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Abstract 
 
The efficient solution of large systems of linear 

equations represented by sparse matrices appears in 
many tasks. LU factorization followed by backward and 
forward substitutions is widely used for this purpose. 
Parallel implementations of this computation-intensive 
process are limited primarily to supercomputers. New 
generations of Field-Programmable Gate Array (FPGA) 
technologies enable the implementation of System-On-a-
Programmable-Chip (SOPC) computing platforms that 
provide many opportunities for configurable computing. 
We present here the design and implementation of a 
parallel machine for LU factorization on an SOPC board, 
using multiple instances of a soft processor. A highly 
parallel Block -Diagonal-Bordered (BDB) algorithm for 
LU factorization is mapped to our multiprocessor. Our 
results prove the viability of our FPGA-based approach. 
 
Keywords: FPGA, LU factorization, forward/backward 
substitution, parallel processing, SOPC. 
 
 
1. Introduction 

 
Many scientific and engineering problems, such as 

circuit simulation, applications in electric power networks 
and structural analysis, involve solving a large sparse 
system of simultaneous linear equations.  LU factorization 
is a very efficient and commonly employed direct method 
to solve such problems. It has been proved in [1] that LU 
factorization is much faster than non-stationary iterative 
methods in electric power flow applications that use the 
Newton-Raphson (NR) method for systems with up to 
685 buses. With LU factorization, the solution of the 
entire system is obtained by solving two sets of triangular 
equations. However, LU factorization is a computation-
intensive   method,     especially  for  large  matrices  with 
----------- 
* This work was supported in part by the U.S. Department of 
Energy under grant ER63384.   

thousands of elements that frequently appear in these 
application areas.  The motivation to reduce the execution 
time, especially when operations have to be carried out in 
real time, has stimulated extensive research in applying 
parallel processing to the LU factorization of linear 
systems. Many successful parallel LU solvers have been 
developed for massively-parallel supercomputers [2, 4, 7]. 
Although parallel computers have accomplished a great 
deal of success in solving computation-intensive 
problems, their high price, the long design and 
development cycles, the difficulty in programming them, 
as well as the high cost of maintaining them limit their 
versatility. For example the scarcity and high cost of 
parallel architectures available to the industry limits 
greatly the further application of parallel processing in 
power engineering [4].  

On the other hand, with constant advances in VLSI 
technologies and architecture design, FPGAs have grown 
into multi-million-gate SOPC computing platforms, from 
originally serving as simple platforms for small ASIC 
prototyping and glue logic implementation. New 
generations of FPGAs have made it possible to integrate a 
large number of computation resources, such as logic 
blocks, embedded memory, fast routing matrices, and 
microprocessors on one silicon die. It is possible now to 
build Multi-Processor-On-a-Programmable -Chip 
(MPOPC) systems, which offer a great opportunity to re-
evaluate previous research efforts through the 
employment of the promising configurable computing 
paradigm. MPOPC designs offer alternative ways to 
optimize the system and reduce communication overheads 
that have been long obstacles to parallel processing 
implementations.  

The research motivation in this paper is to develop a 
cost-effective, high-performance parallel architecture for 
electric power applications based on a new generation of 
FPGAs. Our shared-memory MIMD multiprocessor 
machine uses six Altera Nios® configurable IP 
(Intellectual Property) processors as computation and 
control nodes and is implemented on the Altera SOPC 
development board, which is populated with an 
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EP20K1500EBC652-1x FPGA. We have adapted a very 
efficient parallel sparse matrix solver, namely the 
Bordered-Diagonal-Block (BDB) solver for sparse linear 
equations [2]. Our low-cost, high-performance approach 
can improve the performance of various real-time 
electrical power system applications, such as power flow 
and transient stability analysis. It is also applicable to 
other scientific areas that require the solution of such 
equations in reasonable running times.  

