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Abstract 
 
The exponentially increasing complexity of many 

scientific applications and the high cost of 
supercomputing force us to explore new, sustainable, and 
affordable high-performance computing platforms. 
Recent significant advances in FPGA technology and the 
inherent advantages of configurable logic have brought 
about new research efforts in the configurable computing 
field: parallel processing on configurable chips. We 
explore here parallel LU factorization of large sparse 
block-diagonal-bordered (BDB) matrices on a 
configurable multiprocessor that we have designed and 
implemented. A dynamic load balancing strategy is 
proposed and analyzed. Performance results for IEEE 
power test systems are provided. Our research provides 
evidence that configurable logic can be a viable 
alternative to high-performance scientific computing. 
 
Keywords: parallel processing, LU factorization, FPGA, 
multiprocessor, dynamic load balancing.  
 
1. Introduction 

 
LU factorization is a fundamental method that is 

widely employed to solve large systems of linear 
equations appearing in many important application areas, 
such as circuit simulation, power networks, structural 
analysis, etc. Due to its high computational complexity, 
O(N3) for a dense matrix, where N x N is the size of the 
matrix, research efforts on parallel implementations have 
been ongoing for several decades. However, due to the 
scarce availability and the prohibitively high cost of 
proprietary supercomputers and other parallel machines, 
most of these research results are limited to a narrow 
range   of  applications.  The   recent   shrinking    of  the  
_______________________________ 
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supercomputer market makes this issue more prominent. 
The desire for affordable high-performance parallel 

computing inspired many research efforts in recent years 
in COTS-based (commercial-off-the-shelf) platforms, 
such as symmetric multiprocessing (SMP) clusters or 
multiprocessors and Beowulf clusters. The community of 
cluster computing continues to expand, with tera-scale 
clusters now in production and peta-scale clusters in 
design. However, these approaches do not deliver the 
highest level of performance due to many inherent 
disadvantages of the underlying sequential platforms, 
such as the much greater communication latency between 
processing nodes. Moreover, the computation demands of 
many application algorithms increase at a higher rate than 
Moore's Law [3]. The different requirements of general 
computing and scientific applications convince us that we 
should not rely heavily on COTS components at the 
lowest architectural level for a bright future of high-
performance computing.    

At the same time, FPGA-based configurable 
computing is becoming more and more appealing and has 
resulted in impressive achievements for many 
computation-intensive applications [1-10, 14-16]. 
Recently available multi-million platform FPGAs with 
richer embedded feature sets, such as plenty of on-chip 
memory, DSP blocks and embedded hardware 
microprocessor IP cores, have made it feasible to build 
parallel systems on a programmable chip (PSOPC). Our 
specific research motivation is to build cost-effective 
high-performance parallel systems within FPGAs in order 
to enable the solution of large sparse linear systems of 
equations. We have implemented a scalable shared-
memory multiprocessor within a single FPGA based on 
configurable processor IP cores; we investigated parallel 
LU factorization of large sparse BDB matrices on our 
machine [14]. The obtained performance provides 
evidence that FPGA-based custom configurable machines 
can be cost-effective platforms for high-performance 
scientific computing.  
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The BDB form has long been considered to be a 
desirable structure for large sparse matrices due to its 
inherent features for parallel implementation. In this form, 
all non-zero elements are grouped into blocks along the 
diagonal, and the right and bottom borders. As a result, 
each diagonal block and the two border blocks on the 
corresponding row and column can be factored 
independently and in parallel with all other such 3-block 
groups; this does not apply to the last diagonal block in 
the lower right corner [14]. Parallel BDB LU factorization 
includes a preprocessing phase where the input sparse 
matrix is reordered and partitioned into the BDB form. 
For most large sparse matrices, the obtained blocks are 
irregular in size and sparsity. So, the floating-point 
operations involved in every subtask vary and the 
execution times are unpredictable. Moreover, fill-ins 
(appearing when zero elements become non-zero 
elements) that occur dynamically at runtime also add 
more indeterminacy. Therefore, dynamic load balancing 
is needed.     

