions in hardware and interfaced
the application code as custom instructions. Such
hardware customization also releases many resources to
the processor for other tasks. The reduced clock cycles
resulted in significant improvement in the matrix
operations reported in [14-16].

Figure 1. Our multiprocessor architecture model

2.2.2. Memory hierarchy design. Due to the current lack
of latency reducing software support for configurable
machines, the memory design becomes a dominant factor
in system performance. Moreover, while new silicon

technology and computer architecture research facilitate
faster processors, the performance gap between
processors and memories tends to become larger. In our
shared memory multiprocessor, the overall speedups may
be quickly diminished due to severe memory contention
and large system synchronization, if we rely solely on the
on-board SRAM memory as the main runtime memory.
Fortunately, new generation FPGAs make available large
on-chip memory with wide communication channels. Our
FPGA-based multiprocessor architecture capitalizes on
this advantage and forms several kinds of memories in
order to maximize performance. For example, we
implemented a controller to oversee the system's
operation, and also pre-fetch instructions and data from
the on-board memory into the PEs; the latter use the on-
chip memory to run the application code because of its
much lower latency compared to the on-board SRAM
memories.

Every PE has a local on-chip program memory and a
shared-data memory. The data memory is shared with its
sibling and parent, as shown in Fig. 2. The sizes of the
program and data memories for each PE are determined
by the available memory capacity of FPGAs and the total
number of PEs. The shared-data memory improves the
performance by eliminating the transfer of large blocks of
data between memories. All the required interconnection
between on-chip memories and/or processors is
implemented based on the multi-mastering, fully
connected AVALON bus of Altera. Thus, the
communication bandwidth is quite large and the on-chip
memory access time is only one clock cycle.

PEPM

PE

Shared
Data

Memory

PM PE PM

Figure 2. Memory configuration (PM: program memory)

Because it takes on the average at least 4 clock cycles

to access the on-board synchronous SRAM memory, on-
chip data and instruction caches are employed to reduce
the memory access latency. For a fixed system, we focus
on the efficient utilization of a cache of fixed size and
configuration. For a configurable processor, we have
choices in both hardware configuration and software
optimization. In order to find an optimal cache size for
our application, we compared the performance of a single
processor with different instruction and cache sizes for the

SC: System Controller PE: Processing Element
IC: Instruction Cache DC: Data Cache
LDM: Local Data Memory SDM: Shared Data Memory
PM: Program Memory

 AVALON FABRIC

PE SDM

PM

LDM

To SC

SC

IC DC

 4

LU factorization algorithm applied to a 30 x 30 matrix.
We can tell from the results shown in Fig. 3 that the cache
configuration can make a difference of more than 20% in
performance. We used a direct-mapping cache with the
write-through policy in our experiments. The number
preceding "(I)" or "(D)" represents the size of the
instruction or data cache, respectively, expressed in
Kbytes.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0(
I)

+0
(D

)

1(
I)

+0
(D

)

1(
I)

+1
(D

)

2(
I)

+1
(d

)

2(
I)

+2
(D

)

2(
I)

+4
(D

)

4(
I)

+0
(D

)

4(
I)

+1
(D

)

4(
I)

+2
(D

)

4(
I)

+4
(D

)

8(
I)

+1
(D

)

8(
I)

+2
(D

)

8(
I)

+4
(D

)

8(
I)

+8
(D

)

16
(I

)+
4(

D
)

Figure 3. Relative execution time for 30 x 30 LU
factorization compared to a non-cached system

3. Parallel BDB LU factorization

Many scientific and engineering problems, such as
circuit simulation, applications in electric power networks
and structural analysis, require to solve a large sparse
system of simultaneous linear equations of the form Ax =
b; A is an N x N nonsingular matrix, x is a vector of N
unknowns and b is a given vector of length N. One of the
classic and widely employed direct methods is LU
factorization, which works as follows. We first factorize
A so that A = LU, where L is a lower triangular matrix
and U is an upper triangular matrix. Their elements can be
determined by

1

1

1
(*)* , [1, 1]

j

ij ij ik kj
jjk

L A L U for j i
U

−

=

= − ∈ −∑ and
1

1

* , [,]
i

ij ij ik kj

k

U A L U for j i N
−

=

= − ∈∑ , respectively [13]. Once L

and U are formed, the unknown vector x can be identified
by forward reduction and backward substitution,
respectively, using the two equations Ly = b and Ux = y.
Since LU factorization is a computation-intensive
procedure, its parallel solution has been a quite active
research area. Thus, plenty of parallel techniques have
appeared in the literature.

