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Abstract - Existing message-passing parallel computers employ routers designed for a specific

interconnection network and deal with fixed data channel width. There are disadvantages to this

approach, because the system design and development times are significant and these routers do

not permit run time network reconfiguration. Changes in the topology of the network may be

required for better performance or fault-tolerance. In this paper, we introduce a class of high-

performance universal (statically and dynamically adaptable) programmable routers (UPRs) for

message-passing parallel computers. The universality of these routers is based on their capability

to adapt at run and/or static times according to the characteristics of the systems and/or

applications. More specifically, the number of bidirectional data channels, the channel size and

the I/O port mappings (for the implementation of a particular topology) can change dynamically

and statically. Our research focuses on system-level specification issues of the UPRs, their VLSI

design and their simulation to estimate their performance. Our simulation of data transfers via

UPR routers employs VHDL code in the Mentor Graphics environment.The results show that the
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performance of the routers depends mostly on their current configuration. Details of the

simulation and synthesis are presented.

Keywords: Parallel computer, message-passing computer, message routing, hardware router,

universal router, adaptable router.

I. INTRODUCTION

There is significant interest in massively-parallel processing (MPP) systems with hundreds or

thousands of processors. Scalable parallel computers are the major trend in current high-

performance computer architecture. The ease of scaling makes message-passing (i.e., point-to-

point) interconnection networks more feasible than purely bus-interconnected multiprocessors [2,

3] for MPP. Typically, a message-passing parallel computer is composed of 64 to 1024, or more,

computational nodes connected in a network. Messages are sent from a processing element (PE)

to its associated router. It is the router that facilitates the transfer of the message to its

destination. The router can essentially become a performance bottleneck in scalable parallel

computers. There are many factors which determine how the messages flow inside MPP systems.

Most of the MPP systems are based on the distributed shared-memory (DSM) approach. The

advantage of DSM computers is their scalability; every PE can access the memory of any other

PE by issuing appropriate messages.

A typical PE (node) of the MPP system is a computational node with a high-performance

CPU, local memory and a direct memory access (DMA) controller. Other nodes are accessible
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via the interconnection network using the attached network router. The local bus conforms to the

processor's protocol, and the communication coprocessor (router) converts the local bus protocol

to the network protocol. The DMA controller performs direct memory access to the local

memory for large messages and, if necessary, automatically does packet (de)composition

(converts messages to and from the network protocol).

The routers in a message-passing parallel computer are interconnected to form a predefined

topology. The channels are usually wired connections between adjacent routers and the topology

of the wired connections could vary from system to system. The most widely used topologies are

the mesh, hypercube and torus, each of them having its advantages and disadvantages. The

(direct binary) hypercube was the most popular interconnection network in the 1980's because it

can emulate other widely used topologies quite efficiently [2, 3, 5]. However, the hypercube is

not scalable in practice. Therefore, several hypercube topological variations with reduced

hardware complexity have been proposed [3]. The 3-D torus topology is very widely used

nowadays [4]. An algorithm may assume several topologies during its execution in order to yield

good performance. If the network cannot be reconfigured, then the required topologies are

mapped onto the network topology using, most often, suboptimal solutions.

The two most popular techniques for routing messages are packet switching and circuit

switching [5]. In packet switching, a message is broken into small packets that are transmitted

through the network in the “store-and-forward” mode. Each time a packet traverses a link, the

receiving node examines it to decide what to do. It may have to store the packet for a while

before forwarding it toward its final destination. It is possible that packets of a single message

will traverse different sets of links on their path from the source to the destination. Packets may

experience delays at each switching point, depending on the traffic in the network. The circuit
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switching technique first establishes a complete path between the source and the destination, and

then starts transferring the message along this path. The circuit is kept open until the entire

message has been transmitted. Without loss of generality, we implement wormhole routing [4],

an improved version of pipelined circuit switching. We assume wormhole routing with short

packets of four flits (flow-control digits). A 32-bit channel can accommodate a single flit in each

communication cycle. Wormhole routing makes the message-transmission time almost

indifferent to the length (number of hops) a message travels. It requires less hardware than other

routing approaches [4]. Slight modifications in the design of our router could facilitate also the

implementation of more complex communication operations (e.g., multicast [6], data reduction

[11, 15]). Our router could support broadcasting [16] by connecting a single input to a

contiguous range of outputs, as specified in a configuration table.

Minimal adaptive routing techniques allow some choice among several minimal-length

paths, based on local or temporary conditions at the nodes. Usually the router determines the link

(the output port) which belongs to a minimal path for an incoming packet. If the port is busy,

then the packet waits for the transfer. If other ports are available, the router may choose from

alternative links in a random, dimension-order manner. However, adaptive routing may produce

deadlocks [4]. For dimension-order routing, a general problem is that the number of available

paths decreases as packets come closer to their destinations. Non-minimal adaptive routing

techniques allow packets to be routed on any, not necessarily minimal, path from the source to

the destination. The major reasons to allow packets not to choose minimal paths are to avoid

congestion nodes and to support fault-tolerance. If all minimal paths are congested but longer

paths are available, then the packets are sent over longer non-congested paths. This technique

has several problems related to deadlock and livelock prevention [5]. The Chaos router applies
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randomized, non-minimal adaptive packet routing [8]; randomization eliminates the need for

livelock protection based on probabilities. Our design supports deadlock-free routing by

employing a static dimension-order technique (i.e., a distinct priority is assigned to each

dimension in the topology). In contrast to other approaches that avoid deadlocks via complicated

schemes (such as virtual queues) [4, 6], we apply an oblivious/deterministic routing approach to

simplify the design (without any loss of generality). According to [18], current routers must be

modified extensively to support fault-tolerant routing. Such modifications have been proposed in

the latter paper for dimension-order routers. In fact, they are applicable to dimension-order

routers without central crossbar which, in addition, can be partitioned into multiple modules (one

module per dimension). Parallel computers could also satisfy the large computational demands

of real-time applications. Real-time applications require a predictable communication network

and good average performance. A router for such applications was presented in [19]. The router

implements bandwidth regulation and deadline-based scheduling, while permitting best-effort

traffic to capitalize on low-latency routing and switching schemes.