In this paper, we further improve our hardware design 
for the configurable multiprocessor and explore dynamic 
load balancing for parallel LU factorization of large 
sparse BDB matrices. In contrast to our approach in [14], 
the factorization of the last block also is parallelized 
efficiently on our new architecture. We introduce the 
improved multiprocessor architecture and hardware 
design details with a focus on the memory system in 
Section 2.  Section 3 presents parallel LU factorization of 
sparse BDB matrices on our machine. We explore the 
load balancing strategy for this algorithm on our machine 
in Section 4. A theoretical performance analysis is also 
included in this section. Experimental results for IEEE 
power flow test cases with up to 7 processors are 
presented in Section 5. A summary is given in Section 6.   

  
2.FPGA-based configurable multiprocessors 

 
2.1 Recent FPGA developments 

 
With increases in logic resources per chip and 

improved architectures, FPGA-based configurable 
computing recently became very appealing and has 
resulted in many impressive achievements. It is 
anticipated that chips with 50 million gates of 
reconfigurable logic will be available by 2005 at 
substantially lower costs. Limited resources are no longer 
a major hurdle for the design of large FPGA-based 
systems. The flexibility, re-programmability and run-time 
reconfigurability of FPGAs have great potential to offer 
an alternative computing platform for high-performance 
computing.  

Configurable RISC processor IP cores have recently 
become available to greatly empower FPGA-based 
system implementations. Configurable processors add 

another dimension in programmability and flexibility. We 
can tailor the processor to the specific requirements of the 
application and include only those features that are 
needed by the application. The instruction set architecture 
(ISA), register file, software development APIs 
(application programming interfaces), memory hierarchy 
and size, and communication channels can all be 
configured and extended. Also, standard and user 
customized logic engines can be easily added, modified or 
extended, as needed. We can identify critical instructions 
in the application code that affect performance the most 
and implement them in hardware. Configurable processor 
cores also provide us with more flexibility to integrate 
them in an SOPC environment with other IPs, compared 
to fixed processor cores.  New generation FPGAs can host 
dozens of RISC processor cores, which shows the 
feasibility of building parallel systems in a single FPGA.  

Moreover, the performance and efficiency of 
algorithms highly depend on their good match with the 
target architecture. New FPGA-based configurable 
computing strategies provide the system designer with 
several dimensions to optimize the design for application-
specific performance. Full control is viable over most of 
the resources and enormous opportunities appear during 
the overall design process. However, most of the current 
FPGA development kits are based on similar design flows 
and languages with ASIC design methods. Although some 
groups work on high-level C/C++-like languages to close 
the gap between hardware and software design 
methodologies, the performance is often still one or two 
orders of magnitude lower than that of manually 
optimized implementations [1, 6]. There are no effective 
design methodologies and development tools available for 
this new codesign model, in particular for parallel 
systems. It requires the designer to be proficient in 
algorithms, system-level design, software/hardware 
partitioning, architecture design, and software/hardware 
coding.  

 
2.2  Our multiprocessor architecture model  

 
Fig. 1 shows our processor-based system model for the 

parallel BDB LU factorization algorithm [14]. For the 
sake of brevity, this algorithm is presented along with its 
implementation on our system in the next section. As the 
feature size of silicon processes enters the submicron 
range, the wire delay becomes even more significant 
compared to the logic delay, and it can even dominate the 
system's performance due to the reverse scaling of wires 
compared to transistors. The routing of chip-level and 
clock signals tends to become more cumbersome in 
complex multi-million gate SOPC designs. In contrast, 
our binary tree network for data communications 
eliminates global transfers. Our clustered binary tree 
topology has been chosen by the communication patterns 
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in our algorithm (details are in Section 3). The control 
channel is a star connection between the SC (system 
controller) and every PE. There is also a direct 
communication channel between the SC and every parent 
of the binary tree. We implemented serial and TCP 
connections between the multiprocessor and the host 
computer.  