Although the LU factorization of sparse matrices
appears to be easier to parallelize, it suffers from a
significantly unique dynamic problem corresponding to
fill-ins. Our earlier research has shown that it is often
inefficient to extract instruction level parallelism (ILP) in
the LU factorization of sparse matrices due to irregular

data dependences and the limited scalability of the
parallel implementations. We believe that data
partitioning is an efficient and scalable approach to
parallelize LU factorization algorithms.

One of the partitioning schemes is to reorder and
partition the A matrix into the BDB form by the node-
tearing technique [12] or similar heuristics. In the BDB
form shown in Fig. 4, the Aik ’s represent matrix sub-
blocks and all the non-zero elements in the matrix appear
only inside these sub-blocks. The blocks Aii, Ain and Ani
are said to form a 3-block group, where i∈[1, n-1] and
n ≤ N. Ann is known as the last block. The Aii’s will be
referred to as the diagonal blocks, and Ain and Ank will be
called right border block and bottom border block,
respectively, where i, k∈[1, n].

11 1

22 2

1 1 1

1 2 1

0 ... 0
0 ... 0

0 ... 0
0 0 ...

...

n

n

n n n n

n n nn nn

A A
A A

A A
A A A A

− − −

−

 
 
 
 
 
 
 
 

M M

Figure 4. Sparse BDB matrix

The sparse BDB matrix format presents great

advantages for parallel implementation. Since all non-
border off-diagonal blocks contain only 0’s, there will be
no fill-ins in these blocks during factorization and the
resulting matrix keeps the BDB structure of Fig. 4. In this
matrix form, there is no data dependence among the
factorization of the 3-block groups until the last block, so
the factorization of the 3-block groups can be carried out
independently from each other; no inter-processor
communication is required during this procedure. The last
block, Ann, requires data produced in the right and bottom
border blocks, so its factorization is the last step. To
factor the last block, pairs of blocks are multiplied in
parallel to produce *

nj jnnnA A A= , for j∈[1, n-1]. The
summation of these products is needed to factor the last
block. This summation is carried out along the binary tree
in parallel by the other processors and the results are sent
to the processor that was assigned the last diagonal block
(for a highly parallel approach). We have achieved very
good speedups [14] on our FPGA-based multiprocessor
that targets an Altera SOPC FPGA board. We have also
demonstrated our parallel BDB solution for Newton’s
load flow algorithm applied to power electric networks
[15]. Although we observed that the factorization of the
last block is the dominant sequential factor in speedups,
we did not parallelize it in [14] because the last block is
normally a dense block and frequent communications
make the parallel implementation very inefficient.
However, with our improved architecture in Fig. 1, we
can employ the three neighbors that share the same data

 5

memory in one sub-tree to factor the last block with much
less overhead.

4. Load balancing

We need a good load balancing technique to translate

the hardware parallelism into high speedups on real
applications. Parallel LU factorization of sparse matrices
is one of the hardest problems for load balancing due to
its large amount of data dependences and occurrences of
fill-ins. By ordering the matrices into BDB form, we
eliminate the data dependences and communication
during the factorization of the 3-block groups; this is the
most time-consuming step. The unpredictability in
execution times arises from the variant size of the 3-block
groups and the number of fill-ins. Therefore, a dynamic
load balancing strategy is needed to reduce the idle time
between tasks and the worst-case execution time.
Configurable logic allows us to modify the hardware
design at any time in order to facilitate software
optimizations. Since our system does not currently have
operating system support, we built a dedicated system
controller to take care of load balancing at runtime; in this
approach, all processors must report their load
information to the controller. This choice also minimizes
the scheduling overhead, which is often a major
disadvantage of dynamic load balancing.

4.1 Dynamic load balancing

Let us begin with the preprocessing phase where we

attempt to order the matrix into an optimal BDB matrix;
we do not consider the target hardware architecture at this
time. The best ordering is the one that keeps the 3-block
groups as dense as possible while not making the last
block too large. This way we can reduce the number of
floating-point operations in the procedure that follows.
The best solution is also application-dependent. The
partitioned BDB matrix is downloaded into the on-board
SSRAM by the host. The information that the host
computer passes to the SC includes at least the size of the
matrix N, the number of diagonal blocks n, the size of the
last block nn x nn, the size of the diagonal block in every
3-block groups ni x ni (the sizes of the two border blocks
in every 3-block group are determined by ni and nn) and
its beginning memory address in the on-board memory.