 
2. Parallel Sparse Bordered-Diagonal-Block  

Solution 
 

2.1. Introduction to LU Factorization  

Many problems require the solution to the following 
set of simultaneous linear equations: 

Ax = b                              (1) 

where A is an N x N nonsingular sparse matrix, x is a 
vector of N unknowns, and b is a given vector of length 
N. The solvers for this equation come mainly in two 
forms: direct [5] and iterative [1]. One of the classic direct 
methods is  LU factorization, which works as follows. We 
first factorize A so that A=LU, where L is a lower 
triangular matrix and U is an upper triangular matrix. 
Once L and U are determined, then the equations can be 
written as two triangular systems, Ly = b and Ux = y, 
whose solutions can be obtained by forward reduction and 
backward substitution, respectively. There are many 
implementations of LU factorization. The "Doolittle LU 
factorization algorithm” [5] assumes that L has all 1's on 
the diagonal and can be formulated as:  
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From these equations, we can observe that the 
Doolittle method can benefit from storing the matrix in 
the row order for fast matrix accesses. Since our matrices 
are stored in the row order, we employ the Doolit tle 
method for those parts of our LU factorization that require 
the application of conventional LU factorization. 
Compared to iterative algorithms having convergence 
rates greatly depending on the characteristics of the 
matrices, LU factorization is more robust because every 
nonsingular matrix can be factored into some form of two 
triangular matrices. Also, the result of LU factorization 
can be used repeatedly after the right hand vector has 
changed, as is the case for decoupled power flow analysis.  

2.2. Parallelization of LU Factorization of Sparse 
Matrices 

Many research efforts have targeted parallel LU 
factorization algorithms for supercomputers and clusters 
of PCs or workstations [1, 2, 4, 8]. There are  several 
critical issues that a parallel implementation of LU 
factorization has to address. The most important factor is 
data dependences. From equations (2) and (3), the 
calculation of the kth row and column elements requires 
the solved data on preceding rows and columns. If the 
matrix elements are distributed to the processors of a 
parallel computer, then frequent communication among 
the processors is required, which reduces the efficiency of 
parallel algorithms and also increases the hardware 
complexity of custom-made parallel machines. 
Communication overhead has been a major problem in 
existing parallel LU factorization algorithms [1,5,7,8].  

Another main issue for parallel LU factorization is 
pivoting. To maintain numerical stability during 
factorization, pivoting is usually applied by rearranging 
the rows or/and columns of A at every step in order to 
choose the largest element as the pivot. Pivoting is more 
complex in parallel implementations because the 
permutation of rows or/and columns requires 
communication and synchronization between processors 
that greatly increase the complexity of parallel sparse LU 
factorization. Furthermore, pivoting may cause load 
imbalance among processors. This problem is further 
exacerbated if dynamic data structures are employed to 
store sparse matrices. In SuperLU, static symbolic LU 
factorization is performed in order to determine in 
advance all possible fill-ins (positions of zeros in the 
original matrix that will be replaced with non-zero 
elements during LU factorization), before actual LU 
factorization takes place [2, 3]. Fortunately, some 
applications, such as electric power systems, employ 
symmetric positive definite matrices which are also 
diagonally dominant, so pivoting is not often required. 
Since we do not consider here pivoting during LU 
factorization, we can use static data structures where the 
location of all fill-ins is predetermined. 

In our implementation of parallel LU factorization that 
targets electric power matrices, we focus on another 
important purpose of ordering, i.e., to exploit the inherent 
parallelism in sparse matrices. By using the node tearing 
technique [6], which will be discussed later, we reorder 
the nodal admittance matrix of the power network into the 
Bordered-Diagonal-Block (BDB) form (see the A matrix 
in Figure 1). The above three major difficulties for 
parallelization, i.e. data dependences, pivoting and fill-ins, 
can be attacked efficiently in this form. It was also 
demonstrated elsewhere that electric power matrices with 
a maximum value of N equal to a few thousand can be 
ordered into this form and a related parallel 

for  j ∈[1, i-1]     (2) 
 
 
 
for j ∈[i, N]        (3) 
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implementation on the Connection Machine CM-5 
supercomputer resulted in impressive speedups for up to 
16 processors [2].  