 
2.2.1. Processing element (PE). The PE lies in the core 
of any computing machine. We used a 32-bit Nios IP 
processor from Altera as the PE. The system controller is 
also implemented with Nios. The Nios RISC processor is 
fully configurable and runs at over 125 MHz in the Altera 
Stratix FPGA. It utilizes a 5- stage pipeline and conforms 
to a modified Harvard memory architecture. With 
configurable processors we need to carry out trade-offs 
between the processing power and resources used. A 
typical Nios processor in our machine consumes about 
1600 logic elements in the APEX20KE device. The 
number of PEs in our computing model is scalable, as 
shown in Fig. 1.  The operation of every PE is guided by 
the SC that utilizes the boot code in the on-chip individual 
program memory of PEs and its interrupt connection to 
individual PEs. Our multiprocessor targets in general 
complex matrix algorithms that require floating-point 
arithmetic to   deal with dynamic data of wide range. Our 
applications also apply some trigonometric functions, 
such as sine and cosine, which take considerable time if 
implemented in software. We implemented floating-point 
arithmetic and these functions in hardware and interfaced 
the application code as custom instructions. Such 
hardware customization also releases many resources to 
the processor for other tasks.  The reduced clock cycles 
resulted in significant improvement in the matrix 
operations reported in [14-16]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Our multiprocessor architecture model 
 

2.2.2. Memory hierarchy design. Due to the current lack 
of latency reducing software support for configurable 
machines, the memory design becomes a dominant factor 
in system performance. Moreover, while new silicon 

technology and computer architecture research facilitate 
faster processors, the performance gap between 
processors and memories tends to become larger. In our 
shared memory multiprocessor, the overall speedups may 
be quickly diminished due to severe memory contention 
and large system synchronization, if we rely solely on the 
on-board SRAM memory as the main runtime memory. 
Fortunately, new generation FPGAs make available large 
on-chip memory with wide communication channels. Our 
FPGA-based multiprocessor architecture capitalizes on 
this advantage and forms several kinds of memories in 
order to maximize performance. For example, we 
implemented a controller to oversee the system's 
operation, and also pre-fetch instructions and data from 
the on-board memory into the PEs; the latter use the on-
chip memory to run the application code because of its 
much lower latency compared to the on-board SRAM 
memories.  

Every PE has a local on-chip program memory and a 
shared-data memory. The data memory is shared with its 
sibling and parent, as shown in Fig. 2. The sizes of the 
program and data memories for each PE are determined 
by the available memory capacity of FPGAs and the total 
number of PEs. The shared-data memory improves the 
performance by eliminating the transfer of large blocks of 
data between memories. All the required interconnection 
between on-chip memories and/or processors is 
implemented based on the multi-mastering, fully 
connected AVALON bus of Altera. Thus, the 
communication bandwidth is quite large and the on-chip 
memory access time is only one clock cycle.  
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Figure 2. Memory configuration (PM: program memory) 
 
Because it takes on the average at least 4 clock cycles 

to access the on-board synchronous SRAM memory, on-
chip data and instruction caches are employed to reduce 
the memory access latency. For a fixed system, we focus 
on the efficient utilization of a cache of fixed size and 
configuration. For a configurable processor, we have 
choices in both hardware configuration and software 
optimization. In order to find an optimal cache size for 
our application, we compared the performance of a single 
processor with different instruction and cache sizes for the 
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LU factorization algorithm applied to a 30 x 30 matrix. 
We can tell from the results shown in Fig. 3 that the cache 
configuration can make a difference of more than 20% in 
performance. We used a direct-mapping cache with the 
write-through policy in our experiments. The number 
preceding "(I)" or "(D)" represents the size of the 
instruction or data cache, respectively, expressed in 
Kbytes. 
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Figure 3. Relative execution time for 30 x 30 LU 
factorization compared to a non-cached system  

 
3. Parallel BDB LU factorization 
 

Many scientific and engineering problems, such as 
circuit simulation, applications in electric power networks 
and structural analysis, require to solve a large sparse 
system of simultaneous linear equations of the form Ax = 
b; A is an N x N nonsingular matrix, x is a vector of N 
unknowns and b is a given vector of length N.  One of the 
classic and widely employed direct methods is LU 
factorization, which works as follows. We first factorize 
A so that A = LU, where L is a lower triangular matrix 
and U is an upper triangular matrix. Their elements can be 
determined by 