Three, primarily, design goals govern our project, namely universality with static and

dynamic adaptability, programmability and high throughput with low latency. Presently,

multicomputers do not employ adaptable routers. The decision to design a universal/adaptable

router stems from the need to build it independently of any target message-passing parallel

computer [7]. The success of this effort will facilitate faster design, test and development of

parallel computers, and better computer performance (due to the support of dynamic

reconfiguration of the topology and/or channel width). We assume that such routers are destined

for DSM computers [7], which operate efficiently on a wide range of problems because of their

capability to access memory with both global and local addresses. A relevant effort for the
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design of Internet routers that can change configuration "on-the-fly," based on the applications'

demands, has been initiated by the Active Networks DARPA project. However, a similar effort

has yet to appear in the parallel computing arena.

The paper is organized as follows. Section II presents an overview of our proposed class of

routers, including packet formats and the routing procedure. Section III presents the proposed

architecture in detail. Section IV presents simulation results and addresses issues related to fault

tolerance. Finally, conclusions are presented in Section V.

II. OVERVIEW OF THE UNIVERSAL AND PROGRAMMABLE (UPR) ROUTERS

The design of our UPR routers is consistent with the VLSI technology trend [8] of increased

capabilities for single chips [17]. The programming model of the router at the macro level [9] is

very efficient for statically and dynamically reconfigurable systems. Currently, custom-made

network routers are commonly used in parallel computers and the reduction of communication

latencies in DSM scaleable systems is one of the most critical problems that requires a gracious

solution. However, only recently have researchers been designing hardware routers for good

performance [8, 10-12]. Nevertheless, the main problem with these routers is that they are

designed for specific systems and/or architectures [13]. Most often, these designs are for the

mesh/torus architecture [4, 10, 14]. Also, despite the new trend in the design of scaleable parallel

computers, that uses commercial_off_the_shelf (COTS) components to reduce the cost and

increase the lifetime of a system, this has not been yet followed for router chips. We strongly

believe that universal (statically and dynamically adaptable) programmable routers are absolutely
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essential in the parallel computing field. The current adaptability of routers has to do only with

nondeterministic routing and fault-tolerance issues [18]. In the former case, virtual channeling of

messages for wormhole-routing systems is not even implemented in the most efficient manner

due to time-sharing of channels [4]. Universal routers are absolutely essential mainly for two

reasons. Firstly, they can be used to construct any parallel computer, independently of its

topology and channel width, because of their static adaptability. Secondly, their dynamic

adaptability can be taken advantage of to efficiently reconfigure the topology and channel widths

of the parallel network, more than once, in order to match the requirements of the application

throughout its implementation.

We propose a programmable and adaptable router that can be used in any design,

independently of the chosen interconnection network. This router uses a programmable lookup

table to map processor addresses to physical network routes. By maintaining configuration

(lookup) tables within the PE memory or inside the router, it becomes easy to modify the

network topology based on changing workloads, network failures or requests from the

application algorithm. State-of-the-art routers are of simple design [1], but they are inflexible.

With our current VLSI design, the UPR router can be adapted to become a full 32-bit 8×8, or 16-

bit 16x16 or 8-bit 32x32 cross-point router. (That is , the number of channels as well as their

width can be adapted at static or run time. Allowable channel widths are 8, 16 and 32 bits.

Therefore, we can have thirty-two 8-bit bidirectional channels, sixteen 16-bit bidirectional

channels or eight 32-bit bidirectional channels, respectively.)

Routing decisions are made locally by the UPR router based on the destination address

stored in the packet header and the availability of outgoing channels. Packets are stored in the

corresponding wait queue if that outgoing channel is full. We assume that each PE has four main
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components, namely an UPR, a DMA controller, local memory (RAM) and a general-purpose

processor (e.g., Pentium). Each one of the last three components can be placed on a separate

VME board and all three boards can interface the same VME bus. The host processor supplies

various commands and/or data for a message to be transmitted with handshaking. The

responsibilities of the DMA controller that sits between the processor and the router are:

- configuration of the router with information provided by the host processor;

- composition of fixed-length packets in the format acceptable by the router;

- decomposition of messages received from other PEs;

- message passing between the host processor and the router;

- accessing the local memory without intervention of the host processor for long message

transmission (the processor supplies to the DMA controller the starting address of the message

in the RAM and the length of the message, and the DMA controller composes fixed-length

packets for the router by fragmenting the long message).

Figure 1 shows the top-level architecture of the router with eight 32-bit bidirectional data

channels. The 8-bit channels 28 through 31 are used to interface the local DMA

controller/coprocessor as shown in Figure 2. There are two separate signal lines,

PUSH_DATA_IN (input data ready) and FULL_OR_ACK_OUT (input buffer full or

acknowledge for data read) for each 8-bit input channel. Generally, each 8-bit bidirectional

physical channel has 20 lines (8-bit data bus input, PUSH_DATA_IN, FULL_OR_ACK_OUT,

8-bit data bus output, POP_DATA_OUT and FULL_OR_ACK_IN). PUSH_DATA_IN and

FULL_OR_ACK_IN are input signals for a channel, whereas POP_DATA_OUT and

FULL_OR_ACK_OUT are output signals from a channel. Therefore, the router has a total of

32x20 + 3 pins. The three extra pins are for the system clock, the system reset and the
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configuration of the router. Therefore, the total number of functional pins is about 650. This

number is easily implementable with state-of-the-art IC technology.