 
11 1 1 1

22 2 2 2

1 1 1 1 1

1 2 1

0 ... 0

0 ... 0
... ... ... ... ... ... ...

0 0 ...
...

n

n

n n n n n n

n n nn nn n n

A A X B

A A X B

A A X B
A A A A X B

− − − − −

−

     
     
     
     × =
     
     
     
     

 

 
 

 
Figure 1.  Sparse BDB matrix 

 
In Figure 1, the Aij ’s are matrix blocks; the Aii’s are 

referred to as diagonal blocks, and Ain and Anj are called 
right border blocks and bottom border blocks, 
respectively, where i,j∈[1, n]. The blocks Aii, Ain, and 
Ani are said to form a 3-block group, where i∈[1, n-1] 
and n≤ N. Every 3-block group is also associated with a 
block in the X vector and a block in the right side B 
vector. The factorization and solution of the 3-block 
groups can be carried out independently, in parallel. The 
factorization and solution of the last diagonal block Ann 
requires data produced in the right and bottom border 
blocks, so this task is the last step. In order to facilitate the 
computation in the last block, pairs of border blocks after 
LU factorization are multiplied together in parallel by 
every processor to produce Snj=LnjUjn, for j ∈[1, n-1]. 
Then, the summation is accumulated by all the processors 
and sent to the processor which is assigned the last 
diagonal block. Because all other off-diagonal blocks 
contain all 0’s, there will be no fill-ins outside of these 
blocks (Aij) during factorization and the result will have 
the same BDB structure. Moreover, communication is 
only required in the procedure of accumulating partial 
sums. Thus, the BDB matrix algorithm exhibits distinct 
advantages for parallel implementation.  

2.3. Parallel Solution for BDB Sparse Matrices 

Based on the above discussion, we can now form the 
parallel BDB algorithm for sparse linear systems. We 
assume a shared-memory MIMD multiprocessor (details 
follow in Section 4). First we order the A matrix into the 
BDB form by using the node tearing algorithm introduced 
in [6]. Node tearing is a very efficient heuristics-based 
partitioning technique first introduced in the 70s in order 
to solve large-scale circuit simulation problems. Given a 
large-scale circuit/network, this technique tries to identify 
independent groups of nodes and isolate the set of edges 
running between these independent groups. Thus, the 

circuit is divided into sub-circuits that can be dealt with 
independently, in parallel. After all the equations have 
been solved for the sub-circuits, we can solve the coupled 
equations. In our case, the nodes in the graph-circuit 
represent rows of our symmetric matrix, whereas an edge 
connecting nodes i and j implies that a non-zero element 
exists at the intersection of row i and column j. In Figure 
1, the independent diagonal blocks correspond to 
independent sub-networks, and the last (lower right) 
diagonal and border blocks represent the coupling 
between the independent sub-networks. Because the last 
block is factorized in the last step using solution data 
produced for preceding blocks in the matrix, we should 
try to make the last block as small as possible (that is, we 
should try to minimize the number of coupled equations). 
For large matrices, we may make the number of 
independent 3-block groups a multiple of the number of 
processors in the parallel system in order to assign every 
processor several 3-block groups in the parallel 
implementation. A large size for the last diagonal block 
will reduce the performance of the parallel algorithm. 
Thus, there is an optimal ordering for a given system. For 
electric power distribution networks the buses are usually 
loosely interconnected, thus the node tearing algorithm 
can produce very good results because of the sparsity in 
the corresponding matrix.  

Table 1 shows the results of the node tearing algorithm 
for the admittance matrix of the IEEE 118-bus test system 
assuming five processors.  