1

1

1
( * )* , [1, 1]

j

ij ij ik kj
jjk

L A L U for j i
U

−

=

= − ∈ −∑  and 
1

1

* , [ , ]
i

ij ij ik kj

k

U A L U for j i N
−

=

= − ∈∑ , respectively [13]. Once L 

and U are formed, the unknown vector x can be identified 
by forward reduction and backward substitution, 
respectively, using the two equations Ly = b and Ux = y. 
Since LU factorization is a computation-intensive 
procedure, its parallel solution has been a quite active 
research area. Thus, plenty of parallel techniques have 
appeared in the literature.  

Although the LU factorization of sparse matrices 
appears to be easier to parallelize, it suffers from a 
significantly unique dynamic problem corresponding to 
fill-ins. Our earlier research has shown that it is often 
inefficient to extract instruction level parallelism (ILP) in 
the LU factorization of sparse matrices due to irregular 

data dependences and the limited scalability of the 
parallel implementations. We believe that data 
partitioning is an efficient and scalable approach to 
parallelize LU factorization algorithms.  

One of the partitioning schemes is to reorder and 
partition the A matrix into the BDB form by the node-
tearing technique [12] or similar heuristics. In the BDB 
form shown in Fig. 4, the Aik ’s represent matrix sub-
blocks and all the non-zero elements in the matrix appear 
only inside these sub-blocks. The blocks Aii, Ain and Ani 
are said to form a 3-block group, where i∈[1, n-1] and 
n ≤ N. Ann is known as the last block. The Aii’s will be 
referred to as the diagonal blocks, and Ain and Ank will be 
called right border block and bottom border block, 
respectively, where i, k∈[1, n]. 
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Figure 4. Sparse BDB matrix 

 
The sparse BDB matrix format presents great 

advantages for parallel implementation. Since all non-
border off-diagonal blocks contain only 0’s, there will be 
no fill-ins in these blocks during factorization and the 
resulting matrix keeps the BDB structure of Fig. 4. In this 
matrix form, there is no data dependence among the 
factorization of the 3-block groups until the last block, so 
the factorization of the 3-block groups can be carried out 
independently from each other; no inter-processor 
communication is required during this procedure. The last 
block, Ann, requires data produced in the right and bottom 
border blocks, so its factorization is the last step. To 
factor the last block, pairs of blocks are multiplied in 
parallel to produce *

nj jnnnA A A= , for j∈[1, n-1]. The 
summation of these products is needed to factor the last 
block. This summation is carried out along the binary tree 
in parallel by the other processors and the results are sent 
to the processor that was assigned the last diagonal block  
(for a highly parallel approach). We have achieved very 
good speedups [14] on our FPGA-based multiprocessor 
that targets an Altera SOPC FPGA board. We have also 
demonstrated our parallel BDB solution for Newton’s 
load flow algorithm applied to power electric networks 
[15].  Although we observed that the factorization of the 
last block is the dominant sequential factor in speedups, 
we did not parallelize it in [14] because the last block is 
normally a dense block and frequent communications 
make the parallel implementation very inefficient. 
However, with our improved architecture in Fig. 1, we 
can employ the three neighbors that share the same data 
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memory in one sub-tree to factor the last block with much 
less overhead. 

 
4. Load balancing   

 
We need a good load balancing technique to translate 

the hardware parallelism into high speedups on real 
applications. Parallel LU factorization of sparse matrices 
is one of the hardest problems for load balancing due to 
its large amount of data dependences and occurrences of 
fill-ins. By ordering the matrices into BDB form, we 
eliminate the data dependences and communication 
during the factorization of the 3-block groups; this is the 
most time-consuming step. The unpredictability in 
execution times arises from the variant size of the 3-block 
groups and the number of fill-ins. Therefore, a dynamic 
load balancing strategy is needed to reduce the idle time 
between tasks and the worst-case execution time.  
Configurable logic allows us to modify the hardware 
design at any time in order to facilitate software 
optimizations. Since our system does not currently have 
operating system support, we built a dedicated system 
controller to take care of load balancing at runtime; in this 
approach, all processors must report their load 
information to the controller. This choice also minimizes 
the scheduling overhead, which is often a major 
disadvantage of dynamic load balancing.  