A. Packet Formats

We assume that amessageis the basic form of “shipment” between the nodes. Any large

message can be transmitted by dividing it into fixed-sizepackets that can be sent to the

destination individually. With wormhole routing, a packet is further divided into 32-bitflits.

Currently, our UPRs support two different types of packets, namelynormal packetswith fixed

format for actual message passing andinitialization packetsfor router configuration. Any kind of

message could be built from such packets. Each normal packet contains four 32-bit flits, as

shown in Table I. The first 32-bit flit of any packet is generally referred to as theheader. The

packet header contains a 14-bit destination address, a 14-bit source address and 4-bit control

information (a 1-bit status field to handle the misrouting of messages blocked by faults and three

bits reserved for future modifications). The 14-bit destination address field allows us to address a

maximum of 214 = 16,384 distinct PEs. This number is quite large and practically allows the

implementation of any MPP machine. The second 32-bit flit of the packet contains a memory

address for the destination PE. Therefore, the maximum size of a single PE’s memory is 232 = 4

Gwords (64-bit words). The last two 32-bit flits of the packet contain actual message data. One

Figure 1 goes here.

Figure 2 goes here.
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could customize the packet format to meet specific system requirements. However, all normal

packet formats must start with a 14-bit destination PE address.

The initialization packetis used to configure the router according to the chosen data channel

width and the topology of the interconnection network. Initialization packets can be either 8 or

16 bits wide. The first two bits of any initialization packet contain control information. Four

possible initialization packet formats follow. Thenode address initialization packetis used to

configure the physical address of the router; this information is stored in a 14-bit node address

register in the router. The physical address of the router depends on its position in the chosen

interconnection network topology. The packet format is shown in Table I.

The topology initialization packet(Table I) is used to configure the operating topology and

the data transfer mode for the router. Without loss of generality, three topology bits identify the

current interconnection topology. They are stored in the 3-bit topology register. Configuration

information for up to eight topologies can be loaded into the router during initialization. Of

course, the set of eight "valid" topologies can be modified at run time as many times as needed

by the application algorithm. Two transfer mode bits, stored in the transfer mode register

XFER_MODE, specify the data channel width for ports. Tables II and III show the sets of

topologies and transfer modes used throughout our presentation. The modular design of our

routers supports increases in these populations. In the case of 16-bit data channel width, pairs of

consecutive flits in the packet are supplied simultaneously to pairs of consecutive 8-bit channels.

Similarly, in the case of 32-bit data channel width, all four flits of the packet are distributed

Table I goes here.
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among four consecutive 8-bit channels. For the sake of simplicity, the current design assumes

groupings of even numbers of channels.

The dimension register initialization packet(Table I) configures the dimension register with

information that shows the separation of the different coordinates in the 14-bit address. Starting

with the least significant bit, a zero bit in the dimension register indicates a change in dimension.

For example, if the dimension register contains 01111111011111 for the 2-D topology, then the

1st dimension of the network can have up to 26 = 64 physical nodes and the second dimension

can have up to 28 = 256 physical nodes. So, the total number of nodes in the system can be up to

64x256 = 16,384.

The addressing of routers is done with respect to the current topology register and the

dimension register. In our example, our topology register contains two and the dimension

register contains 01111111011111. Assume the node N located at position 6 in the first

dimension and position 3 in the second dimension. That is, its (x, y) coordinates are equal to

(6,3). The information stored in the node address register will then be 00000011|0001102 =3|6 =

198. (The first dimension starts from the right and the lowest coordinate in each dimension is

zero.)

The configuration table initialization packet(Table I) writes a location of the configuration

table with appropriate data. The router configuration table in our current implementation is a

256x5 RAM that actually stores connection information for seven different interconnect

Table II goes here.

Table III goes here.
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topologies and channel widths. Therefore, the router configuration can change at run time to

match the needs of the application, without wasting significant time to receive reconfiguration

information from the host processor.

The table is logically divided into eight 32x5 sections. The first section is reserved for future use.

The 2nd section is for the 1-D topology, the 3rd section is for the 2-D topology, and so on (see

Table II). This way we could get up to a 7-D system. Each section of the table contains actual

physical connection information that maps input ports to output ports for the respective topology.

Extending our previous example, the configuration table section for the 2-D topology with 8-bit

data channels and for 2-D with 16-bit data channels may contain the data shown in Tables IV

and V, respectively:

B. Routing Algorithm

Dimension-order routing, starting with the first dimension, is used. When the packet reaches

its destination, it is routed to the CPU port. For example, consider 8-bit data channel width, a 2-

D topology with dimension register 01111111011111 and local node address 3|6. The incoming

packet to this node has destination address 00000100|000100 = 4|4. The address difference in the

first dimension is 4-6=-2. So, the packet is routed to the port shown as -1 in the table. (Because

the difference in the 1st dimension is negative.) According to the table, the packet will be

Table IV goes here.

Table V goes here.
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transferred to output port 1. In the 2-D mesh, this output port 1 is connected in the first

dimension to the node 3|5. At 3|5, the difference in addresses is 4-5=-1, so the packet is

transferred to output port 1. This output port connects to node 3|4. At 3|4, the difference of node

addresses in the first dimension is zero. Therefore, the packet is routed in the second dimension.

The difference of node addresses in the second dimension is 4-3=+1, so the packet is transferred

to the port shown as +2 in the table. Again referring to the configuration table for 2-D, the +2

pointer points to output port 2. This output port 2 is connected in the second dimension to the

node 4|4. The difference of node addresses in both dimensions is now zero. So, we have to route

this packet to the CPU port. We have 8-bit data channel width, so the packet will be transferred

to output port 28, which is connected to the DMA controller at the destination PE.

