
 1

Parallel Direct Solution of Linear Equations on FPGA-Based Machines*

Xiaofang Wang and Sotirios G. Ziavras
Department of Electrical and Computer Engineering

 New Jersey Institute of Technology
Newark, New Jersey 07102, USA

Email: ziavras@njit.edu

Abstract

The efficient solution of large systems of linear

equations represented by sparse matrices appears in
many tasks. LU factorization followed by backward and
forward substitutions is widely used for this purpose.
Parallel implementations of this computation-intensive
process are limited primarily to supercomputers. New
generations of Field-Programmable Gate Array (FPGA)
technologies enable the implementation of System-On-a-
Programmable-Chip (SOPC) computing platforms that
provide many opportunities for configurable computing.
We present here the design and implementation of a
parallel machine for LU factorization on an SOPC board,
using multiple instances of a soft processor. A highly
parallel Block -Diagonal-Bordered (BDB) algorithm for
LU factorization is mapped to our multiprocessor. Our
results prove the viability of our FPGA-based approach.

Keywords: FPGA, LU factorization, forward/backward
substitution, parallel processing, SOPC.

1. Introduction

Many scientific and engineering problems, such as

circuit simulation, applications in electric power networks
and structural analysis, involve solving a large sparse
system of simultaneous linear equations. LU factorization
is a very efficient and commonly employed direct method
to solve such problems. It has been proved in [1] that LU
factorization is much faster than non-stationary iterative
methods in electric power flow applications that use the
Newton-Raphson (NR) method for systems with up to
685 buses. With LU factorization, the solution of the
entire system is obtained by solving two sets of triangular
equations. However, LU factorization is a computation-
intensive method, especially for large matrices with

* This work was supported in part by the U.S. Department of
Energy under grant ER63384.

thousands of elements that frequently appear in these
application areas. The motivation to reduce the execution
time, especially when operations have to be carried out in
real time, has stimulated extensive research in applying
parallel processing to the LU factorization of linear
systems. Many successful parallel LU solvers have been
developed for massively-parallel supercomputers [2, 4, 7].
Although parallel computers have accomplished a great
deal of success in solving computation-intensive
problems, their high price, the long design and
development cycles, the difficulty in programming them,
as well as the high cost of maintaining them limit their
versatility. For example the scarcity and high cost of
parallel architectures available to the industry limits
greatly the further application of parallel processing in
power engineering [4].

On the other hand, with constant advances in VLSI
technologies and architecture design, FPGAs have grown
into multi-million-gate SOPC computing platforms, from
originally serving as simple platforms for small ASIC
prototyping and glue logic implementation. New
generations of FPGAs have made it possible to integrate a
large number of computation resources, such as logic
blocks, embedded memory, fast routing matrices, and
microprocessors on one silicon die. It is possible now to
build Multi-Processor-On-a-Programmable -Chip
(MPOPC) systems, which offer a great opportunity to re-
evaluate previous research efforts through the
employment of the promising configurable computing
paradigm. MPOPC designs offer alternative ways to
optimize the system and reduce communication overheads
that have been long obstacles to parallel processing
implementations.

The research motivation in this paper is to develop a
cost-effective, high-performance parallel architecture for
electric power applications based on a new generation of
FPGAs. Our shared-memory MIMD multiprocessor
machine uses six Altera Nios® configurable IP
(Intellectual Property) processors as computation and
control nodes and is implemented on the Altera SOPC
development board, which is populated with an

11th International Conference on Parallel and Distributed Real-Time Systems, Nice, France, April 22-23, 2003

 2

EP20K1500EBC652-1x FPGA. We have adapted a very
efficient parallel sparse matrix solver, namely the
Bordered-Diagonal-Block (BDB) solver for sparse linear
equations [2]. Our low-cost, high-performance approach
can improve the performance of various real-time
electrical power system applications, such as power flow
and transient stability analysis. It is also applicable to
other scientific areas that require the solution of such
equations in reasonable running times.