 
Table 1. Size of sub-blocks assigned according to node 
tearing for the IEEE 118-bus system and five 
processors 

 
 Case 1 Case 2 Case 3 

L* 6 11 16 

Processor 1* 23 8,12 6,7,7 

Processor 2* 24 8,12 4,7,7 

Processor 3* 22 10,10 5,7,7 

Processor 4* 20 10,12 6,6,6 

Processor 5* 20 10,10 4,7,7 

Size of Last Block 9 16 25 
 
L*: Total number of 3-block groups 
Processor 1-6: Dimensionality  of the diagonal blocks assigned 

to the processor 
 

In Case 1, every processor is assigned one 3-block 
group. In Cases 2 and 3, we order the matrix in such a 
way that every processor has two and three 3-block 
groups, respectively. The size of the last block is much 

   # 1     # 2            # n -1         # n-1                                   

 Processor  
 # 1 
 # 2   
 
 
 
 # n-1  
 
 # n-1                                  
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larger in Cases 2 and 3. We compare the performance of 
the implementation for these different cases in Section 5.  

We also tried explicit load balancing in the reordering 
phase. A good load balancing technique should take into 
account not only the number of equations assigned to each 
processor but also the actual number of resulting 
operations from non-zero elements. Minimum degree 
ordering is applied inside the matrix blocks to get a near 
optimal BDB matrix in order to reduce the fill-ins and the 
number of computations. BDB matrices are normally 
unchanged for non-trivial amounts of time since they 
represent generators of electricity and existing power 
distribution networks. Therefore, the extra time consumed 
in the matrix reordering phase is easily justifiable.  

After we get the BDB form of the targeted sparse 
matrix, we can then carry out parallel LU factorization 
(see Figure 1) as follows. (1) Factorization of the 
independent 3-block groups in parallel. (2) Multiplication 
in parallel of the right and bottom border factored blocks 
within individual processors to generate the partial block 
sums. (3) Accumulation of these partial results involving 
processor pairs. (4) Factorization of the last diagonal 
block using the result of the last step. Thus, every 
processor originally contains all of the data that it needs to 
operate on, except for the last block. Only local 
communications are required in this algorithm. Because 
the factorization of the last block is a sequential task, the 
most efficient algorithm is chosen to factor the last block.   

The factored LU matrix produced by this algorithm is 
in the BDB format. Thus, it demonstrates inherent 
parallelism in the forward reduction and backward 
substitution phases. In forward reduction, the following 
equation is used: 

yi=bi -∑
−

=

1

1

)*(
i

j

jij yl       for  i=1, …, N          (4)  

where lij stands for Lij. If the matrix blocks are distributed 
among the processors in an increasing processor-address 
row-number order, communication is required to transfer 
the results in the y vector to the processor with the next 
higher address before the latter begins its work. However, 
except for the diagonal blocks in the sparse BDB matrix, 
all matrix blocks in L used in equation (3) contain all 
zeros (see Figure 1) so no communication is required 
between processors. Therefore, solving for the values in 
the y vector corresponding to the independent diagonal 
blocks can be carried out in parallel, except for the last 
block that requires all the solved data of L and the values 
in the y vector from all processors with lower addresses. 
We let every processor generate the partial sums after it 
finds the unknowns in y, which are then accumulated for 
the last processor by employing a binary tree of 
processors configuration. The procedure is as follows. (1) 
All processors operate in parallel to solve the part of the y 
vector assigned to them, using their assigned diagonal 

blocks in matrix L and vector B. (2) All processors 
perform matrix-by-vector operations in parallel involving 
their lower border block and the corresponding solved 
block in the y vector. (3) Partial results are accumulated in 
parallel by all processors so they can be used in the next 
step to obtain the solutions in the last diagonal block. (4) 
Forward reduction is carried out in the last diagonal block 
by the processor with the highest address. 

The equation for backward substitution is  

1

( * )
N

i i ij j

j i

x y u x
= +

= − ∑             for  i=N, …, 1       (5) 

where uij stands for Uij. In our BDB parallel algorithm, we 
start backward substitution in the last block involving the 
processor with the highest address. After the solutions are 
obtained for the last block, this processor broadcasts its 
solved block for x to all other processors. Finally, all the 
processors find the solutions in parallel for their assigned 
block in the x vector. 