Fault-tolerant routing is also supported by UPRs. An output port may be blocked because of

a faulty channel or its attached router. A watchdog timer in the router can identify faulty

connections and force the router to reroute the packets. The watchdog timer initiates a process to

set the least-significant bit in the Control field of the packet's first flit to 1. Without faults, this

bit is 0. If this bit is 1, then the router skips dimension-order routing and chooses randomly any

of the other dimensions that have to be traversed; if no other dimension has to be traversed, then

it sends the packet randomly to any other connected port. The algorithm for fault-tolerant routing

is presented in Section IV.

III. ROUTER ARCHITECTURE
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All hardware blocks were designed using the VHDL language in the Mentor Graphics

environment, so these blocks are realizable in hardware after synthesis is run. The entire design

of the router is hierarchical and its main components are presented below.

A. Initializer

The initializer (Figure 3) is used to configure the router's behavior for specific network

topology and data channel width on a system-wide basis. Initially, each host processor gets the

configuration information from the I/O devices. At run time, new configurations may be

obtained with normal packets. The second lower bit in the Control field of a normal packet is

permanently set to 1 by a router if dimension-order routing is skipped because of a faulty link or

node. The router may make a copy of this modified packet into its local processor, for the latter

to initiate identification of the faulty resource. After identification, a new configuration may be

set to avoid the faulty resource. Generally, overall system stability will not be penalized after the

failure of a few components and the system can be reconfigured easily during normal operation.

The initialization of the router begins with a high INIT signal from the DMA controller of

the host processor (Figure 4). During initialization the 8-bit data transfer mode is used and port

28, that connects the DMA controller to its router, is active. Any ongoing routing of normal

packets is put on hold. The host processor holds the INIT signal high until initialization is

finished. The initializer block in the router reads data from the input buffer INBUF_DATA_28

and acknowledges it by making high READ_DONE_28. It generates signals to disable the

Figure 3 goes here.
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operation of all input and output buffers, except INBUF_DATA_28. This is required to avoid

any routing during initialization.

The initializer decodes the control bits of each incoming packet and activates the appropriate

section responsible for that packet. It stores topology and channel width information, and local

node address and dimension register value locally, and generates appropriate write signals for the

main configuration table. After the host has initialized the main configuration table of its own

router, it deactivates the INIT signal. With INIT low, the initializer proceeds with the

initialization of the port tables. Each port has a 32x5 port table that contains +/- destination port

addresses for the current topology; all ports have the same copy of the port table, and it is

identical to part of the configuration table (see examples in Tables IV and V). The initializer

loads a 1/8-th part of the main configuration table into these port tables according to the

topology. During this upload, appropriate disable signals (DISABLE_ PORTS: signal to

deactivate the operation of input and output buffers) are generated to deactivate all input and

output ports, including INBUF_DATA_28. This avoids false initialization and undesirable

routing. After the intializer is done with port table initialization, it enables all router ports for

normal operation.

B. Input Port

Figure 4 goes here.
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The structure of the input ports is shown in Figure 5. Each 8-bit input port block contains the

following components:

- an input buffer which can store up to four bytes of incoming packets (the router implements

wormhole routing with 32-bit flits); its structure is shown in Figure 6;

- an output buffer which can store up to four bytes;

- a counter to count the number of bytes in incoming packets;

- a specially designed subtractor which generates the difference between the local PE’s address

and the destination address extracted from the packet header;

- a port mapping table for routing messages;

- a dimension decoder which generates the address of the output port to which the current packet

has to be routed;

- a priority generator which assigns priority to each incoming packet in case of collision; and

- a 5x32 decoder which generates a control signal for the 32x32 crossbar switch that connects

input buffers to output buffers.

B.1. Input Buffer

The input buffer (Figure 6) works in synchronization with the attached router and sends data

to a circular queue. It also works in synchronization with output buffers and the crossbar for data

Figure 5 goes here.

Figure 6 goes here.
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reads from the circular queue. The input buffer has the same modules for every 8-bit component

channel. The input buffer entity has a demultiplexer, a circular queue, a multiplexer and a control

block. For the three possible configurations of the input buffer width (8, 16, 32), there are also

inputs from the synchronization block. The circular queue is used to buffer a maximum of four

bytes. The one-to-four 8-bit bus demultiplexer is used to send a byte of information into an

empty 8-bit queue register, according to the 2-bit “tail address” control signal from the control

block. Four-to-one 8-bit bus multiplexers are used to send a byte of information from the first

“filled” 8-bit queue register to the crossbar register, according to the 2-bit “head address” control

signal. The control block keeps track of the changing tail/head addresses after getting data into

the queue registers or sending them out of the queue to crossbar registers. At the same time, this

block generates the correct select addresses for the de-multiplexer and multiplexer. It also

maintains “buffer full” and “buffer empty” signals for the other blocks of the router. A circular

queue of four 8-bit input registers is implemented by means of four registers in parallel, and

“tail” and “head” pointers pointing to the next available register for writing and reading a byte of

data, respectively. The control block keeps track of the “tail address” for the de-multiplexer

according to empty queue registers. Once the data becomes available in the input of the de-

multiplexer, it is written into the addressed 8-bit queue register. If all four queue registers are

empty, then the “head address” and the “tail address” have the same value of 00; HEAD and

TAIL point to the same location.

A write operation (Figure 7) is initiated by a high PUSH_DATA_IN (Data_ready) signal.