2. Parallel Sparse Bordered-Diagonal-Block

Solution

2.1. Introduction to LU Factorization

Many problems require the solution to the following
set of simultaneous linear equations:

Ax = b (1)

where A is an N x N nonsingular sparse matrix, x is a
vector of N unknowns, and b is a given vector of length
N. The solvers for this equation come mainly in two
forms: direct [5] and iterative [1]. One of the classic direct
methods is LU factorization, which works as follows. We
first factorize A so that A=LU, where L is a lower
triangular matrix and U is an upper triangular matrix.
Once L and U are determined, then the equations can be
written as two triangular systems, Ly = b and Ux = y,
whose solutions can be obtained by forward reduction and
backward substitution, respectively. There are many
implementations of LU factorization. The "Doolittle LU
factorization algorithm” [5] assumes that L has all 1's on
the diagonal and can be formulated as:

1

1
1

ij

1

1(*)*

U = *

j

ij ij ik kj
jjk

i

ij ik kj

k

L A L U
U

A L U

−

=
−

=

= −

−

∑

∑

From these equations, we can observe that the
Doolittle method can benefit from storing the matrix in
the row order for fast matrix accesses. Since our matrices
are stored in the row order, we employ the Doolit tle
method for those parts of our LU factorization that require
the application of conventional LU factorization.
Compared to iterative algorithms having convergence
rates greatly depending on the characteristics of the
matrices, LU factorization is more robust because every
nonsingular matrix can be factored into some form of two
triangular matrices. Also, the result of LU factorization
can be used repeatedly after the right hand vector has
changed, as is the case for decoupled power flow analysis.

2.2. Parallelization of LU Factorization of Sparse
Matrices

Many research efforts have targeted parallel LU
factorization algorithms for supercomputers and clusters
of PCs or workstations [1, 2, 4, 8]. There are several
critical issues that a parallel implementation of LU
factorization has to address. The most important factor is
data dependences. From equations (2) and (3), the
calculation of the kth row and column elements requires
the solved data on preceding rows and columns. If the
matrix elements are distributed to the processors of a
parallel computer, then frequent communication among
the processors is required, which reduces the efficiency of
parallel algorithms and also increases the hardware
complexity of custom-made parallel machines.
Communication overhead has been a major problem in
existing parallel LU factorization algorithms [1,5,7,8].

Another main issue for parallel LU factorization is
pivoting. To maintain numerical stability during
factorization, pivoting is usually applied by rearranging
the rows or/and columns of A at every step in order to
choose the largest element as the pivot. Pivoting is more
complex in parallel implementations because the
permutation of rows or/and columns requires
communication and synchronization between processors
that greatly increase the complexity of parallel sparse LU
factorization. Furthermore, pivoting may cause load
imbalance among processors. This problem is further
exacerbated if dynamic data structures are employed to
store sparse matrices. In SuperLU, static symbolic LU
factorization is performed in order to determine in
advance all possible fill-ins (positions of zeros in the
original matrix that will be replaced with non-zero
elements during LU factorization), before actual LU
factorization takes place [2, 3]. Fortunately, some
applications, such as electric power systems, employ
symmetric positive definite matrices which are also
diagonally dominant, so pivoting is not often required.
Since we do not consider here pivoting during LU
factorization, we can use static data structures where the
location of all fill-ins is predetermined.

In our implementation of parallel LU factorization that
targets electric power matrices, we focus on another
important purpose of ordering, i.e., to exploit the inherent
parallelism in sparse matrices. By using the node tearing
technique [6], which will be discussed later, we reorder
the nodal admittance matrix of the power network into the
Bordered-Diagonal-Block (BDB) form (see the A matrix
in Figure 1). The above three major difficulties for
parallelization, i.e. data dependences, pivoting and fill-ins,
can be attacked efficiently in this form. It was also
demonstrated elsewhere that electric power matrices with
a maximum value of N equal to a few thousand can be
ordered into this form and a related parallel

for j ∈[1, i-1] (2)

for j ∈[i, N] (3)

11th International Conference on Parallel and Distributed Real-Time Systems, Nice, France, April 22-23, 2003

 3

implementation on the Connection Machine CM-5
supercomputer resulted in impressive speedups for up to
16 processors [2].

11 1 1 1

22 2 2 2

1 1 1 1 1

1 2 1

0 ... 0

0 ... 0
...

