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ABSTRACT

The amount of time spent by users at specific page depths
within webpages, called dwell time, can be used by web pub-
lishers to decide where to place online ads and what type of
ads to place at different depths within a webpage. This pa-
per presents a model to predict the dwell time for a given
<user, webpage, depth> triplet based on historic data col-
lected by publishers. Dwell time prediction is difficult due
to user behavior variability and data sparsity. We adopt
the Factorization Machines model because it is able to cap-
ture the interaction between users and webpages, overcome
the data sparsity issue, and provide flexibility to add auxil-
iary information such as the visible area of a user’s browser.
Experimental results using data from a large web publisher
demonstrate that our model outperforms deterministic and
regression-based comparison models.
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1. INTRODUCTION

Online display advertising provides many benefits that
traditional marketing channels do not, such as fast brand
building and effective targeting. In display advertising, an
advertiser pays a publisher for space on webpages to display
a banner during page views in order to attract visitors that
are interested in its products. A page view happens each
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time a webpage is requested by a user and displayed in a
browser. One display of an ad in a page view is called an ad
impression, the basic unit of ad delivery.

Currently, there are two main ad pricing models, pay-by-
action and pay-by-impression. In pay-by-action, advertisers
are charged when the impressions are clicked or converted.
But the rate of click or conversion are often very low. Also,
some advertisers, e.g. car vendors, do not expect users to
purchase their products through ads. They just want to in-
crease their brand awareness and make more users be aware
of their logos or products. In pay-by-impression, advertis-
ers have to pay for the impressions served (i.e., sent to the
users’ browsers) but not viewed by users who do not spend
time at the page depth where the ads are placed [1]. To
solve this issue, a new model is emerging: pricing ads by
the number of impressions viewed by users, instead of just
being served. This is attractive for advertisers, who want to
prevent investment waste. The Interactive Advertising Bu-
reau (IAB) defines a viewable impression as one that is at
least 50% shown on the screen for at least one second. Ad-
vertisers may require various visible ad areas and/or time
durations. They can thus specify viewability requirements
in guaranteed delivery contracts with publishers. Predict-
ing the likelihood of an ad being viewed can be very helpful
in many applications: In guaranteed delivery, according to
different viewability requirements, publishers can determine
which ad to be served by predicting its viewability, in order
to maximize the revenue. In real-time bidding, advertisers
can decide bidding price based on the predicted viewability.
Therefore, ad viewability prediction is essential to fulfill the
marketing requirements and thus maximize the return on
investment for advertisers as well as boost the advertising
revenue for publishers.

However, the only existing work on viewability prediction
is done by Wang et al. [6]. They propose a probabilistic
latent class model that predicts the probability that a user
scrolls to a page depth where an ad may be placed, but
not the dwell time. Also, all existing studies on dwell time
prediction focus on the time a user spends on an entire page,
not a specific page depth. Liu et al. [4] predict the Weibull
distributions of page-level dwell time using regression trees
with features, e.g., keywords, page size. Yi et al. [8] use



support vector regression to predict page-level dwell time
with features such as content length, topical category, and
device. Kim et al. [2] present a regression model to estimate
the Gamma distributions of the time that a user spends on
a clicked result. Xu et al. [7] propose a webpage re-ranking
algorithm by estimating page-level dwell time. Yin et al. [9]
state that viewing textual items is such a casual behavior
that people may terminate the viewing process at any time.
The authors develop a model to estimate user preferences
according to the item-level (page-level) dwell time.

In contrast, our work is the first to predict dwell time at
a specific depth in a page view. Working at a finer granu-
larity, depth-level dwell time prediction is more challenging
than page-level dwell time prediction. This open problem
is non-trivial due to the variability of user behavior and
data sparsity, i.e., most users read only a few webpages,
while a webpage is visited by a small subset of users. It
is also difficult to explicitly model user interests as well as
the characteristics of entire pages and depths. Thus, we ex-
plore a machine learning model to predict the dwell time at
a page depth where an ad is placed, i.e., the time that the
ad is shown on screen. The proposed method can also be
applied to predict the dwell time of any items on a page.
We adopt the Factorization Machines (FM) model because
it is able to capture the interaction between input features,
overcome the data sparsity issue, and provide flexibility to
add auxiliary information. Our FM models consider ba-
sic factors (i.e., user, page, and page depth) and auxiliary
information such as context features. We determined ex-
perimentally that viewport (i.e., the visible area of a user
browser) is the most important context feature. We evalu-
ated our model using real-data from a Forbes Media, a large
web publisher. The experimental results demonstrate that
our model outperforms the comparison models.