Note that even though a write occurs after detection of high for PUSH_DATA_IN, the write

operation is not level sensitive. This block will write data to the queue after detecting a high

Data_ready signal and will wait for that signal to toggle again in order to perform another write
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operation. Also, the write operation is not edge sensitive. Internally, the block generates a write

clock that is synchronized with the system clock and this write clock is used for the actual write

operation. The condition to initiate a write is FULL_OR_ACK=0. It is up to the external entity to

drive valid data and activate Data_ready upon detecting a low FULL_OR_ACK. Also,

Data_ready should stay high until the write operation is over.

The TAIL address has a two-fold purpose: it is used to route input data to an available

register for a write operation and to select an available register for it. The TAIL address is

updated after each successful write operation in order to point to the next available register. If the

buffer becomes full at any time, then FULL_OR_ACK is driven high until the buffer again has

some available space to write into. The buffer full condition occurs when TAIL and HEAD point

to the same register and the buffer is not empty.

The read operation (Figure 8) is simple relative to the write operation. Three signals are

associated with the read operation. A high INBUF_VALID (data ready for the decoder/crossbar

block) signal indicates valid data in the queue. The decoder/crossbar block read data from

INBUF_DOUT (data byte output to decoder/crossbar block) upon detection of a high

INBUF_VALID. The input buffer also expects an acknowledge signal INBUF_LOADED after

the read operation is complete. The HEAD pointer always points to the first byte in the queue. It

is updated after detection of a high INBUF_LOADED in order to point again to the start of the

queue. The INBUF_VALID signal is zero if the queue is empty.

Figure 7 goes here.

Figure 8 goes here.
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B.2. Destination Address Loader

The destination address loader (Figure 9) is used to extract the destination address from the

header of the packet. It also takes care of different data transfer modes in order to synchronize

data transfers. This block handles four 8-bit channels at a time. The first two bytes of each packet

received contain the destination address in the case of 8-bit data transfers. The first byte of a

packet received by a channel contains part of a destination address in the case of 16-bit data

transfers. The first byte of channel-0 and channel-1 contains part of a destination address for 32-

bit data transfers.

The destination address loader of a 32-bit input channel has four 14-bit registers to store

temporary destination addresses. Each of these registers is loaded with part or all of the

destination address, depending on the data channel width. In the case of 8-bit data transfers, all

registers are loaded with the first two bytes of the header data received from each channel. That

is, all registers will contain the destination address for the respective channels. In the case of

16/32-bit data transfers, the most-significant byte of even-numbered registers (D0 and D2) is

loaded with the first data byte of even-numbered channels (DATA_0 and DATA_2). The least-

significant byte of even-numbered registers (D0 and D2) is loaded with odd channel data

(DATA_1 and DATA_3). Even-numbered registers contain destination addresses that are valid

for the 16-bit data transfer mode. Also, in the case of 16/32-bit data transfers, odd-numbered

registers (D1 and D3) are loaded with the first two bytes of odd channel data. Odd-numbered

registers contain the destination address that is valid for the 8-bit data transfer mode. The actual

Figure 9 goes here.
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destination address is derived using these temporary registers and taking into account the current

channel width.

B.3. Address Subtractor

The address subtractor (Figures 10 and 11) is used to make a routing dicision. It is a 2's

complement subtractor. It makes use of the dimension register in order to avoid unnecessary

carry propagation delay and decide about non-zero result accumulation for individual

coordinates. The inputs to the subtractor are the 14-bit local node address, the 14-bit destination

address and the 14-bit dimension register. The outputs of the subtractor are a 14-bit result and

14-bit status information. The subtractor is composed of 14 identical 1-bit "adder" slices and

inverters. It converts the local address into the 2's complement form, by inverting it and using a

carry-in of 1 (Figure 10 produces the 2' complement of the needed result whereas A in Figure 11

stands for A').

By looking at Tables VI through VIII and the block diagram, it is clear that the result R is

the same as that of a conventional adder. The output carry is propagated only if D is 1, otherwise

the carry is killed. ACCin reflects a non-zero result in the previous adder slices for the current

dimension. If D=1 and ACCin=1, then ACCout will be 1 irrespective of the current sum. If D=1

and ACCin=0 then ACCout=Sum. Also, from the block diagram the S bit reflects a non-zero

Figure 10 goes here.

Figure 11 goes here.
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result in all previous slices in the current dimension, including the current slice. By looking at

just one S bit, we know about a non-zero result in the current dimension.

The example in Table X for a 2D system illustrates the importance of the S bit. The local

node address in the 2-D 128x128 system is 101001100000112 =83|3 and the destination address

is 010100110110112=41|91. The 2nd S bit is zero reflecting the fact that the result up to the 2nd bit

is zero. Also, look at the 5th bit. It is 1, showing that the result up to the 5th bit is non-zero. Recall

that we are using dimension-order routing, starting with the lowest dimension. Since the result

for the lower dimension is positive, the routing dimension is+ve according to Table IX (with

i=6).

The implemented subtractor is a carry-ripple subtractor (i.e., each bit slice introduces delay

for carry propagation). But the carry from the previous bit slice is actually ANDed with a bit

from the dimension register and is then given to the next bit slice. Therefore, wherever we have a

zero bit in the dimension register we are actually dropping the previous carry and generating a

Table VI goes here.

Table VII goes here.

Table VIII goes here.

Table IX goes here.

Table X goes here.
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carry for the next bit slice equal to 0. Thus, the carry keeps propagating only for a continuous

chain of 1’s in the destination register. This chain of 1’s is broken at the point where the

dimension of the interconnection topology changes.

B.4. Dimension Decoder Block

This block generates the output port number to which a normal message should be routed.

Without loss of generality, it can currently handle an interconnection network with up to four

dimensions. Its PORT_TABLE (Figure 12) contains part of the main configuration table for the

current topology and data channel width. It is composed of decoders, tri-state buffers and few

AND gates.