0 0 ...
...

n

n

n n n n n n

n n nn nn n n

A A X B

A A X B

A A X B
A A A A X B

− − − − −

−

     
     
     
     × =
     
     
     
     

Figure 1. Sparse BDB matrix

In Figure 1, the Aij ’s are matrix blocks; the Aii’s are

referred to as diagonal blocks, and Ain and Anj are called
right border blocks and bottom border blocks,
respectively, where i,j∈[1, n]. The blocks Aii, Ain, and
Ani are said to form a 3-block group, where i∈[1, n-1]
and n≤ N. Every 3-block group is also associated with a
block in the X vector and a block in the right side B
vector. The factorization and solution of the 3-block
groups can be carried out independently, in parallel. The
factorization and solution of the last diagonal block Ann
requires data produced in the right and bottom border
blocks, so this task is the last step. In order to facilitate the
computation in the last block, pairs of border blocks after
LU factorization are multiplied together in parallel by
every processor to produce Snj=LnjUjn, for j ∈[1, n-1].
Then, the summation is accumulated by all the processors
and sent to the processor which is assigned the last
diagonal block. Because all other off-diagonal blocks
contain all 0’s, there will be no fill-ins outside of these
blocks (Aij) during factorization and the result will have
the same BDB structure. Moreover, communication is
only required in the procedure of accumulating partial
sums. Thus, the BDB matrix algorithm exhibits distinct
advantages for parallel implementation.

2.3. Parallel Solution for BDB Sparse Matrices

Based on the above discussion, we can now form the
parallel BDB algorithm for sparse linear systems. We
assume a shared-memory MIMD multiprocessor (details
follow in Section 4). First we order the A matrix into the
BDB form by using the node tearing algorithm introduced
in [6]. Node tearing is a very efficient heuristics-based
partitioning technique first introduced in the 70s in order
to solve large-scale circuit simulation problems. Given a
large-scale circuit/network, this technique tries to identify
independent groups of nodes and isolate the set of edges
running between these independent groups. Thus, the

circuit is divided into sub-circuits that can be dealt with
independently, in parallel. After all the equations have
been solved for the sub-circuits, we can solve the coupled
equations. In our case, the nodes in the graph-circuit
represent rows of our symmetric matrix, whereas an edge
connecting nodes i and j implies that a non-zero element
exists at the intersection of row i and column j. In Figure
1, the independent diagonal blocks correspond to
independent sub-networks, and the last (lower right)
diagonal and border blocks represent the coupling
between the independent sub-networks. Because the last
block is factorized in the last step using solution data
produced for preceding blocks in the matrix, we should
try to make the last block as small as possible (that is, we
should try to minimize the number of coupled equations).
For large matrices, we may make the number of
independent 3-block groups a multiple of the number of
processors in the parallel system in order to assign every
processor several 3-block groups in the parallel
implementation. A large size for the last diagonal block
will reduce the performance of the parallel algorithm.
Thus, there is an optimal ordering for a given system. For
electric power distribution networks the buses are usually
loosely interconnected, thus the node tearing algorithm
can produce very good results because of the sparsity in
the corresponding matrix.

Table 1 shows the results of the node tearing algorithm
for the admittance matrix of the IEEE 118-bus test system
assuming five processors.

Table 1. Size of sub-blocks assigned according to node
tearing for the IEEE 118-bus system and five
processors

 Case 1 Case 2 Case 3

L* 6 11 16

Processor 1* 23 8,12 6,7,7

Processor 2* 24 8,12 4,7,7

Processor 3* 22 10,10 5,7,7

Processor 4* 20 10,12 6,6,6

Processor 5* 20 10,10 4,7,7

Size of Last Block 9 16 25

L*: Total number of 3-block groups
Processor 1-6: Dimensionality of the diagonal blocks assigned

to the processor

In Case 1, every processor is assigned one 3-block
group. In Cases 2 and 3, we order the matrix in such a
way that every processor has two and three 3-block
groups, respectively. The size of the last block is much

 # 1 # 2 # n -1 # n-1

 Processor
 # 1
 # 2

 # n-1

 # n-1

11th International Conference on Parallel and Distributed Real-Time Systems, Nice, France, April 22-23, 2003

 4

larger in Cases 2 and 3. We compare the performance of
the implementation for these different cases in Section 5.