3.  Configurable Computing 

Configurable or adaptive computing, which is based on 
the unique advantage of the static and/or run time 
(re)configurability of FPGA-like or switching devices, has 
been an intensive research and experimentation area ever 
since the introduction of commercial FPGAs [9-11]. After 
more than a decade of exploration, FPGA -based 
configurable systems can be used as specialized co-
processors, processor-attached functional units or 
independent processing machines [9], attached message 
routers in parallel machines, general-purpose processors 
for unconventional designs [13], and general-purpose or 
specialized systems for parallel processing [11]. They are 
able to greatly increase the performance of computation-
intensive algorithms in DSP, data communication, 
genetics, image processing, pattern recognition, etc. 
[9,10].  

During recent years, FPGAs have seen impressive 
improvements in density, speed and architecture. State of 
the art silicon manufacturing technology not only allows 
to build faster FPGA chips consisting of tens of millions 
of system gates, but also allows more features and 
capabilities with reprogrammable technology.  What is 
interesting is that System-On-a-Chip (SoC) designers are 
incorporating programmable logic cores provided by 
FPGA vendors, which can be customized to imp lement 
digital circuit after fabrication. By using programmable 
logic cores, ASIC designers can reduce significantly 
design risks and time.  

Our research focuses on another advantage of FPGA -
based configurable systems. FPGAs allow the 
implementation of various designs in reasonable times. 
Our designs emphasize hardware parallelism. Currently, 
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the majority of configurable parallel-machine 
implementations reside on multi-FPGA systems 
interconnected via a specific network; ASIC components 
may also be present. For example, Splash 2 uses 17 Xilinx 
XC4010s arranged in a linear array and also 
interconnected via a 16 x 16 crossbar [11]. These 
machines also display substantial communication and I/O 
problems, like supercomputers. We present here our 
pioneering experience with the design and 
implementation of a parallel machine on an SOPC 
development board for the implementation of parallel LU 
factorization using the BDB sparse matrix algorithm. 
Scalability of the algorithm-machine pair is a major 
objective for high performance (e.g., in power flow 
analysis). With advances predicted by Moore’s Law, our 
dependence on SOPC designs will become even more 
preeminent. 

4. Design and Implementation  

4.1. Nios Processor and Floating-Point Unit 

In order to reduce the design and development times, 
our implementation of a NUMA (Non-Uniform Memory 
Access) shared-memory multiprocessor employs a 
commercially available soft IP processor from Altera, 
namely Nios. The Nios RISC processor is a fully 
configurable soft IP that offers over 125MHz in the 
Stratix FPGA. The CPU word size (16-bit or 32-bit), 
clock speed, register file, SDK, address space, on-chip 
memory (RAM or ROM), availability of 
hardware/software multiplier and various other on-chip 
peripherals can all be tailored to user specifications. In 
our design, a typical 32-bit Nios takes about 1500 logic 
elements, which is about 2.9 percent of the logic elements 
contained in the 1500,000-gate EP20K1500E on the 
Altera SOPC development board that is used in our 
implementation. As discussed earlier, the communication 
overhead has always been a bottleneck for current parallel 
architectures. So the communication network between 
processors and peripherals in an IP-based multiprocessor 
design is a critical element for good system performance. 
The Nios processors and other peripherals in our parallel 
machine are interconnected via the fully parameterized 
and multi-mastering Altera Avalon bus. Unlike the 
traditional shared bus, it is a fully connected bus, supports 
simultaneous transactions for all bus masters, and 
implements arbitration for the slaves (such as on-chip and 
off-chip memories).  