Dimension decoding is done without wasting any clock cycles for shifting. The dimension

decoding logic is composed of four prioritized blocks, one for each dimension. The logic can be

extended to support more operating dimensions. Each priority block contains two DRS blocks

(Figure 13), a 4x16 decoder, two tri-state buffers and four AND gates. The DRS block reads

particular bits of the dimension register, result register and status register according to a 14-bit

control word supplied to it. Its structure has only tri-state buffers. It will output the ith bit of all

three registers if the ith line of the control word is high. The dimension decoder block is shown in

Figure 14.

Figure 12 goes here.

Figure 13 goes here.
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Each priority block (Figure 15) receives PREVIOUS_NOT_SELECT_IN from the preceding

dimension. A high signal means that dimension decoding has finished in the preceding

dimension so that nothing will be decoded in the current dimension. If the dimension decoding in

the previous block is not done, the block for the current dimension will perform decoding.

Each priority block receives its DIM_CHANGE_TABLE data and DC_VALID bit. The

former data is the relative coordinate (result of subtraction) in the current dimension. The latter

bit is 0 if this data is zero, otherwise it is 1. Each priority block receives data from

PORT_TABLE. The ith dimension receives PORT_TABLE_DATA for the +i and –i output

ports. The decoder decodes DIM_CHANGE_TABLE data to generate the control word for the

DRS block in order to read the required bit of the dimension, result and status registers. If

result(i)=0 and status(i)=1, then the tri-state buffer for the +i PORT_TABLE_DATA is activated.

If result(i)=1 and status(i)=1, then the tri-state buffer for the -i PORT_TABLE_DATA is

activated. If none of the above conditions is satisfied for the current dimension, then a low

PREVIOUS _NOT_SELECT_OUT signal is generated so that the next dimension can proceed

with the same kind of decoding process. If no dimension can satisfy any of these two conditions,

then the tri-state buffer for the local (host) port will be activated at last. The outputs of all tri-

state buffers are connected to the same bus. Only one tri-state buffer can drive the bus at a time.

This bus is enabled by the DEST_ADDR_VALID signal (Figure 14) and the dimension decoder

Figure 14 goes here.

Figure 15 goes here.
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generates a valid output port number only when the destination extractor has a valid destination

address.

B.5. Priority Generator

The priority generator generates priority signals for all input ports to prevent collision when

two input ports request the same destination port. The priority of each channel is the same as its

ID, so that channel 0 is assigned the highest priority and channel 28 is assigned the lowest

priority.

B.6. Port Decoder Block

It is based on a 5x32 decoder and generates control signals for the crossbar switch. It differs

from a classical decoder because it latches the control word generated, and applies handshaking

with the destination extractor and the crossbar switch. This block has a 32x1 input multiplexer,

two registers and few logic gates (Figure 16). The multiplexer generates a valid control word if

the "crossbar busy" SWITCH_ON bit is zero for the required output port (a busy signal from the

crossbar indicates ongoing packet routing in the output port requested). When this 32-bit control

word, namely CONTROL_I, is valid, only its ith bit, where 0≤ i ≤31, is 1 to indicate the need for

a transfer to output port i; all other bits are 0. For the connection to be established with the

output port, EFFECTIVE_PRIORITY should be 1 to avoid any collision (if the priority bit is 1

for the current input port, this input port has higher priority over other input ports in the case of

competition for the same output port).
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The SWITCHED_ON bit is internally set to 1 initially. It is set to 1 after one clock cycle of a

valid internal CONTROL_I signal. This mechanism ensures that CONTROL_I is latched only

once after it is generated. The signal SWITCHED_ON will flag the output buffer to start a data

transfer from the input buffer. It will be again pulled low after the last byte of the current packet

has been transferred from the input buffer to the output buffer.

The acknowledgement signal from the destination extractor is actually the SWITCHED_ON

signal delayed by one clock cycle. Generation of a pulse means that a valid CONTROL signal

for the crossbar has been generated. The destination extractor pulls the DEST_ADDR_VALID

signal low after it detects this pulse. Finally, OUTBUF_LAST_BYTE in Figure 16 is 1 if the last

byte of the packet was loaded into the output buffer.

C. Crossbar

The router has one crossbar block (Figure 17). It switches an input channel to the appropriate

output channel depending on the control word CONTROL_I received from the decoder of the

input channel. The crossbar is composed of many tri-state buffers. Each tri-state buffer is

controlled by a bit from a CONTROL_I word (from the 5x32 decoder) of an input channel.

Input port data can be routed to any output port according to the current CONTROL_I words.

The ith output port is driven by the ith bits of all CONTROL_I words. The BUSY signal (shown

in Figure 16) is crossbar generated by bitwise ORing all 32 CONTROL_I words.

Figure 16 goes here.

Figure 17 goes here.
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D. Output Port

The structure of an output port (Figure 18) is very similar to that of an input port. This block

works in synchronization with other routers for data reads from its circular queue and with the

crossbar for data writes into its circular queue. The circular queue of four output registers is

implemented with the “tail” and “head” pointers, as for the input ports. If all four queue

registers are empty, then “head” and “tail” contain 00.

If the input buffer has valid data and there is enough space in the output queue, then a write

operation (Figure 19) into the output queue is controlled by (DEST)PORT_ADDR_READY.