We also tried explicit load balancing in the reordering
phase. A good load balancing technique should take into
account not only the number of equations assigned to each
processor but also the actual number of resulting
operations from non-zero elements. Minimum degree
ordering is applied inside the matrix blocks to get a near
optimal BDB matrix in order to reduce the fill-ins and the
number of computations. BDB matrices are normally
unchanged for non-trivial amounts of time since they
represent generators of electricity and existing power
distribution networks. Therefore, the extra time consumed
in the matrix reordering phase is easily justifiable.

After we get the BDB form of the targeted sparse
matrix, we can then carry out parallel LU factorization
(see Figure 1) as follows. (1) Factorization of the
independent 3-block groups in parallel. (2) Multiplication
in parallel of the right and bottom border factored blocks
within individual processors to generate the partial block
sums. (3) Accumulation of these partial results involving
processor pairs. (4) Factorization of the last diagonal
block using the result of the last step. Thus, every
processor originally contains all of the data that it needs to
operate on, except for the last block. Only local
communications are required in this algorithm. Because
the factorization of the last block is a sequential task, the
most efficient algorithm is chosen to factor the last block.

The factored LU matrix produced by this algorithm is
in the BDB format. Thus, it demonstrates inherent
parallelism in the forward reduction and backward
substitution phases. In forward reduction, the following
equation is used:

yi=bi -∑
−

=

1

1

)*(
i

j

jij yl for i=1, …, N (4)

where lij stands for Lij. If the matrix blocks are distributed
among the processors in an increasing processor-address
row-number order, communication is required to transfer
the results in the y vector to the processor with the next
higher address before the latter begins its work. However,
except for the diagonal blocks in the sparse BDB matrix,
all matrix blocks in L used in equation (3) contain all
zeros (see Figure 1) so no communication is required
between processors. Therefore, solving for the values in
the y vector corresponding to the independent diagonal
blocks can be carried out in parallel, except for the last
block that requires all the solved data of L and the values
in the y vector from all processors with lower addresses.
We let every processor generate the partial sums after it
finds the unknowns in y, which are then accumulated for
the last processor by employing a binary tree of
processors configuration. The procedure is as follows. (1)
All processors operate in parallel to solve the part of the y
vector assigned to them, using their assigned diagonal

blocks in matrix L and vector B. (2) All processors
perform matrix-by-vector operations in parallel involving
their lower border block and the corresponding solved
block in the y vector. (3) Partial results are accumulated in
parallel by all processors so they can be used in the next
step to obtain the solutions in the last diagonal block. (4)
Forward reduction is carried out in the last diagonal block
by the processor with the highest address.

The equation for backward substitution is

1

(*)
N

i i ij j

j i

x y u x
= +

= − ∑ for i=N, …, 1 (5)

where uij stands for Uij. In our BDB parallel algorithm, we
start backward substitution in the last block involving the
processor with the highest address. After the solutions are
obtained for the last block, this processor broadcasts its
solved block for x to all other processors. Finally, all the
processors find the solutions in parallel for their assigned
block in the x vector.

3. Configurable Computing

Configurable or adaptive computing, which is based on
the unique advantage of the static and/or run time
(re)configurability of FPGA-like or switching devices, has
been an intensive research and experimentation area ever
since the introduction of commercial FPGAs [9-11]. After
more than a decade of exploration, FPGA -based
configurable systems can be used as specialized co-
processors, processor-attached functional units or
independent processing machines [9], attached message
routers in parallel machines, general-purpose processors
for unconventional designs [13], and general-purpose or
specialized systems for parallel processing [11]. They are
able to greatly increase the performance of computation-
intensive algorithms in DSP, data communication,
genetics, image processing, pattern recognition, etc.
[9,10].

During recent years, FPGAs have seen impressive
improvements in density, speed and architecture. State of
the art silicon manufacturing technology not only allows
to build faster FPGA chips consisting of tens of millions
of system gates, but also allows more features and
capabilities with reprogrammable technology. What is
interesting is that System-On-a-Chip (SoC) designers are
incorporating programmable logic cores provided by
FPGA vendors, which can be customized to imp lement
digital circuit after fabrication. By using programmable
logic cores, ASIC designers can reduce significantly
design risks and time.