LU factorization requires floating-point arithmetic to 
deal with large dynamic data ranges. Standard Nios 
instructions support only integer arithmetic operations, 
but Nios provides an approach that allows the user to 
significantly increase system performance by 

implementing user-defined performance-critical 
operations through direct hardware instruction decoding. 
In the past, floating-point units (FPUs) have been rarely 
introduced in FPGA -based configurable machines due to 
the space required for FPU implementation; very limited 
numbers of resources were available in older FPGAs, so 
designers would choose fixed-point arithmetic in order to 
leave most of the logic resources to the application 
implementation. Nowadays, the availability of higher-
capacity FPGAs makes it more feasible to implement 
FPUs on FPGAs because of increased numbers of 
resources [12]. Although many applications based on 
floating-point arithmetic, especially matrix multiplication,  
have been implemented in new FPGAs during the last few 
years, there are still very few reports about configurable 
systems that have successfully incorporated FPUs. The 
design and optimization of a very good synthesizable FPU 
has proved to be a very difficult task. A single-precision 
(32-bit) IEEE 754 standard FPU was implemented in our 
project using VHDL; it was ported to a Nios-based system 
using four user custom instructions. Table 2 shows the 
performance of our FPU. Table 3 shows that by using a 
hardwired FPU we can greatly improve the performance 
of algorithms. Better, commercial IP FPUs are also 
available but may cost more than $10,000. 

 
Table 2. FPU performance for the APEX20K FPGA 
 

Functions System 
Frequency 

Logic 
Elements 

Clock 
Cycles 

Adder/ Subtractor 51MHz 696 7 
Multiplier 40MHz 2630 5 

Divider 39MHz 1028 50 
 
4.2. Sequential LU Factorization 

 
In order to test the performance of the Nios soft IP core 

and produce comparison data for our parallel solution on 
the SOPC, sequential LU factorization was first 
implemented for a single 32-bit Nios containing 128 
registers and an FPU; the Altera Nios development board, 
which is equipped with a EP20K200EFC484-2x FPGA, 
was used. This Nios processor takes about 5900 logic 
elements and the maximum system frequency is 40MHz. 
Table 4 shows the execution times of LU factorization for 
various matrix sizes and the electric power IEEE 118-bus 
test system. We can see that for such computation-
intensive algorithms, the hardware implementation of the 
FPU results in much faster implementations. The FPGA 
on the Nios board can only host one processor with a 
FPU. So we target our multiprocessor design to a higher-
capacity Altera board, the SOPC development board. 

 
4.3. Multiprocessor Implementation on the SOPC 
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We designed and implemented a parallel Nios-based 
configurable, MIMD machine on the SOPC board, 
containing five computation Nios processors and one 
control Nios processor. Compared to the Nios 
development board, the SOPC board is almost a "blank" 
board to us. We first carefully designed the CPU systems 
according to the requirements of our parallel BDB 
algorithm. The configurability of the Nios processor 
offers many ways to customize our system to get good 
performance. The FPGA device on the SOPC 
development board, the EP20K1500EBC652-1x, has 
51,840 logic elements and 442,368 bits of on-chip 
memory. In our system, every Nios is a 32-bit processor 
without hardware multipliers (we use the FPU instead), 
and contains 128 registers, 7KB on-chip RAM, and 1KB 
on-chip ROM. Every Nios is coupled with an FPU. The 
control processor communicates with the host via an on-
chip UART interface. We also had to develop all the 
interfaces for most components on the SOPC board, such 
as the SSRAM, UART, LCD, LED, and buttons, and 
implemented them as standard SOPC builder library 
components according to the specifications of the Altera 
Avalon bus.  

We do not use any operating system with our parallel 
machine and the communication between the processors 
is implemented via on-chip memory. The control program 
stored in the on-chip ROM of each Nios guides the 
processor. The monitor program of Nios 6 is used to 
control and debug the entire system. Whenever the power 
is turned on or the system is reset, the embedded control 
program prepares each processor for execution of the 
application program. In order to save space in the on-chip 
memory, we coded the boot programs for all the 
processors in the Nios assembly language and stored them 
in a 1KB on-chip ROM. The SOPC board provides more 
than 50KB of on-chip memory and each Nios CPU uses 
about 1KB for its register file (with the choice of 128 
registers), so we assigned every Nios 7KB of on-chip 
RAM.  