INBUF_READ_DONE is used to acknowledge the input buffer. The rising edge of

INBUF_READ_DONE activates the write signal. The falling edge of INBUF_READ_DONE is

used to update the "tail" pointer of the queue. During each write operation, the output buffer

keeps track of empty space in the queue by updating OUTBUF_EMPTY. A high

OUTBUF_EMPTY indicates empty space in the output queue. During each write operation, it

also updates OUTBUF_VALID to flag the attached router about available data. As soon as the

queue has valid data, the output buffer sets POP_DATA_OUT (data ready) to high and drives

valid data on the DATA_OUT line (Figure 20). The attached router needs to complete the read

operation and then generate an acknowledge signal. The output buffer will use this acknowledge

signal to pull POP_DATA_OUT to low and update the "head" pointer of the queue. The output

Figure 18 goes here.
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buffer will not drive data out until FULL_OR_ACK is pulled low by the external entity.

Therefore, FULL_OR_ACK (buffer full/acknowledge input data) serves the dual purpose of

readiness and acknowledgement.

IV. FAULT-TOLERANCE AND SIMULATION RESULTS

Fault-tolerance in message passing is a critical problem [18]. As mentioned in Section II,

messages blocked by faulty links (or their attached routers) are routed by our UPR via

alternative paths. More specifically, if the lowest dimension to be traversed (according to

dimension-order routing) is blocked, then the next higher dimension that must be traversed is

chosen. The least significant bit in the Control field of the normal packet is then set to 1 to

initiate a process of informing the host processor about the faulty channel. The ID of the latter

channel is easily determined by the host processor based on the current configuration and the

destination address. The host processor may then decide to write new data into the configuration

table in order to bypass the faulty channel in future data transfers. If two or more dimensions

correspond to faulty channels, then their total number is written into the Control field, so that the

router can reroute the message by ignoring these dimensions. Relevant results are presented at

the end of this section

Figure 19 goes here.

Figure 20 goes here.
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We first simulated transfers of data packets for various combinations of binary hypercubes

and data channel widths. The n-dimensional binary hypercube contains 2n nodes [3, 5]. Two

nodes are directly connected if and only if their n-bit addresses differ in a single bit. Each node

has n neighbors and the diameter of the network is n. The simulations were performed using

VHDL test benches. The simulations were carried out for two basic categories: initialization and

normal operation. For the case of initialization, we estimated the time required to initialize the

router for various test cases. The time required for router initialization is shown in Figure 21 for

various instances of the binary hypercube topology. For fixed channel width, this time increases

linearly with the number of dimensions.

After thorough examination of the above results, we came up with an equation to estimate the

initialization time for any case. The number of clock cycles for initialization is 15 + (4*d*w +

5)*3, where d is the number of dimensions in the system and w is the channel width in

bytes.We assume that only channel 28 it used to load configuration information. 15 clock cycles

are required to load information from the configuration table into all ports. The rest of the

equation is for time required for the initialization of various configuration registers and the main

configuration table. We need 3 clock cycles to load each byte into the router and that is why we

multiply by 3. Now we will take a look at the bracket part of the equation. We have to load the

14-bit local node address, the 14-bit dimension register, the 2-bit data channel width register and

the 3-bit topology register during initialization. Initialization of these registers needs 5 bytes of

data. That is why we have a constant 5 inside the bracket part of the equation. We need two

configuration table initialization packets (two bytes long each), one for the “+” port and another

Figure 21 goes here.
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for the “–“ port, per dimension of each 8-bit data channel. For this reason, we have multiplied

by 4 in the bracket part of the equation. The initialization time can be reduced significantly if a

16-bit or 32-bit channel is used to connect the router to the host processor during initialization.

In the simulation of normal packet transfers, we obtained the approximate time for different

scenarios. The routing is considered done when all input packets come out of output ports. We

calculated the routing time by considering packet collisions in all cases, without any fault on the

links. In the following figure, the number of colliding input ports represents the number of input

ports that are receiving simultaneously a packet with the same destination port address. Figure 22

shows the actual time consumed for routing. In general, the larger the number of colliding

packets, the larger is the delay for routing – as predicted by theoretical analysis.

Without collisions, every write into an input buffer takes one cycle, internal data transfer

through the crossbar takes one cycle and a write into an output buffer takes one cycle. Without

considering any type of routing, each packet (16 bytes long) takes 16*3 = 48 clock cycles to pass

through the router for 8-bit channels. According to experimental results, it takes a few more

cycles for actual data transfer. The router takes just two to four clock cycles per packet to make a

routing decision depending on the data channel width. These are very impressive results for a

universal, programmable router.

Let us now focus on simulation results for fault-tolerant routing. We carried out simulations

for several systems comprising the binary hypercube and the torus interconnection networks. We

simulated systems having from two to five dimensions. Therefore, the hypercube systems have 4,

8, 16, 32 and 64 nodes, respectively. For each torus instance, each dimension contains four

Figure 22 goes here.
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nodes. More specifically, we simulated symmetric 2-D, 3-D, 4-D and 5-D tori with 16, 64, 256

and 1024 nodes, respectively. Two bits are used for each coordinate. We chose for the

simulations channel width equal to 16 bits. Our router can handle this width since it has 16

bidirectional 16-bit channels and we have assumed up to five dimensions for the simulations.

We used three random number generators with uniform distribution to determine: (a) the

nodes that are to transmit packets, (b) the faulty channels and (c) the destinations for one-to-one

data transfers. We present here results for cases where 10%, 20% or 40% of the nodes transmit

packets. We also assume that 1%, 2%, 5% or 10% of the channels are faulty. Figures 23 through

28 show the slowdown resulting from faulty connections. These results show that our router

performs very well even with large numbers of faulty links. Of course, the binary hypercube

performs better than the torus with the same number of dimensions because it has fewer nodes.

Figure 23 goes here.

Figure 24 goes here.

Figure 25 goes here.

Figure 26 goes here.

Figure 27 goes here.