2. DEPTH DWELL TIME PREDICTION

Problem Definition. Given a page view, i.e., a user u and
a webpage a, the goal is to predict the dwell time of a given
page depth X, i.e., the time duration that X is shown on the
screen. The dwell time of X is denoted as Tyax -

2.1 Dataset

A large web publisher (i.e., Forbes Media) provides user
browsing logs collected from real website visits in one week
and webpage metadata. The dataset contains 2 million page
views. For each page view, it records the user id, page
url, state-level user geo location, user agent, and browsing
events, e.g. the user opened/left /read the page. Each event
stores the event time stamp and the page depths where the
top and bottom of the user screen are. Once a user scrolls to
a page depth and stays for one second, an event is recorded.
The page depth is represented as the percentage of the page.
The reason that we adopted page percentage rather than
pixels is because it provides a relative measure independent
of device screen size. If a user reads 50% of a page on a mo-
bile device, while another user reads 50% of the same page
on a desktop, it is assumed that they read the same content.

Each event has a time stamp so that the time that a user
spent on a part of a page can be calculated. To infer the
current part of a page that a user is looking at, the user
log also records the page depths at which the first and the
last rows of pixels of the screen are. Thus, we are able to
infer the part of the page to which the user scrolls and how

long the user stayed at that part of the page. Therefore, the
dwell time at a page depth can be easily calculated from the
information provided by the user log.

2.2 Model

It is intuitive that the dwell time of a page depth is highly
related to the user’s interests and reading habits, the topic
of the article in the page, the design at that page depth, etc.
For instance, some users tend to stay longer on pages, while
some are less patient. A viral content may attract most users
to scroll deep on the page and spend a long time on the whole
page. Page depths with important topic sentences may keep
most users longer on them. Thus, the characteristics of in-
dividual users, webpages, and page depths should be taken
into account for depth-level dwell time prediction. More
importantly, the interactions of these three factors must be
modeled so that their joint effect is captured: 1) The inter-
action of users and pages captures a user’s interest in a page.
2) The interaction of users and page depths can reflect indi-
vidual users’ browsing habits. For example, some users read
entire pages carefully, but some only read the upper half.
3) The interaction of pages and depths models the design
of individual pages at individual page depths. For example,
pages that have a picture at a depth may receive relatively
short dwell time at that depth because people usually can
understand a picture more quickly than text. However, it
is non-trivial to explicitly model user interests, page charac-
teristics, the attractiveness of page depths, and their inter-
actions. Also, although implicit feedback, e.g. reading dwell
time, is more abundant than explicit feedback, e.g. ratings,
it often has higher variability [9], which makes prediction
more challenging.

We adopt Factorization machines (FM) [5], which are a
generic approach that combines the high-prediction accu-
racy of factorization models with the flexibility of feature
engineering. The reason that we adopt the FM model is
that it can capture the interaction of multiple inter-related
factors, overcome the data sparsity, and provide the flexibil-
ity to add auxiliary information.

According to the problem definition, the basic FM model
requires three factors: user, page, and page depth. The in-
put is derived from the user-page-depth matrix built from
the user logs: In the basic form of depth-level dwell time pre-
diction, we have a 3-dimensional cube containing n,, users,
nq pages, and ng page depths. Thus, each dwell time is as-
sociated with a unique triplet <user, page, depth>. Such a
3D matrix can be converted into a list of (ny + ne + na)
rows. The target variable for each row corresponds to an
observed dwell time represented by the triplet. N training
page views lead to N - 100 rows, as each page view contains
100 observed dwell time values (one for each percent from
1% to 100% page depth). This input is similar to what is pre-
pared for regressions. However, regressions would not work
well because the data is very sparse and they are unable to
capture the interaction between the input variables.

The basic idea of FM is to model each target variable as a
linear combination of interactions between input variables.
Formally, it is defined as following.

n n—1 n
Je) =wot D wwi+d > (vivi)e; (1)
i=1 i=1 j=i+1

where, §(x) is the prediction outcome given an input x. wo
is a global bias, i.e., the overall average depth-level dwell



time. Z?:I w;x; is the bias of individual input variables.
For example, some users would like to read more carefully
than others; some pages can attract users to spend more
time on them; some page depths, e.g., very bottom of a
page, usually receive little dwell time. The first two terms
are the same as in linear regression. The third term captures
the sparse interaction between each pair of input variables.