Our research focuses on another advantage of FPGA -
based configurable systems. FPGAs allow the
implementation of various designs in reasonable times.
Our designs emphasize hardware parallelism. Currently,

11th International Conference on Parallel and Distributed Real-Time Systems, Nice, France, April 22-23, 2003

 5

the majority of configurable parallel-machine
implementations reside on multi-FPGA systems
interconnected via a specific network; ASIC components
may also be present. For example, Splash 2 uses 17 Xilinx
XC4010s arranged in a linear array and also
interconnected via a 16 x 16 crossbar [11]. These
machines also display substantial communication and I/O
problems, like supercomputers. We present here our
pioneering experience with the design and
implementation of a parallel machine on an SOPC
development board for the implementation of parallel LU
factorization using the BDB sparse matrix algorithm.
Scalability of the algorithm-machine pair is a major
objective for high performance (e.g., in power flow
analysis). With advances predicted by Moore’s Law, our
dependence on SOPC designs will become even more
preeminent.

4. Design and Implementation

4.1. Nios Processor and Floating-Point Unit

In order to reduce the design and development times,
our implementation of a NUMA (Non-Uniform Memory
Access) shared-memory multiprocessor employs a
commercially available soft IP processor from Altera,
namely Nios. The Nios RISC processor is a fully
configurable soft IP that offers over 125MHz in the
Stratix FPGA. The CPU word size (16-bit or 32-bit),
clock speed, register file, SDK, address space, on-chip
memory (RAM or ROM), availability of
hardware/software multiplier and various other on-chip
peripherals can all be tailored to user specifications. In
our design, a typical 32-bit Nios takes about 1500 logic
elements, which is about 2.9 percent of the logic elements
contained in the 1500,000-gate EP20K1500E on the
Altera SOPC development board that is used in our
implementation. As discussed earlier, the communication
overhead has always been a bottleneck for current parallel
architectures. So the communication network between
processors and peripherals in an IP-based multiprocessor
design is a critical element for good system performance.
The Nios processors and other peripherals in our parallel
machine are interconnected via the fully parameterized
and multi-mastering Altera Avalon bus. Unlike the
traditional shared bus, it is a fully connected bus, supports
simultaneous transactions for all bus masters, and
implements arbitration for the slaves (such as on-chip and
off-chip memories).

LU factorization requires floating-point arithmetic to
deal with large dynamic data ranges. Standard Nios
instructions support only integer arithmetic operations,
but Nios provides an approach that allows the user to
significantly increase system performance by

implementing user-defined performance-critical
operations through direct hardware instruction decoding.
In the past, floating-point units (FPUs) have been rarely
introduced in FPGA -based configurable machines due to
the space required for FPU implementation; very limited
numbers of resources were available in older FPGAs, so
designers would choose fixed-point arithmetic in order to
leave most of the logic resources to the application
implementation. Nowadays, the availability of higher-
capacity FPGAs makes it more feasible to implement
FPUs on FPGAs because of increased numbers of
resources [12]. Although many applications based on
floating-point arithmetic, especially matrix multiplication,
have been implemented in new FPGAs during the last few
years, there are still very few reports about configurable
systems that have successfully incorporated FPUs. The
design and optimization of a very good synthesizable FPU
has proved to be a very difficult task. A single-precision
(32-bit) IEEE 754 standard FPU was implemented in our
project using VHDL; it was ported to a Nios-based system
using four user custom instructions. Table 2 shows the
performance of our FPU. Table 3 shows that by using a
hardwired FPU we can greatly improve the performance
of algorithms. Better, commercial IP FPUs are also
available but may cost more than $10,000.

Table 2. FPU performance for the APEX20K FPGA

Functions System
Frequency

Logic
Elements

Clock
Cycles

Adder/ Subtractor 51MHz 696 7
Multiplier 40MHz 2630 5

Divider 39MHz 1028 50

4.2. Sequential LU Factorization

In order to test the performance of the Nios soft IP core

and produce comparison data for our parallel solution on
the SOPC, sequential LU factorization was first
implemented for a single 32-bit Nios containing 128
registers and an FPU; the Altera Nios development board,
which is equipped with a EP20K200EFC484-2x FPGA,
was used. This Nios processor takes about 5900 logic
elements and the maximum system frequency is 40MHz.
Table 4 shows the execution times of LU factorization for
various matrix sizes and the electric power IEEE 118-bus
test system. We can see that for such computation-
intensive algorithms, the hardware implementation of the
FPU results in much faster implementations. The FPGA
on the Nios board can only host one processor with a
FPU. So we target our multiprocessor design to a higher-
capacity Altera board, the SOPC development board.