Dynamic load balancing is carried out by the SC.
There are three classes of tasks: factorization,
multiplication and addition; they are implemented in
assembly code and stored in the local program memory of
every PE. The general task format is: fac/mul/add{ni, nn,

#xxx}, where #xxx is the starting address of the 3-block
group. During the system configuration phase, the SC
assigns the initial loads based on the above information
sent by the host computer. The SC keeps a load index for

every processor in order to manage the unfinished tasks
dynamically. A processor each time receives a 3-block
group. The record entries include: the starting time of the
working matrix group, the expected end time, the size of
the working group, the possible next group for this
processor, the phase the algorithm is in (that is,
factorization or multiplication phase [14]) and finished
groups. Based on the load index of PEs, the SC pre-
fetches the data into the appropriate processor before it
completes its current task. The candidate for the next task
is the one with the lowest busy count, i.e. the percentage
of the remaining work over the total working task. The
SC always assigns the biggest available 3-block group in
the task queue to the hungry PE. If the total number of the
remaining tasks is less than the number of the PEs, then
the SC tries to distribute the tasks to the PEs under
different parents.

If a processor is idle and the task queue is empty, the
SC first checks the status of the processors along the
summation tree to find the nearest busy processor. If the
idle processor is one of the two direct neighbors of a busy
processor, then the SC modifies the ongoing task of the
working processor and the idle processor is asked to share
the work immediately via the shared memory without any
data transfer. If it is not, the SC further decides whether it
is worth asking the idle processor to help the working
processor. The decision is based on the distance of the
two processors, the size of the working group, how much
work has already been done (i.e., the used time divided by
the expected time), and the type of the current task. If it is
during factorization, the idle processor will multiply the
border blocks following factorization in the working
processor. If the working processor is in the
multiplication phase and the remaining work is greater
than 1/3 (this number is based on the
computation/communication time ratio on our machine),
then the SC will copy half of the remaining data to the
idle processor and modify the working processor's load
information. The multiplication results will be collected
along the binary tree. We tested our parallel BDB LU
factorization with this dynamic scheduling policy for the
standardized IEEE electric power 56-, 118- and 300-bus
matrices for up to 7-processor systems on the Altera
SOPC development board. Performance results are
presented in Section 5.

4.2 Theoretical performance analysis

From the above discussion, we know that there are
three basic operations in parallel BDB LU factorization:
LU factorization of 3-block groups, multiplication of
border blocks and addition of partial sums for submatrices
of the same size as the last diagonal block. We first get
the execution times of the three operations.

 6

4.2.1. Execution times of basic operations. We assume
that the three floating-point operations (+, - and *) take
the same amount of time, Tf, and the floating-point
division takes three times longer time, that is 3Tf. These
assumptions are reasonable for advanced floating-point
units. We can show that the total time required for LU
factorization of an n x n dense matrix is:

3 24 9 13
() ()*

6
lu f

n n n
T n T

+ −
= (1)

So, the total factorization time for a 3-block group is a
function of ni and nn, and is given by

3(,) () - ()lu i n lu i n lu iT n n T n n T n= + (2)
 where Tlu(ni +nn) and Tlu(ni) are evaluated by Eq. (1).

The total computation time for the multiplication of
two matrices, C = A * B, where A is a nn x ni matrix, B is
an ni x nn matrix and C is an nn x nn matrix, is:

2(,) 2 * *mul i n n i fT n n n n T= (3)
The time required to add two nn x nn matrices is:

2 *add n fT n T= (4)
For on-chip memory, every access takes only one

clock cycle (assuming there is no contention for the same
location). Let Tclk be the clock period; then,
reading/writing a matrix of size nn x ni or ni x nn requires:

(,) * * *mem i n i n clkT n n K n n T= (5)
where K is a constant associated with the processor and its
shared memory. For our system, the average time for the
transfer between the on-chip memory and the on-board
SSRAM is 4 (,)mem i nT n n .