 
4.1  Dynamic load balancing 

 
Let us begin with the preprocessing phase where we 

attempt to order the matrix into an optimal BDB matrix; 
we do not consider the target hardware architecture at this 
time. The best ordering is the one that keeps the 3-block 
groups as dense as possible while not making the last 
block too large. This way we can reduce the number of 
floating-point operations in the procedure that follows. 
The best solution is also application-dependent. The 
partitioned BDB matrix is downloaded into the on-board 
SSRAM by the host. The information that the host 
computer passes to the SC includes at least the size of the 
matrix N, the number of diagonal blocks n, the size of the 
last block nn x nn, the size of the diagonal block in every 
3-block groups ni x ni (the sizes of the two border blocks 
in every 3-block group are determined by ni and nn) and 
its beginning memory address in the on-board memory.   

Dynamic load balancing is carried out by the SC. 
There are three classes of tasks: factorization, 
multiplication and addition; they are implemented in 
assembly code and stored in the local program memory of 
every PE. The general task format is: fac/mul/add{ni,  nn, 

#xxx}, where #xxx is the starting address of the 3-block 
group.  During the system configuration phase, the SC 
assigns the initial loads based on the above information 
sent by the host computer. The SC keeps a load index for 

every processor in order to manage the unfinished tasks 
dynamically. A processor each time receives a 3-block 
group. The record entries include: the starting time of the 
working matrix group, the expected end time, the size of 
the working group, the possible next group for this 
processor, the phase the algorithm is in (that is, 
factorization or multiplication phase [14]) and finished 
groups. Based on the load index of PEs, the SC pre-
fetches the data into the appropriate processor before it 
completes its current task. The candidate for the next task 
is the one with the lowest busy count, i.e. the percentage 
of the remaining work over the total working task. The 
SC always assigns the biggest available 3-block group in 
the task queue to the hungry PE. If the total number of the 
remaining tasks is less than the number of the PEs, then 
the SC tries to distribute the tasks to the PEs under 
different parents.   

If a processor is idle and the task queue is empty, the 
SC first checks the status of the processors along the 
summation tree to find the nearest busy processor. If the 
idle processor is one of the two direct neighbors of a busy 
processor, then the SC modifies the ongoing task of the 
working processor and the idle processor is asked to share 
the work immediately via the shared memory without any 
data transfer. If it is not, the SC further decides whether it 
is worth asking the idle processor to help the working 
processor. The decision is based on the distance of the 
two processors, the size of the working group, how much 
work has already been done (i.e., the used time divided by 
the expected time), and the type of the current task. If it is 
during factorization, the idle processor will multiply the 
border blocks following factorization in the working 
processor. If the working processor is in the 
multiplication phase and the remaining work is greater 
than 1/3 (this number is based on the 
computation/communication time ratio on our machine), 
then the SC will copy half of the remaining data to the 
idle processor and modify the working processor's load 
information. The multiplication results will be collected 
along the binary tree. We tested our parallel BDB LU 
factorization with this dynamic scheduling policy for the 
standardized IEEE electric power 56-, 118- and 300-bus 
matrices for up to 7-processor systems on the Altera 
SOPC development board. Performance results are 
presented in Section 5.   
 