Unlike standard regression models which model the weight
of each interaction by a real number w;;, the FM model uses
a factorized parametrization to capture the interaction effect
(Eq. 2). Such low-rank interaction allows the FM model to
estimate reliable parameters even in sparse data.

(vi, vj) Zvlkvﬂc (2)

The basic FM model works with only three factors: user,
page, and depth. However, context information can also help

improve the prediction performance. Thus, we identify two
context features, viewport (i.e., the part of a user browser
visible on the screen) and local day of the week, which are
intuitively related to user reading behavior. The viewport
indicates the device utilized by the user (e.g., a mobile device
usually have a much smaller visible browser area than a
desktop) and can directly determine the user experience.
Specifically, one viewport value consists of the height and
the width of a browser, e.g., 1855 x 1107. To reduce sparsity,
both heights and widths are put into buckets with size 100
pixels. For instance, 1855 x 1107 can be discretized into
18 x 11. The local day of the week, expected to reflect if
users are working, is inferred from the GMT time and user
geo provided in the user log.

In addition, although in theory user demographics and
page attributes are already considered in the latent user and
page dimensions, incorporating these additional sources of
information as features may further improve the prediction
accuracy in some applications [3]. For user demographics,
we consider user geo locations because this is the only ex-
plicit feature about users that can be easily obtained by
publishers. User geo, inferred from IPs, may reflect a user’s
interests and education, and it may determine the user’s net-
work condition. Specifically, geo is the country name if the
user is outside USA or a state name if she is within USA.
For page attributes, we consider article length and channel.
Article length is represented by the word count of the article
in the page, and it has been proven to be a significant factor
impacting page-level dwell time [8]. Article lengths are put
into buckets so that there are a limited number of possible
states. The channel of the article in a page is its topical cat-
egory on the publisher’s website, e.g., finance and lifestyle.
A channel can be a high-level topic label of a page.

Context and auxiliary features, i.e., user geo and page at-
tributes, can be used to extend the basic FM model. In
Section 3.4, we compare the prediction performance of dif-
ferent combinations of auxiliary features.

3. EXPERIMENTAL EVALUATION

3.1 Experiment Datasets

A one-week user log, collected as described in Section 2.1,
is split into three sets of training and testing data. The ex-
perimental results are reported by taking the average over
the sets. On average, the training and test data contain
150K+ and 20K+ page views, respectively. The training/test
data consist of all depths of all training/test page views.

3.2 Comparison Models

GlobalAverage: This model is used in two ways. In
Section 3.5, it computes the average dwell time of each page
depth X in all training page views. If a user did not scroll
to X, its dwell time in the page view is zero. In Section 3.6,
it computes the fraction of training page depths whose dwell
time is no less than the required dwell time. The 100 con-
stant numbers obtained are used to make a deterministic
prediction for the page depth.

ChannelAverage: It is similar to GlobalAverage, but
it computes the average dwell time of each depth X of the
same page channel (rather than all training page views).

Regression: We built two regression models. 1) Regress_bc
is developed based on an existing work on page dwell time
prediction [8]. To apply it to depth-level prediction, one
more feature, i.e., page depth, is added. 2) Regress_view+dep
is developed based on the finding in Section 3.4 that shows
the viewport to be the best feature for improving prediction.
Thus, it has only two input features: viewport and depth.
In the viewability prediction test, logistic regression with the
same features is adopted. They outputs the probability that
the dwell time of X is at least a certain seconds.

3.3 Metrics

The metrics we adopt are Root-Mean-Square Deviation
(RMSD) and Logistic Loss. Both serve to aggregate the
magnitudes of the errors in predictions for various times into
a single measure of the predictive power of a method. Thus,
for both metrics, lower values are better.

RMSD: RMSD = |/ 2= =i mvi)? ~
: = N 100 measures the
differences between the values predicted, 3;, and the values
observed, y;. N is the number of test page views. The
second sum accumulates the errors at all 100 page depths
in the ¢th page view. y;; is the actual dwell time at the jth
page depth in the ith page view.

Logistic Loss: It is widely used in probabilistic classifi-
cation. Compared to the RMSD, it penalizes a method more
for being both confident and wrong.