4.3. Multiprocessor Implementation on the SOPC

11th International Conference on Parallel and Distributed Real-Time Systems, Nice, France, April 22-23, 2003

 6

We designed and implemented a parallel Nios-based
configurable, MIMD machine on the SOPC board,
containing five computation Nios processors and one
control Nios processor. Compared to the Nios
development board, the SOPC board is almost a "blank"
board to us. We first carefully designed the CPU systems
according to the requirements of our parallel BDB
algorithm. The configurability of the Nios processor
offers many ways to customize our system to get good
performance. The FPGA device on the SOPC
development board, the EP20K1500EBC652-1x, has
51,840 logic elements and 442,368 bits of on-chip
memory. In our system, every Nios is a 32-bit processor
without hardware multipliers (we use the FPU instead),
and contains 128 registers, 7KB on-chip RAM, and 1KB
on-chip ROM. Every Nios is coupled with an FPU. The
control processor communicates with the host via an on-
chip UART interface. We also had to develop all the
interfaces for most components on the SOPC board, such
as the SSRAM, UART, LCD, LED, and buttons, and
implemented them as standard SOPC builder library
components according to the specifications of the Altera
Avalon bus.

We do not use any operating system with our parallel
machine and the communication between the processors
is implemented via on-chip memory. The control program
stored in the on-chip ROM of each Nios guides the
processor. The monitor program of Nios 6 is used to
control and debug the entire system. Whenever the power
is turned on or the system is reset, the embedded control
program prepares each processor for execution of the
application program. In order to save space in the on-chip
memory, we coded the boot programs for all the
processors in the Nios assembly language and stored them
in a 1KB on-chip ROM. The SOPC board provides more
than 50KB of on-chip memory and each Nios CPU uses
about 1KB for its register file (with the choice of 128
registers), so we assigned every Nios 7KB of on-chip
RAM.

All Nios processors use the on-board SSRAM as the
program memory. The two SSRAM chips on the SOPC
have separate address and data buses, and control signal
channels. This architecture improves the system
frequency and increases memory throughput. Otherwise,
with six Nios simultaneously accessing the same SSRAM
chip, the SSRAM arbitration would slowdown
significantly the system’s operation. We assigned three
Nios systems the SSRAM 1 with address range
0x100000~0x1FFFFF and the other two Nios systems the
SSRAM 2 with the address range 0x200000~0x2FFFFF.
Nios 6 can access both SSRAMs in order to control the
system and send the results to the host. We divided the
SSRAM memory space into segments and assigned the
same amount of memory to each Nios for the main
program and data storage. The SRAM chips on the SOPC

board are synchronous, burst SRAMs (SSRAMs). Unlike
the zero-wait -state asynchronous SRAM on the Nios
board for which all operations take one cycle, normally
there are two wait states for a read operation. In our
experimentation, we first compared the performance of
our programs on the Nios and SOPC boards for only one
Nios. Table 5 shows that LU factorization takes about 70
percent more time to run on the SOPC board than on the
Nios board due to the larger SSRAM access latency on
the SOPC board.

In order to reduce the commu nication overhead and
take advantage of the fully connectivity of the Avalon
bus, the partial block results for the factorization of the
last diagonal block and the two substitutions are
accumulated in pairs: (1) Nios 1 + Nios 2 -> Nios 2; Nios
3 +Nios 4 -> Nios 4. (2) Nios 2 + Nios 5 -> Nios 5. (3)
Nios 4 + Nios 5 ->Nios 5. The complexity of our parallel

BDB algorithm for sparse matrices is O(()
N
p

3), where p

is the number of processors (the proof is omitted here for
the sake of brevity).