4.2  Theoretical performance analysis 
 

From the above discussion, we know that there are 
three basic operations in parallel BDB LU factorization: 
LU factorization of 3-block groups, multiplication of 
border blocks and addition of partial sums for submatrices 
of the same size as the last diagonal block. We first get 
the execution times of the three operations. 
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4.2.1. Execution times of basic operations. We assume 
that the three floating-point operations (+, - and *) take 
the same amount of time, Tf, and the floating-point 
division takes three times longer time, that is 3Tf. These 
assumptions are reasonable for advanced floating-point 
units. We can show that the total time required for LU 
factorization of an n x n dense matrix is: 

3 24 9 13
( ) ( )*

6
lu f

n n n
T n T

+ −
=                                   (1) 

So, the total factorization time for a 3-block group is a 
function of ni and nn, and is given by 

3( ,  )  (  ) -  ( )lu i n lu i n lu iT n n T n n T n= +                 (2) 
 where  Tlu(ni +nn) and Tlu(ni) are evaluated by Eq. (1). 

The total computation time for the multiplication of 
two matrices, C = A * B, where A is a nn x ni matrix, B is 
an ni x nn matrix and C is an nn x nn matrix, is: 

2( , ) 2 * *mul i n n i fT n n n n T=                                          (3) 
The time required to add two nn x nn matrices is:  

2 *add n fT n T=                                                            (4) 
For on-chip memory, every access takes only one 

clock cycle (assuming there is no contention for the same 
location). Let Tclk be the clock period; then, 
reading/writing a matrix of size nn x ni or ni x nn requires: 

( , ) * * *mem i n i n clkT n n K n n T=                                     (5) 
where K is a constant associated with the processor and its 
shared memory. For our system, the average time for the 
transfer between the on-chip memory and the on-board 
SSRAM is 4 ( , )mem i nT n n . 

 
4.2.2. Sequential execution time. If we assign all the 
BDB matrix blocks to a single processor, then the N-1 
independent 3-block groups will be processed in time: 

1

3 )

1

[ ( , ) ( , 2 ( , )]
N

lu i n mul i n mem i n

i

T n n T n n T n n
−

=

+ +∑           (6) 

After the factorizations and multiplications, the 
processor will sum up all the partial results in time: 

( 2)[ ( ) ( , )]add n mem n nN T n T n n− +                             (7) 
Finally, the remaining work is the factorization of the 

last block in time Tlu(nn) given by Eq. (1). To summarize, 
taking into account the startup time, Tstart, used by the host 
to send the matrix and application code to the memory, 
and the close time, Tend, used to collect the factored data, 
the total execution time for one processor to factor the 
entire BDB matrix sequentially is computed as: 

1

3 )

1

[ ( , ) ( , 2 ( , )]

( 2)[ ( ) ( , )] ( )

N

seq start lu i n mul i n mem i n

i

add n mem n n lu n end

T T T n n T n n T n n

N T n T n n T n T

−

=

= + + + +

− + + +

∑   

 
4.2.3. Parallel solution with static load balancing. For a 
parallel solution, the worst case for the speedup is when 

all p processors finish the work on N-2 independent 3-
block groups at the same time and only one 3-block group 
is left (the smallest block according to our scheduling 
policy). Then, the time spent on the N-2 3-block groups 
is: 

2

3 )

1

1
*{ [ ( , ) ( , 2 ( , )]

( 2)*( ( ) 2 ( , ))}

N

lu i n mul i n mem i n

i

add n mem n n

T n n T n n T n n
p

N T n T n n

−

=

+ + +

− +

∑      

 The last 3-block group will be handled by a single 
processor in time:  

1 1 13 ) )[ ( , ( , 2 ( , )]n n nlu n mul n mem nT n n T n n T n n− − −+ +     (10) 
After all the 3-block groups are finished, every node 

adds the partial sums of its two children and writes the 
result back to the memory, which will be accessed by its 
parent in the next step. The collection of the partial sums 
along the binary tree of depth log2(p+1) takes time: 

2log ( 1)

1

[2 ( ) 3 ( )]
p

add n mem n

i

T n T n
+

=

+∑                            (11) 

The last block is factored by the three neighbors after 
the summation of the partial sums. Since we use the 
shared-data memory between the three neighbors, we save 
on computation time but not on communication time: 
1

( ) 2 ( )
3

lu n mem nT n T n+ . 