All Nios processors use the on-board SSRAM as the 
program memory. The two SSRAM chips on the SOPC 
have separate address and data buses, and control signal 
channels. This architecture improves the system 
frequency and increases memory throughput. Otherwise, 
with six Nios simultaneously accessing the same SSRAM 
chip, the SSRAM arbitration would slowdown 
significantly the system’s operation. We assigned three 
Nios systems the SSRAM 1 with address range 
0x100000~0x1FFFFF and the other two Nios systems the 
SSRAM 2 with the address range 0x200000~0x2FFFFF. 
Nios 6 can access both SSRAMs in order to control the 
system and send the results to the host. We divided the 
SSRAM memory space into segments and assigned the 
same amount of memory to each Nios for the main 
program and data storage. The SRAM chips on the SOPC 

board are synchronous, burst SRAMs (SSRAMs). Unlike 
the zero-wait -state asynchronous SRAM on the Nios 
board for which all operations take one cycle, normally 
there are two wait states for a read operation. In our 
experimentation, we first compared the performance of 
our programs on the Nios and SOPC boards for only one 
Nios. Table 5 shows that LU factorization takes about 70 
percent more time to run on the SOPC board than on the 
Nios board due to the larger SSRAM access latency on 
the SOPC board.  

In order to reduce the commu nication overhead and 
take advantage of the fully connectivity of the Avalon 
bus, the partial block results for the factorization of the 
last diagonal block and the two substitutions are 
accumulated in pairs: (1) Nios 1 + Nios 2 -> Nios 2;  Nios 
3 +Nios 4 -> Nios 4. (2) Nios 2 + Nios 5 -> Nios 5. (3) 
Nios 4 + Nios 5 ->Nios 5. The complexity of our parallel 

BDB algorithm for sparse matrices is O( ( )
N
p

3), where p 

is the number of processors (the proof is omitted here for 
the sake of brevity).  

5. Performance Results 

We first tested our parallel BDB LU factorization 
algorithm, which is expected to dominate the total 
execution time for solving the linear equations, for 
different matrix sizes (see Table 6). Here the number of 
independent diagonal blocks is the same as the number of 
computation processors (i.e., 5). We observed that, when 
the size of the blocks assigned to the processors is a 
power of two, then each Nios works more efficiently. 
Higher efficiency then may be the result of smoother 
pipelined accesses of matrix data in the memory. This 
table shows that the speed-ups are significant for the 
parallel implementation, which proves the viability of our 
FPGA -based approach in solving such problems 
efficiently and at low cost. Table 7 shows the execution 
times for the forward and backward substitution with 
these matrices. We can see that with increases in the 
matrix size, the time spent on LU factorization becomes a 
more significant component of the total time, which is not 
surprising provided that LU factorization time increases 

as O( ( )
N
p

3) while substitution times increase as 

O( ( )
N
p

2), where p is the number of processors 

participating in the computation.  
We also compared the performance for different matrix 

orderings as shown in Table 1 for the IEEE 118-bus test 
system. Table 8 shows the execution times of LU 
factorization and substitutions for the three cases in Table 
1. For LU factorization, we can see that Case 2 takes less 
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time than the other two cases and Case 3 results in the 
slowest implementation. Case 2 produces the best 
performance despite the fact that it imposes significant 
communication and synchronization overheads because it 
reduces much faster the computation times in the 
individual sub-blocks. In contrast, in Case 3 the reduction 
in computation times for the sub-blocks does not 
compensate for the significant increases in the former 
overheads. For the forward and backward substitution, 
however, the division into sub-blocks has not any effect at 
all from an individual processor's point of view; in fact, 
this subdivision increases some overheads in the code for 
this task. But since LU factorization time dominates the 
total solution time, an optimal ordering set is still 
preferable in order to reduce the total solution time. The 
optimal set may vary with different architectures because 
the computation-communication ratio may vary. The 
reordering is performed on the PC host and all the 
execution times do not include the time corresponding to 
reordering.  