5. Performance Results

We first tested our parallel BDB LU factorization
algorithm, which is expected to dominate the total
execution time for solving the linear equations, for
different matrix sizes (see Table 6). Here the number of
independent diagonal blocks is the same as the number of
computation processors (i.e., 5). We observed that, when
the size of the blocks assigned to the processors is a
power of two, then each Nios works more efficiently.
Higher efficiency then may be the result of smoother
pipelined accesses of matrix data in the memory. This
table shows that the speed-ups are significant for the
parallel implementation, which proves the viability of our
FPGA -based approach in solving such problems
efficiently and at low cost. Table 7 shows the execution
times for the forward and backward substitution with
these matrices. We can see that with increases in the
matrix size, the time spent on LU factorization becomes a
more significant component of the total time, which is not
surprising provided that LU factorization time increases

as O(()
N
p

3) while substitution times increase as

O(()
N
p

2), where p is the number of processors

participating in the computation.
We also compared the performance for different matrix

orderings as shown in Table 1 for the IEEE 118-bus test
system. Table 8 shows the execution times of LU
factorization and substitutions for the three cases in Table
1. For LU factorization, we can see that Case 2 takes less

11th International Conference on Parallel and Distributed Real-Time Systems, Nice, France, April 22-23, 2003

 7

time than the other two cases and Case 3 results in the
slowest implementation. Case 2 produces the best
performance despite the fact that it imposes significant
communication and synchronization overheads because it
reduces much faster the computation times in the
individual sub-blocks. In contrast, in Case 3 the reduction
in computation times for the sub-blocks does not
compensate for the significant increases in the former
overheads. For the forward and backward substitution,
however, the division into sub-blocks has not any effect at
all from an individual processor's point of view; in fact,
this subdivision increases some overheads in the code for
this task. But since LU factorization time dominates the
total solution time, an optimal ordering set is still
preferable in order to reduce the total solution time. The
optimal set may vary with different architectures because
the computation-communication ratio may vary. The
reordering is performed on the PC host and all the
execution times do not include the time corresponding to
reordering.

6. Conclusions

This paper presents our pioneering experience with the
design and implementation of a shared-memory
multiprocessor computer on an FPGA -based SOPC board.
A parallel BDB algorithm for the solution of linear
systems of equations was tested on this parallel system
and good performance was obtained. By using a node
tearing technique, large sparse matrices can be reordered
into the BDB form and LU factorization and forward and
backward substitution can be carried out efficiently in
parallel. A uni-processor design was also implemented in
order to compare the performance with our parallel
implementation. The results demonstrate that there exists
a best ordering for a given matrix on the targeted machine
based on various computation-communication ratios. Our
results prove that the new generation of FPGA -based
SOPCs provides viable platforms for implementing high-
performance parallel machines.

References

[1] R. Bacher and E. Bullinger, "Application of Non-stationary

Iiterative Methods to an Exact Newton-Raphson Solution
Process for Power Flow Equations," Proc. 12th PSCC
Power Systems Computations Conf., Aug. 1996, pp. 453-
459.

[2] D.P. Koester, S. Ranka, and G.C. Fox, “Parallel Block-
Diagonal-Bordered Sparse Linear Solvers for Electrical
Power System Applications, ”IEEE Proc. Scal. Paral. Lib.
Conf., 1994, pp.195-203.

[3] J.J. Grainger and W.D. Stevenson, Jr., Power System
Analysis, McGraw Hill Publ., 1994.

[4] D.J. Tylavsky, et al. “Parallel Processing in Power Systems
Computation,” IEEE Trans. Power Systems, Vol. 7, No 2,
May 1992, pp. 629-638.

[5] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods
for Sparse Matrices , Oxford Univ. Press, Oxford, 1990.

[6] A. Sangiovanni-Vincentelli, L. K. Chen, and L. O. Chua,
"Node-Tearing Nodal Analysis," Techn. Rep. ERL-M582,
Electronics Research Laboratory, University of California,
Berkeley, October 1976.

[7] C. Fu, X. Jiao, and T. Yang, “Efficient Sparse LU
Factorization with Partial Pivoting on Distributed Memory
Architectures,” IEEE Trans. Paral. Distr. Systems, Vol. 9
Issue 2, Feb.1998, pp. 109-125.