4.2.2. Sequential execution time. If we assign all the
BDB matrix blocks to a single processor, then the N-1
independent 3-block groups will be processed in time:

1

3)

1

[(,) (, 2 (,)]
N

lu i n mul i n mem i n

i

T n n T n n T n n
−

=

+ +∑ (6)

After the factorizations and multiplications, the
processor will sum up all the partial results in time:

(2)[() (,)]add n mem n nN T n T n n− + (7)
Finally, the remaining work is the factorization of the

last block in time Tlu(nn) given by Eq. (1). To summarize,
taking into account the startup time, Tstart, used by the host
to send the matrix and application code to the memory,
and the close time, Tend, used to collect the factored data,
the total execution time for one processor to factor the
entire BDB matrix sequentially is computed as:

1

3)

1

[(,) (, 2 (,)]

(2)[() (,)] ()

N

seq start lu i n mul i n mem i n

i

add n mem n n lu n end

T T T n n T n n T n n

N T n T n n T n T

−

=

= + + + +

− + + +

∑

4.2.3. Parallel solution with static load balancing. For a
parallel solution, the worst case for the speedup is when

all p processors finish the work on N-2 independent 3-
block groups at the same time and only one 3-block group
is left (the smallest block according to our scheduling
policy). Then, the time spent on the N-2 3-block groups
is:

2

3)

1

1
*{ [(,) (, 2 (,)]

(2)*(() 2 (,))}

N

lu i n mul i n mem i n

i

add n mem n n

T n n T n n T n n
p

N T n T n n

−

=

+ + +

− +

∑

 The last 3-block group will be handled by a single
processor in time:

1 1 13))[(, (, 2 (,)]n n nlu n mul n mem nT n n T n n T n n− − −+ + (10)
After all the 3-block groups are finished, every node

adds the partial sums of its two children and writes the
result back to the memory, which will be accessed by its
parent in the next step. The collection of the partial sums
along the binary tree of depth log2(p+1) takes time:

2log (1)

1

[2 () 3 ()]
p

add n mem n

i

T n T n
+

=

+∑ (11)

The last block is factored by the three neighbors after
the summation of the partial sums. Since we use the
shared-data memory between the three neighbors, we save
on computation time but not on communication time:
1

() 2 ()
3

lu n mem nT n T n+ .

Thus, the total time required for static scheduling is:

2

2

3)

1

3))

log (1)

1

1
*{ [(,) (, 2 (,)]

(2)*(() 2 (,))} [(, (, 2 (,)]

1
[2 () 3 ()] { () 2 ()}

3

N

static start lu i n mul i n mem i n

i

add n mem n n lu i n mul i n mem i n

p

add n mem n lu n mem n end

i

T T T n n T n n T n n
p

N T n T n n T n n T n n T n n

T n T n T n T n T

−

=

+

=

= + + + +

− + + + + +

+ + + +

∑

∑

4.2.4. Parallel solution with dynamic load balancing. If
we employ the proposed dynamic load balancing
technique, then the work on the last 3-block group in the
worst case will be performed by three neighboring
processors (all the other p-3 processors are idle now). Eq.
(10) is replaced by the following:

1 1 13)
1

[(, (,)] 2 (,)
3

n n nlu n n nT n n Tmul n n Tmem n n− − −+ +

So, the total time is reduced to:

1 1

2

1

2

3

1

3

log (1)

1

1
*{ [(,) (,) 2 (,)]

1
(2)*(() 2 (,))} [(,) (,)]

3

2 (,) [2 () 3 ()] ()

n n

n

N

dynmic start lu i n mul i n mem i n

i

add n mem n n lu n mul n

p

mem n add n mem n lu n end

i

T T T n n T n n T n n
p

N T n T n n T n n T n n

T n n T n T n T n T

− −

−

−

=

+

=

= + + + +

− + + + +

+ + + +

∑

∑
 The upper bound on the speedup, seq

dynmic

T
T

, is a complex

function of {ni, nn, p, Tf, Tclk}. Since the factorization and
multiplication have complexity O(n3), this algorithm will
have good performance with a large number of

(8)

(12)

(14)

(13)

(9)

 7

processors, as shown in Eq. (9). In the BDB matrix, the
last block is usually larger than the independent diagonal
blocks. The factorization of the last block is the dominant
sequential limiting factor for the speedup. The size of the
last block also imposes a big impact on the factorization
and multiplication times, as demonstrated by Eqs. (2) and
(5). We should try to make the last block as small as
possible. On the other hand, the minimum size of the last
block is largely determined by the physical characteristics
of the original matrix. With more independent 3-block
groups, we may have fewer floating-point operations
(because of dynamic fillins within every 3-block group,
the total time to factor all 3-block groups is not
necessarily smaller for more 3-block groups) and get
more benefits from fine-grain dynamic load balancing,
but it also increases the time for summation of the partial
results and the communication time.