Figure 28 goes here.
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V. CONCLUSIONS

We have presented the design and evaluation of a universal (statically and dynamically

adaptable) hardware router for message-passing parallel computers. This router introduces

outstanding flexibility. It is topology and channel width independent. In addition, the topology

and channel width can change at run time, as many times as required by the application

algorithm and the appearance of faulty connections. Not only does this router introduce

"unlimited" robustness that can reduce dramatically the design and development times for

message-passing parallel computers, but its performance also is outstanding.
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Table I. Packet formats.

f l i t 1 f l i t 2 f l i t 3 f l i t 4
14 bits 14 bits 4 bits 32 bits 32 bits 32 bits

Destination
address

Source
address

Control Address in RAM
for destination

Data Data

Normal packet.

2-bit Control 14 bits
00 Local node address

Node address initialization packet.

bit #: 7 6 5 4 2 1 0
2-bit Control 1 bit 3 bits 2 bits

01 Reserved Topology Transfer mode

Topology initialization packet.

2-bit Control 14 bits
10 Dimension register

Dimension register initialization packet.

2-bit Control 1 bit 8 bits 5 bits
11 X Configuration table address Configuration table data

Configuration table initialization packet.
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Table II. Topology table.

Bit-0 Bit-1 Bit-2 Topology
0 0 0 Reserved
0 0 1 1-D
0 1 0 2-D
0 1 1 3-D
1 0 0 4-D
1 0 1 5-D
1 1 0 6-D
1 1 1 7-D
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Table III. Transfer mode table.

Bit-0 Bit-1 Transfer mode
0 0 8 bits
0 1 16 bits
1 0 32 bits
1 1 Reserved
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TABLE IV. Configuration table for the 2-D topology with 8-bit channel width.

Main address Dimension Output port
01000000 +1 00000

01000001 -1 00001
01000010 +2 00010
01000011 -2 00011
01000100

…..
….. Unused

…..

01011100 CPU port 11100
01011101
01011110
01011111
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TABLE V. Configuration table for the 2-D topology with 16-bit channel width.

Main address Dimension Output port
01000000 +1 00000
01000001 +1 00001
01000010 -1 00010
01000011 -1 00011
01000100 +2 00100
01000101 +2 00101
01000110 -2 00110
01000111 -2 00111
01001000
…… Unused
01011100 CPU port 11100
01011101 CPU port 11101
01011110
01011111
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TABLE VI. Truth table for the conventional 1-bit full adder.

A B Cin Sum Cout_i
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1
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TABLE VII. Truth table for the actual adder slice.

D Cout
0 0
1 Cout_I
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TABLE VIII. Truth table for the implemented adder slice (D:dimension-register bit).

D R=Sum ACCin S ACCout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 1
1 1 0 1 1
1 1 1 1 1
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TABLE IX. Table for the routing decision at a bit location i, where D(i)=0 and i=0,1,2,....

R(i) S(i) Routing Dimension
0 0 Go to next dimension or zero port,

if current dimension is the last one
0 1 +ve (increase coordinate)
1 0 Not possible
1 1 -ve (decrease coordinate)
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TABLE X. Example of routing.

D 01111110111111
A 10100110000011 = 83|3
A’ 01011001111100 (1's complem)
B 01010011011011 = 41|91

Cin 00000000000001

R 10101101011000= -42|+88

Status 11111101111000
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Figure 1. Top-level architecture of the router and its interface with the local PE.
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IF (INIT = 1) // Detect Initialization Mode
THEN

READ [8 or 16 bits from port #28] // 8-bit bus transfers
HEADER = 2 most significant bits of the packet;

IF (HEADER = 00)
MODE = Node Address Initialization;
Local_node_address=14-bit Incoming Address;

ENDIF
IF (HEADER = 01)

MODE = Topology Initialization;
Topology [3-bit] = 2,3,4-th bits; Transfer_mode [2-bit] = 0,1-st bits;

ENDIF
IF (HEADER = 10)

MODE = Dimension Register Initialization;
Dimension Register = lower 14 bits;

ENDIF
IF (HEADER = 11)

MODE = Configuration Table Initialization;
Conf_table_address[8-bit]=[5-12]-th bits;
Conf_table_data[5-bit]=[0-4]-th bits;
Write_Main_Confuguration_Table; // Total of 256 records
IF (Last_record_reached = 1)

INIT = 0; Flag_end_of_init = 1;
ENDIF

ENDIF
Initializer Outputs Activated; // Based on command from initialization packets

ELSIF (INIT = 0)
IF (Flag_end_of_init = 1) // Detect the last step of initialization

// Initializer uploads the port tables from config. table. Each port has a 32-record
// table containing +/- dest. port addresses according to the current topology
DISABLE_ PORTS = 1; Port_Tables_Load [32-records];
// During the upload, DISABLE_ PORTS signals are high to deactivate the
// operation of input (output) buffers and all input (output) ports, including
// INBUF_DATA_28. This avoids false initialization and undesirable routing.
IF (Port_Tables_Load [32-records] = FINISHED)

DISABLE_ PORTS = 0;
// enable all router ports for normal operation

ENDIF
Flag_end_of_init = 0;

ELSIF (Flag_end_of_init = 0)
Initializer does nothing // Router's Usual Transfer Mode

ENDIF
ENDIF

Figure 4. Pseudocode for router initialization.
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Figure 19. Timing diagram of a write operation into the output queue.
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Figure 21. Router initialization time for 2-D, 3-D and 4-D hypercubes.
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Figure 22. Routing time.
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Figure 23. Simulation results for binary hypercubes with 10% senders.
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Figure 24. Simulation results for tori with 10% senders.
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Figure 25. Simulation results for binary hypercubes with 20% senders.
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Figure 26. Simulation results for tori with 20% senders.
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Figure 27. Simulation results for binary hypercubes with 40% senders.
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Figure 28. Simulation results for tori with 40% senders.
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