Thus, the total time required for static scheduling is: 

2

2

3 )

1

3 ) )

log ( 1)

1

1
*{ [ ( , ) ( , 2 ( , )]

( 2)*( ( ) 2 ( , ))} [ ( , ( , 2 ( , )]

1
[2 ( ) 3 ( )] { ( ) 2 ( )}

3

N

static start lu i n mul i n mem i n

i

add n mem n n lu i n mul i n mem i n

p

add n mem n lu n mem n end

i

T T T n n T n n T n n
p

N T n T n n T n n T n n T n n

T n T n T n T n T

−

=

+

=

= + + + +

− + + + + +

+ + + +

∑

∑
           
4.2.4. Parallel solution with dynamic load balancing. If 
we employ the proposed dynamic load balancing 
technique, then the work on the last 3-block group in the 
worst case will be performed by three neighboring 
processors (all the other p-3 processors are idle now).  Eq. 
(10) is replaced by the following: 

1 1 13 )
1

[ ( , ( , )] 2 ( , )
3

n n nlu n n nT n n Tmul n n Tmem n n− − −+ +                                               

So, the total time is reduced to:  
 

1 1

2

1

2

3

1

3

log ( 1)

1

1
*{ [ ( , ) ( , ) 2 ( , )]

1
( 2)*( ( ) 2 ( , ))} [ ( , ) ( , )]

3

2 ( , ) [2 ( ) 3 ( )] ( )

n n

n

N

dynmic start lu i n mul i n mem i n

i

add n mem n n lu n mul n

p

mem n add n mem n lu n end

i

T T T n n T n n T n n
p

N T n T n n T n n T n n

T n n T n T n T n T

− −

−

−

=

+

=

= + + + +

− + + + +

+ + + +

∑

∑
      The upper bound on the speedup, seq

dynmic

T
T

, is a complex 

function of {ni, nn, p, Tf, Tclk}. Since the factorization and 
multiplication have complexity O(n3), this algorithm will 
have good performance with a large number of 

(8) 

(12) 

(14) 

(13) 

(9) 
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processors, as shown in Eq. (9).  In the BDB matrix, the 
last block is usually larger than the independent diagonal 
blocks. The factorization of the last block is the dominant 
sequential limiting factor for the speedup. The size of the 
last block also imposes a big impact on the factorization 
and multiplication times, as demonstrated by Eqs. (2) and 
(5). We should try to make the last block as small as 
possible. On the other hand, the minimum size of the last 
block is largely determined by the physical characteristics 
of the original matrix. With more independent 3-block 
groups, we may have fewer floating-point operations 
(because of dynamic fillins within every 3-block group, 
the total time to factor all 3-block groups is not 
necessarily smaller for more 3-block groups) and get 
more benefits from fine-grain dynamic load balancing, 
but it also increases the time for summation of the partial 
results and the communication time.  

 
5. Implementation and performance 

 
5.1   Experimental results 

 
In this experiment, we used the Altera SOPC 

development board. This board is populated with an 
APEX20KE FPGA device, the EP20K1500EBC652-1x 
that has 51,840 logic elements and 442,368 bits of on-
chip memory. The board also contains two banks of 
SSRAM chips with a total size of 2 MB. We used a better 
floating-point multiplier than the one described in [14]; it 
requires only 880 logic elements. Thus, we implemented 
7 computation processors plus the SC. The on-chip 
program memory for each PE is 4KB and the shared-data 
memory is 6KB. Because all the application code fits into 
the on-chip memory of each PE, we did not include 
caches for each PE in this experiment. All the programs 
are implemented in assembly code and are stored entirely 
in the on-chip program memory. The test matrices are the 
nodal admittance matrices of IEEE power flow test cases 
with 57, 118 and 300 buses, respectively (these numbers 
are the dimensionalities of the corresponding square 
matrices). Table 1 shows the partitioned results for these 
matrices due to the preprocessing phase. 

