
Spectral Counting of Triangles in Power-Law Networks via Element-Wise
Sparsification

Charalampos E. Tsourakakis
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213-3891
ctsourak@cs.cmu.edu

Petros Drineas
School of Computer Science

Rensselaer Polytechnic Institute
110 8th Street, Troy, NY 12180-3590

drinep@cs.rpi.edu

Eirinaios Michelakis
EECS University of California, Berkeley
387 Soda Hall, Berkeley, CA 94720-1776

ireneos@cs.berkeley.edu

Ioannis Koutis
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213-3891
jkoutis@cs.cmu.edu

Christos Faloutsos
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213-3891
christos@cs.cmu.edu

Abstract

Triangle counting is an important problem in graph min-
ing. The clustering coefficient and the transitivity ratio, two
commonly used measures effectively quantify the triangle
density in order to quantify the fact that friends of friends
tend to be friends themselves. Furthermore, several suc-
cessful graph mining applications rely on the number of tri-
angles.

In this paper, we study the problem of counting triangles
in large, power-law networks. Our algorithm, SPARSI-
FYINGEIGENTRIANGLE , relies on the spectral properties
of power-law networks and the Achlioptas-McSherry spar-
sification process. SPARSIFYINGEIGENTRIANGLE is easy
to parallelize, fast and accurate.

We verify the validity of our approach with several ex-
periments in real-world graphs, where we achieve at the
same time high accuracy and important speedup versus a
straight-forward exact counting competitor.

1 Introduction

It is a well known fact in social network analysis that
friends of friends tend to be friends themselves [23]. Tri-

angles are a main indicator of this property. Two measures
that quantify the triangle density of a graph are the cluster-
ing coefficient and the transitivity ratio ([19]).

Besides the significance of triangles in network analysis
statistics, they also play an important role in graph mining
applications: Eckmann and Moses showed how one can use
triangles in order to uncover the hidden thematic structure
of the web [11] and Beccheti et al. in [5] used the local
distribution of triangles and the clustering coefficient to de-
tect spamming activity. Furthermore, triangle-related power
laws [21] can be used to define outliers in a graph with re-
spect to triangles.

In this paper we focus on the problem of counting trian-
gles in large networks. The main contribution of this work
is a novel method for counting triangles in a large power-
law network: we show how one can sparsify the graph con-
verting it into another weighted graph, with significantly
smaller number of edges and counting the number of tri-
angles in that one with a recently introduced method [21],
called EIGENTRIANGLE. Furthermore, our method is easy
to parallelize since it uses only matrix-vector multiplica-
tions, easy to implement and most importantly gives sig-
nificant speedups versus a straight-forward competitor. Fi-
nally, we validate the validity of our approach in several
real world networks, where we achieve important speedups

1

Sym. Definition
G Undirected simple graph
dmax maximum node degree
∆ total number of triangles
∆′ EIGENTRIANGLE’s estima-

tion of ∆
m, n Number of edges and nodes.
[n] = (1..n) Node ids
A Adjacency matrix
λi top-i-th eigenvalue (absolute

value)
~Λk = [λi]i=1..k k top eigenvalues
p sparsification parameter

(probability of keeping an
edge)

Table 1. Definitions of symbols and acronyms

while being very accurate.
The outline of the paper is as follows: in section 2 we

present briefly the related work, in section 3 we describe
the proposed algorithm and in section 4 we show the exper-
imental results. We conclude in section 5.

2 Background and Related Work

In this section we describe briefly existing work on the
problem of counting triangles and the Achlioptas-McSherry
low rank approximation algorithm. In the rest of the paper,
we use the symbols described in Table 1.

LetG(V,E), n=|V |, m=|E| be an undirected graph with-
out self-edges. A triangle is defined as a three node fully
connected subgraph of G.

Exact Counting Methods The obvious way to count the
number of triangles in a graph is to examine each of the

(
n
3

)
combinations of nodes and check whether they form a trian-
gle or not. As the procedure suggests, the time complexity
is O(n3).