1 N 100
logloss = — =5 DD i log (@) + (1 = yig) log(1 — )]

i=1 j=1

3.4 Comparison of Feature Combinations
Table 1: RMSD Comparison of Auxiliary Features

Approaches K=10 | K=20 K=30
FM 11.4667 | 11.5501 11.5925
M (viewport) 11.141 11.0309 | 11.172
M (dow) 11.4655 | 11.5331 11.5728
M (geo) 11.5563 | 11.6735 11.7201
M (length) 11.7064 | 11.727 | 11.8084
M (channel) 11.7502 | 11.8827 11.9211
M (viewport+dow) 11.5152 | 11.3235 | 11.3763
M (viewport+geo) 11.0318 | 11.0767 | 11.2299
M (viewport+length) | 11.3026 | 11.5273 | 11.5666
M (viewport+channel) | 11.5319 | 11.3474 | 11.5725
M (all five) 11.4084 | 11.7641 11.7385

We add context and auxiliary features into the basic FM
model in order to evaluate the effect of different combina-
tions. The results are presented in Table 1. The first row is
the basic FM model. We vary the dimension of the 2-way
interactions, K, which is the length of the latent vector v
for each variable (Eq. 2).



The results show that viewport is the most significant con-
text feature. Intuitively, viewport indicates the type of de-
vice, which influences reading experience and thus the way
users engage with webpages. Local day of the week, denoted
as “dow”, does not improve the basic FM as much as view-
port does. The three explicit user and page attributes do
not enhance the performance of the basic FM. The possible
reason is that the granularities of user geo and channels are
too coarse. Learning latent features for each channel and geo
cannot specifically capture the characteristics of individual
users and pages. Article length may not play a key role at
depth-level, as the text length in a screen is determined by
the viewport size, not the length of the article. Also, increas-
ing K does not always lead to performance improvement.
Longer latent feature vectors may fit the data better, while
they may cause overfitting. As the Bias-Variance trade-off,
the optimal K can be obtained by cross-validation.

3.5 Depth-level Dwell Time Prediction
Table 2: Depth Dwell Time Prediction Comparison

Approaches RMSD
GlobalAverage 13.8346
ChannelAverage 13.8219
Regress_bc 14.1009
Regress_view+dep 13.8301
FM (viewport;K=20) | 11.0309

We compare the best model obtained from the previous
experiment, i.e., FM (viewport) with K=20, with the base-
lines. All models are applied to predict the exact dwell time
of each page depth in test page views. The results in Ta-
ble 2 demonstrate that the FM model significantly outper-
forms the baselines. This is because it is able to overcome
sparsity and capture pairwise interactions between users and
pages. The RMSDs of GlobalAverage and ChannelAverage
are similar. This suggests that controlling the channel vari-
able does not help with performance. Regress_bc has the
highest RMSD, which indicates that methods for page-level
dwell time prediction cannot be easily applied to depth-level
prediction. With only the combined viewport/depth fea-
ture, Regress_view-+dep does not obtain a better prediction
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Figure 1: Viewability Prediction Comparison

We vary the dwell time threshold of a viewable impression
from 1s (IAB standard) to 10s. For each page depth in the
dataset, its target variable is 1 if its dwell time is at least T’
seconds; otherwise 0. In this way, the prediction problem is

converted from regression to classification. The prediction
outcome of each test page depth is the probability that its
dwell time is at least T" seconds.

Figure 1 shows that the FM model clearly outperforms the
baselines. We also notice that the FM model achieves the
best performance at the two ends (1s and 10s). Given a page
depth, it is more challenging to predict if the dwell time is at
least 5s. The reason is that the number of page depths with
dwell time at least 5s and the number of page depths with
dwell time less than 5s are very close (about 50%). In con-
trast, there are about 70% page depths whose dwell time is
at least 1s. Similar to the depth-level dwell time prediction,
GlobelAverage and ChannelAverage have very similar per-
formance. Also, the Regress_bc and the Regress_view+dep
are slightly worse than simple averaging.

4. CONCLUSIONS

Web publishers and advertisers are interested to predict
how much time a user spends at different places in a web-
page in order to maximize their profit and return on invest-
ment. This paper presents a model based on Factorization
Machines to predict webpage depth-level dwell time for a
page view. Using real-world data, both page depth-level
dwell time and viewability prediction experiments consis-
tently show our model outperforms the comparison models.
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