[8] T. Feng and A.J. Flueck, “A Message-Passing Distributed-
Memory Parallel Power Flow Algorithm,” IEEE Power
Engin. Soc. Winter Meet., Vol. 1, 2002, pp. 211 –216.

[9] K. Compton, S. Hauck, “Reconfigurable Computing: A
Survey of Systems and Software,” ACM Comp. Surv., Vol.
34, Issue 2, June 2002, pp. 171-210.

[10] R. Tessier and W. Burleson, “Reconfigurable Computing
and Digital Signal Processing: A Survey,” J. VLSI Signal
Proc., May/June 2001, pp. 8-27.

[11] D. A. Buell, J. M. Arnold, and W. J. Kleinfelder, Splash 2:
FPGAs in a Custom Computing Machine, IEEE Computer
Society Press , Los Alamitos, CA, 1996.

[12] W. Ligon, S. McMillan, G. Monn, K. Schoonover, F.
Stivers, and K. Underwood. "A Re-Evaluation of the
Practicality of Floating-Point Operation of FPGAs," Proc.
FCCM, 1998, pp. 206–215.

[13] S. Ingersoll and S.G. Ziavras, “Dataflow Computation with
Intelligent Memories Emulated on Field-Programmable
Gate Arrays (FPGAs)," Microproc. Microsys., Vol. 26, No.
6, Aug. 2002, pp. 263-280.

.

Table 3. Execution time (in clock cycles) for software and hardware floating-point operations with Nios

Operations Software (SW)
Library Macros

Hardware (HW)
FPU*

Speedup

Addition/Subtraction 770 19 40.5
Multiplication 2976 16 186.0

Division 1137 51 22.3

* Total time for Nios to complete the entire instruction, including fetching and decoding

11th International Conference on Parallel and Distributed Real-Time Systems, Nice, France, April 22-23, 2003

 8

 Table 4. Uni-processor execution time (msec) for LU factorization and substitutions on the Altera Nios development board

Matrix Size LU
with SW FP

LU
with HW FPU

Speedup

24 x 24 99.85845 610701 16.35
36 x 36 344.69124 1902411 18.12
64 x 64 2115.08535 9978486 21.20
96 x 96 6840.39006 32806368 20.85

102 x 102 8248.38399 39228519 21.03
IEEE 118-bus system 13643.063514 602.34276 22.65

Table 5. Uni-processor execution time (in clock cycles) for LU factorization on the Nios and SOPC boards

Nios board SOPC board Programs

SW FP HW FPU SW FP HW FPU

Multiplication of two
floating-point numbers

2976 16 4376 33

5x5 LU factorization 45,168 4583 78,785 7664

30x30 LU factorization 7,570,660 351,843 13,592,766 674,385

Table 6. Execution time (msec) for parallel LU factorization

 Matrix Size

Total
Time (msec)

24x24

30x30

36x36

42x42

48x48

54x54

96x96

102x102
Multiprocessor 0.551 1.218 0.957 1.390 2.673 4.438 15.61 21.30

Uni-processor 1.991 4.129 3.400 5.072 10.372 16.793 62.778 85.10
Speedup 3.61 3.39 3.55 3.65 3.88 3.78 4.02 3.995

Table 7 . Parallel execution time (msec) for forward reduction and backward substitution on the SOPC

Matrix Size

Time (msec)
24x24 30x30 36x36 42x42 48x48 54x54 96x96 102x102

Matrix Sparsity
(% of non-zero elements)

28.5 25.8 27.5 29.4 25.5 22.2 21.3 23.9

Forward 0.060 0.090 0.099 0.124 0.152 0.210 0.475 0.683

Backward 0.073 0.099 0.115 0.146 0.178 0.238 0.573 0.584
Total Time (msec) 0.133 0.189 0.214 0.270 0.330 0.448 1.048 1.267

Table 8 . Parallel solution times (msec) for the IEEE 118-bus test system on the SOPC

 Case 1 Case 2 Case 3

LU factorization 15.315 14.030 17.131
Forward 0.497 0.637 0.880

Backward 0.581 0.642 0.882

Total Time 16.393 15.309 18.893

11th International Conference on Parallel and Distributed Real-Time Systems, Nice, France, April 22-23, 2003