 
Table 1. Partitioned IEEE power flow 
57-, 118- and 300-bus test matrices 

 
N 57 118 300 

% of non-zeros 6.56 3.42 1.24 
Dimensionality 
of the BDB 
diagonal blocks 
(ni) 

  6,6,6,6,5, 
4,4,4,4,12*

10,9,10,10, 
9,9,10,10, 
10,8,5,18* 

18,12,18,16, 
18,17,17,10, 
14,14,18,18, 
10,16,17,11, 

17,8,31* 
      *: Last block 

The speedups for the test matrices with up to 7 
processors are shown in Table 2. We show in Fig. 5 the 
percentage of time needed to work on the last block 
compared to the total execution time in the 300-bus case. 
The transfer of matrix blocks between the on-board and 
on-chip memories becomes a bottleneck for a large 
number of PEs. We employed pre-fetching for data 
transfers and the improvement in performance for the 
300-bus case is shown in Fig. 6.   

 
5.2  Discussion 
 

Generally, the parallel BDB factorization algorithm 
performs better with larger test cases for both the static 
and dynamic techniques, as shown in Table 2. This is 
because we have more jobs whose variations can smooth 
out the load imbalance. An exception is the 7-PE system 
for the 118-bus case. This should correspond to the worst 
case, which we discussed in Section 4.2. From Table 2, 
we can also see that the performance of dynamic load 
balancing is application (matrix) dependent. For example, 
it brought about more than 20% improvement for the 118-
bus case with 7 PEs. For the 57-bus case, the systems 
with 5, 6 and 7 PEs got the similar speedups due to 
insufficient work for the PEs. Static scheduling 
performance for the 4-PE system is close to the worst case 
we analyzed in Section 4.2.3.; only one PE works on the 
last 3-block group while others are idle. Dynamic 
scheduling produced the biggest improvement compared 
to other scheduling policies for the 57-bus case, as 
expected by the analysis. Adding just one processor in the 
current scheduling policy does not improve the speedup. 
For the 118-bus and 300-bus cases, the largest 
improvement happens with the 7-PE system. It is the 
result of variations in the job size.  

For most large-scale applications, such as power 
applications and circuit simulations, with increases in the 
matrix size, normally the sparsity decreases, which favors 
more diagonal blocks in the partitioned BDB matrices. 
However, the size of the last block increases as a result of 
more independent 3-block groups; its factorization could 
diminish the speedup due to more blocks. So, the 
bottleneck in parallel BDB factorization is the 
factorization of the last block. Since currently we use only 
three PEs to factor the last block based on the 
consideration of large communication latency for more 
PEs, the time spent on the last block becomes more 
significant with more PEs, as Fig. 5 shows.  

 
6.  Conclusions 

 
New generation FPGAs provide tremendous design 

opportunities along several dimensions: system, hardware 
and software. We have presented a new shared-memory 
multiprocessor design and implementation on an Altera 
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SOPC board. Our target application is the LU 
factorization of sparse matrices. The factorization of the 
last block in the parallel LU factorization of sparse BDB 
matrices is a dominant sequential factor and we should try 
to minimize the size of the last block during the 
preprocessing phase; it was implemented here efficiently 
in parallel by taking advantage of the low communication 
overhead provided in our new architecture. We also 
introduced a new dynamic load balancing technique to 
minimize the impact of task unpredictability at runtime 
and improve performance. Our proposed dynamic load 
balancing algorithm was tested with the IEEE power flow 
57-, 118- and 300-bus systems.  

 
Table 2. Speedups (over the uni-processor) with 
static(S) and dynamic(D) load balancing for the IEEE 
test matrices 

 
Number of PEs 2 3 4 5 6 7 

S 1.81 2.83 3.12 4.28 4.28 4.28 
57-bus D 1.90 2.90 3.51 4.30 4.87 4.87

S 1.87 2.72 3.64 4.42 5.18 5.18 
118-bus D 1.92 2.85 3.72 4.73 5.21 6.29

S 1.91 2.85 3.79 4.69 5.45 5.50 
300-bus D 1.95 2.89  3.84 4.68 5.65 6.21
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Figure 5. Percentage of the total execution time for 
the factorization of the last block in the 300-bus case 
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Figure 6. Execution times for the 300-bus test system 
 