Since the problem of counting triangles can be reduced
to matrix multiplication, the complexity of counting trian-
gles can be reduced as well toO(n2.376) [8]. This is also the
lowest time complexity. Alon, Yuster and Zwick in [3] gave
an algorithm of O(m

2ω
ω+1) ⊂ O(m1.41) time complexity

and of Θ(n2) space complexity. However, these methods
suffer from Θ(n2) space complexity.

Therefore, listing methods ([20]) are preferred against
matrix-multiplication based methods. Such methods are the
NODEITERATOR and the EDGEITERATOR Ṫhe NODEIT-
ERATOR considers each one of the n nodes and examines

which pairs of its neighbors are connected. The time com-
plexity of the NODEITERATOR is O(nd2

max). This is a sig-
nificant improvement over the brute-force approach when
the graph is sparse. The EDGEITERATOR algorithm com-
putes for each edge the number of triangles that contain it.
The time complexity of this algorithm is O(mdmax). Both
methods are equivalent asymptotically ([20]). Schank and
Wagner in [20] propose the forward algorithm with run-
ning time Θ(m

3
2) and space complexity O(m). A nice sur-

vey and the state-of-the-art algorithms are described in [17].

Streaming Algorithms In the streaming approach, we re-
strict ourselves to one or at most a constant number of
passes over the data. The goal it to output an accurate
estimate of the number of triangles with high probability.
Z.Bar-Yossef, Kumar and Sivakumar showed in [4] how one
can approximate the number of triangles by using the Alon-
Matias-Szegedy ([2]) method for approximating frequency
moments. New streaming algorithms were introduced in
[6].

Semi-streaming model Recently, Becchetti, Boldi,
Castillo and Gionis introduced the semi-streaming model
in [5] to solve the local triangle counting problem. Their
method relies on the locality sensitivity hashing concept.
In contrast to the streaming model, this model relaxes the
strict restriction of the constant number of passes over the
data. Instead it performs O(log(n)) sequential scans over
the edge file.

EIGENTRIANGLE Recently, Tsourakakis gave two ap-
proximation algorithms in [21] for counting the total num-
ber of triangles and the triangles per node. It was ob-
served that a low-rank approximation of the adjacency ma-
trix yields in many real-world networks a fast, accurate and
parallelizable method for counting triangles in power-law
networks. The first theorem in [21] which is of interest to
us in this work is the following:

∆(G) =
1
6

n∑
i=1

λ3
i (1)

Achlioptas-McSherry Low Rank Approximation Algo-
rithm Approximating a matrix with a low rank matrix is
a task occuring frequently desired task in many applications
(e.g. [22],[9]) Since computing the optimal solution is ex-
pensive, often approximate solutions are used in practice
(e.g [10] and [14]). Achlioptas and McSherry showed in [1]
how one interested in a low rank approximation of a matrix
A can get a matrix Â that has the following properties.∣∣∣∣∣∣A− Â(k)

∣∣∣∣∣∣
2
≤
∣∣∣∣∣∣A−A(k)

∣∣∣∣∣∣
2

+O((
n

p
)

1
2) (2)

2

Figure 1. Termination criterion for SPARSI-
FYINGEIGENTRIANGLE . Plots the estimate of
triangles at the i-th iteration vs. i. The al-
gorithm decides at the k-th iteration to stop
since its estimate did not change significantly
from the k-th to the (k+ 1)-th iteration. As we
see from the plot, the encircled estimate is
very close to the actual value of the #trian-
gles

∣∣∣∣∣∣A− Â(k)
∣∣∣∣∣∣
F
≤
∣∣∣∣∣∣A−A(k)

∣∣∣∣∣∣
F

+O((
n

p
)

1
4

∣∣∣∣∣∣Â(k)
∣∣∣∣∣∣ 12
F

(3)

These equation reveal the existence of a matrix Â(k) for a
given k “close” to the optimal A(k) with respect to both the
2-norm and the Frobenius norm. Furthermore, they showed
-among other things as well- how one can obtain the Â in
a very simple way: Toss a biased coin for each entry (i, j)
of the matrix A with probability p of keeping that specific
entry. In case we keep the entry (i, j), then Â(i, j) becomes
equal to Aij

p .