5. Implementation and performance

5.1 Experimental results

In this experiment, we used the Altera SOPC

development board. This board is populated with an
APEX20KE FPGA device, the EP20K1500EBC652-1x
that has 51,840 logic elements and 442,368 bits of on-
chip memory. The board also contains two banks of
SSRAM chips with a total size of 2 MB. We used a better
floating-point multiplier than the one described in [14]; it
requires only 880 logic elements. Thus, we implemented
7 computation processors plus the SC. The on-chip
program memory for each PE is 4KB and the shared-data
memory is 6KB. Because all the application code fits into
the on-chip memory of each PE, we did not include
caches for each PE in this experiment. All the programs
are implemented in assembly code and are stored entirely
in the on-chip program memory. The test matrices are the
nodal admittance matrices of IEEE power flow test cases
with 57, 118 and 300 buses, respectively (these numbers
are the dimensionalities of the corresponding square
matrices). Table 1 shows the partitioned results for these
matrices due to the preprocessing phase.

Table 1. Partitioned IEEE power flow
57-, 118- and 300-bus test matrices

N 57 118 300

% of non-zeros 6.56 3.42 1.24
Dimensionality
of the BDB
diagonal blocks
(ni)

 6,6,6,6,5,
4,4,4,4,12*

10,9,10,10,
9,9,10,10,
10,8,5,18*

18,12,18,16,
18,17,17,10,
14,14,18,18,
10,16,17,11,

17,8,31*
 *: Last block

The speedups for the test matrices with up to 7
processors are shown in Table 2. We show in Fig. 5 the
percentage of time needed to work on the last block
compared to the total execution time in the 300-bus case.
The transfer of matrix blocks between the on-board and
on-chip memories becomes a bottleneck for a large
number of PEs. We employed pre-fetching for data
transfers and the improvement in performance for the
300-bus case is shown in Fig. 6.

5.2 Discussion

Generally, the parallel BDB factorization algorithm
performs better with larger test cases for both the static
and dynamic techniques, as shown in Table 2. This is
because we have more jobs whose variations can smooth
out the load imbalance. An exception is the 7-PE system
for the 118-bus case. This should correspond to the worst
case, which we discussed in Section 4.2. From Table 2,
we can also see that the performance of dynamic load
balancing is application (matrix) dependent. For example,
it brought about more than 20% improvement for the 118-
bus case with 7 PEs. For the 57-bus case, the systems
with 5, 6 and 7 PEs got the similar speedups due to
insufficient work for the PEs. Static scheduling
performance for the 4-PE system is close to the worst case
we analyzed in Section 4.2.3.; only one PE works on the
last 3-block group while others are idle. Dynamic
scheduling produced the biggest improvement compared
to other scheduling policies for the 57-bus case, as
expected by the analysis. Adding just one processor in the
current scheduling policy does not improve the speedup.
For the 118-bus and 300-bus cases, the largest
improvement happens with the 7-PE system. It is the
result of variations in the job size.

For most large-scale applications, such as power
applications and circuit simulations, with increases in the
matrix size, normally the sparsity decreases, which favors
more diagonal blocks in the partitioned BDB matrices.
However, the size of the last block increases as a result of
more independent 3-block groups; its factorization could
diminish the speedup due to more blocks. So, the
bottleneck in parallel BDB factorization is the
factorization of the last block. Since currently we use only
three PEs to factor the last block based on the
consideration of large communication latency for more
PEs, the time spent on the last block becomes more
significant with more PEs, as Fig. 5 shows.

6. Conclusions

New generation FPGAs provide tremendous design

opportunities along several dimensions: system, hardware
and software. We have presented a new shared-memory
multiprocessor design and implementation on an Altera

 8

SOPC board. Our target application is the LU
factorization of sparse matrices. The factorization of the
last block in the parallel LU factorization of sparse BDB
matrices is a dominant sequential factor and we should try
to minimize the size of the last block during the
preprocessing phase; it was implemented here efficiently
in parallel by taking advantage of the low communication
overhead provided in our new architecture. We also
introduced a new dynamic load balancing technique to
minimize the impact of task unpredictability at runtime
and improve performance. Our proposed dynamic load
balancing algorithm was tested with the IEEE power flow
57-, 118- and 300-bus systems.