6. Conclusions  

This paper presents our pioneering experience with the 
design and implementation of a shared-memory 
multiprocessor computer on an FPGA -based SOPC board. 
A parallel BDB algorithm for the solution of linear 
systems of equations was tested on this parallel system 
and good performance was obtained. By using a node 
tearing technique, large sparse matrices can be reordered 
into the BDB form and LU factorization and forward and 
backward substitution can be carried out efficiently in 
parallel. A uni-processor design was also implemented in 
order to compare the performance with our parallel 
implementation. The results demonstrate that there exists 
a best ordering for a given matrix on the targeted machine 
based on various computation-communication ratios. Our 
results prove that the new generation of FPGA -based 
SOPCs provides viable platforms for implementing high-
performance parallel machines.  
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Table 3. Execution time (in clock cycles) for software and hardware floating-point operations with Nios 

Operations Software (SW) 
Library Macros 

Hardware (HW) 
FPU* 

Speedup 

Addition/Subtraction 770 19 40.5 
Multiplication 2976 16 186.0 

Division 1137 51 22.3 
 

* Total time for Nios to complete the entire instruction, including fetching and decoding 
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 Table 4. Uni-processor execution time (msec) for LU factorization and substitutions on the Altera Nios development board  
 

Matrix Size LU 
with SW FP 

LU 
with HW FPU 

Speedup 

24 x 24 99.85845 610701 16.35 
36 x 36 344.69124 1902411 18.12 
64 x 64 2115.08535 9978486 21.20 
96 x 96 6840.39006 32806368 20.85 

102 x 102 8248.38399 39228519 21.03 
IEEE 118-bus system 13643.063514 602.34276 22.65 

 
Table 5. Uni-processor execution time (in clock cycles) for LU factorization on the Nios and SOPC boards 

 
Nios board SOPC board Programs  

SW FP HW FPU SW FP HW FPU 

Multiplication of two 
floating-point numbers 

2976 16 4376 33 

5x5   LU factorization 45,168 4583 78,785 7664 

30x30 LU factorization 7,570,660 351,843 13,592,766 674,385 

 
Table 6. Execution time (msec) for parallel LU factorization 

 
    Matrix   Size 

Total  
Time (msec)  

 

24x24 

 

30x30 

 

36x36 

 

42x42 

 

48x48 

 

54x54 

 

96x96 

 

102x102 
Multiprocessor 0.551 1.218 0.957 1.390 2.673 4.438 15.61 21.30 

Uni-processor 1.991 4.129 3.400 5.072 10.372 16.793 62.778 85.10 
Speedup   3.61 3.39 3.55 3.65 3.88 3.78 4.02 3.995 

 
Table 7 . Parallel execution time (msec) for forward reduction and backward substitution on the SOPC 

 
Matrix Size 

Time (msec) 
24x24 30x30 36x36 42x42 48x48 54x54 96x96 102x102 

Matrix Sparsity 
(% of  non-zero elements) 

28.5 25.8 27.5 29.4 25.5 22.2 21.3 23.9 

Forward 0.060 0.090 0.099 0.124 0.152 0.210 0.475 0.683 

Backward 0.073 0.099 0.115 0.146 0.178 0.238 0.573 0.584 
Total Time (msec) 0.133 0.189 0.214 0.270 0.330 0.448 1.048 1.267 

 
Table 8 .  Parallel solution times (msec) for the IEEE 118-bus test system on the SOPC 

 
                     Case 1 Case 2 Case 3 

LU factorization 15.315 14.030 17.131 
Forward 0.497 0.637 0.880 

Backward 0.581 0.642 0.882 

Total Time 16.393 15.309 18.893 
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