Table 2. Speedups (over the uni-processor) with
static(S) and dynamic(D) load balancing for the IEEE
test matrices

Number of PEs 2 3 4 5 6 7

S 1.81 2.83 3.12 4.28 4.28 4.28
57-bus D 1.90 2.90 3.51 4.30 4.87 4.87

S 1.87 2.72 3.64 4.42 5.18 5.18
118-bus D 1.92 2.85 3.72 4.73 5.21 6.29

S 1.91 2.85 3.79 4.69 5.45 5.50
300-bus D 1.95 2.89 3.84 4.68 5.65 6.21

2.68 2.71 2.77

3.61

5.21

6.16

4.45

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

Number of PEs

%

Figure 5. Percentage of the total execution time for
the factorization of the last block in the 300-bus case

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7

Number of PEs

T
im

e
(s

)

No load time
With prefeteching
No prefetching

References

[1] W. A. Najjar, W. Bohm, B. A. Draper, J. Hammes, R.
Rinker, J. R. Beveridge, M. Chawathe and C. Ross, “High-Level
Language Abstraction for Reconfigurable Computing,” IEEE
Computer, Aug. 2003, pp. 63- 69.
[2] R. Hartenstein, “The Microprocessor is no more General
Purpose: Why Future Reconfigurable Platforms Will Win,”
invited paper, Int'l Conf. Innovative Syst. Silicon (ISIS’97),
Austin, Texas, Oct. 1997.
[3] K. Sarrigeorgidis and J. M. Rabaey, “Massively Parallel
Wireless Reconfigurable Processor Architecture and
Programming,” 10th Reconf. Archi. Works. (RAW 2003), Nice,
France, April 2003.
[4] R. Hartenstein, "Are We Ready for the Breakthrough?"
keynote address, 10th Reconf. Archi. Works. 2003 (RAW 2003),
Nice, France, April 2003.
[5] B. Radunovic, "An Overview of Advances in
Reconfigurable Computing Systems," 32nd Annual Hawaii Int'l
Conf. System Sciences, Maui, Hawaii, Jan. 1999.
[6] J. Frigo, M. Gokhale, and D. Lavenier, “Evaluation of the
Streams-C C-to-FPGA Compiler: An Applications Perspective,”
9th ACM/SIGDA Int'l Symp. Field Program. Gate Arrays,
Monterey, California, Febr. 2001, pp. 134-140.
[7] R. Hartenstein, “Trends in Reconfigurable Logic and
Reconfigurable Computing," 9th Int'l Conf. Electronics Circuits
Systems, Vol. 2, 2002.
[8] R. Hartenstein, “A Decade of Reconfigurable Computing:
A Visionary Retrospective,” IEEE Int'l Conf. Exhib. Design
Autom. Testing Europe, Munich, Germany, 2001, pp. 135-143.
[9] K. Compton and S. Hauck, “Reconfigurable Computing: A
Survey of Systems and Software,” ACM Comput. Surveys, Vol.
34, No. 2., June 2002, pp. 171-210.
[10] C. Wolinski, M. Gokhale and K. McCabe, “A
Polymorphous Computing Fabric,” IEEE Micro, Vol. 22, No. 5,
Sep/Oct. 2002, pp. 56-68.
[11] J. Greenbaum, “Reconfigurable Logic in SoC Systems,”
IEEE 2002 Custom Integrated Circuits Conf., 2002, pp. 5 –8.
[12] A. Sangiovanni-Vincentelli, L. K. Chen and L. O. Chua,
“Node-Tearing Nodal Analysis,” Tech. Report ERL-M582,
Electronics Research Laboratory, College of Engineering,
University of California, Berkeley, Oct. 1976.
[13] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods
for Sparse Matrices, Oxford Univ. Press, Oxford, England,
1990.
[14] X. Wang and S.G. Ziavras, “Parallel LU Factorization of
Sparse Matrices on FPGA-Based Configurable Computing
Engines,” Concurrency Computation: Prac. Expei., to appear in
Vol. 16, No. 4, April 2004.
[15] X. Wang and S.G. Ziavras, “Parallel Solution of Newton's
Power Flow Equations on Configurable Chips,” IEEE Trans.
Power Systems, submitted.
[16] X. Wang and S.G. Ziavras, “Parallel Direct Solution of
Linear Equations on FPGA-Based Machines,” Works. Paral.
Distrib. Real-Time Systems (with IPDPS2003), Nice, France,
April 22-26, 2003, pp.113-120.

Figure 6. Execution times for the 300-bus test system