3 Proposed Method

Our method builds on the top of the EIGENTRIANGLE
and Achlioptas-McSherry algorithms’ ideas. These are the
following: (a) A low rank approximation of the adjacency
matrix gives a good estimate of the number of triangles in
the graph. (b) We can keep a small percentage of the to-
tal edges of the graph and keep the top eigenvalues of the
sparsified graph very close to the ones of the initial graph.

Our algorithm, SPARSIFYINGEIGENTRIANGLE , takes
two parameters, the tol parameter and the sparsification pa-
rameter p, as can be seen from the pseudocode. As we see
the algorithm works in two stages. First it performs one
pass over the edges of the graph (non-zero entries of the
adjacency matrix). For each edge we toss a biased coin

Require: Adjacency matrix A (nxn)
Require: Tolerance tol
Require: Sparsification parameter p
Output: ∆′(G) global triangle estimation
{ Stage 1: Achlioptas-McSherry Sparsification }
for all (i, j) s.t A(i, j) 6= 0 do

Toss a biased coin with success probability p
if success then
Â(i, j)← A(i,j)

p
end if

end for
{ Stage 2: EIGENTRIANGLE}
λ1← LanczosMethod(Â, 1)
~Λ← [λ1]
i← 2 {initialize i, ~Λ}
repeat
λi ← LanczosMethod(Â, i)
~Λ←

[
~Λ λi

]
i← i + 1

until 0 ≤ |λ3
i |∑i

j=1 λ
3
j

≤ tol

∆′(G)← 1
6

∑i−1
j=1 λ

3
j

return ∆′(G)

Algorithm 1: The SPARSIFYINGEIGENTRIANGLE
algorithm

with probability p of keeping an edge. In case we keep the
edge, then we attach a weight of 1

p to that edge. There-
fore, in expectation, at the end of the pass, we keep pm
edges in total, all of them weighted with value equal to 1

p .
After the sparsification stage, the algorithm moves into the
EIGENTRIANGLE stage. In this phase, we perform an iter-
ative eigen-computation of the sparse adjacency matrix Â
until we observe that the cube of the absolute value of the
eigenvalue being computed is significantly smaller than the
estimate of triangles made until then. This is exactly the
intuition behind the tol parameter: stop iterating when the
eigenvalue just computed does not contribute significantly
to the estimate. The intuition behind this stopping criterion
is shown in figure 1.

The algorithm used in the eigen-computation is Lanc-
zos method an efficient method for finding the top eigen-
values in sparse, symmetric matrices. Golub and Van Loan
in [15] provide an excellent treatment of Lanczos method.
One of the important properties of Lanczos is that the num-
ber of passes the edges depends on the spectral gaps of the
eigenvalues to be computed. In our case due to the power-
law that holds for the top-eigenvalues [12], [18],[7] Lanczos
converges fast ([16]).

When the iteration stops, the algorithm outputs the es-
timate of the number of triangles in the graph as the sum

3

Figure 2. Gershgorin circles for a small graph
(airports) on the complex plane. As we see
from the plot, all eigenvalues lie on the real
axis due to the symmetry of the adjacency
matrix, most of them are almost symmetric
around zero, and a few ones are detached
from the rest. The top eigenvalue is denoted
with red, the second and third with purple and
so are the corresponding circles.

of the cubes of the computed eigenvalues divided by 6, in
accordance to the EIGENTRIANGLEtheorem ([21]).

Our algorithm, SPARSIFYINGEIGENTRIANGLE works
for many real-world networks very fast in practice, due to
the following properties:

1. Top eigenvalues follow a power law which implies the
following desired properties:

• Few eigenvalues contribute a lot to the number of
triangles.

• Cubes amplify this even more.

• Lanczos converges very fast.

2. The rest of the eigenvalues are almost symmetric
around zero, and therefore they can be discarded since
the sum of their cubes will not contribute significantly
to the number of triangles.

This properties are illustrated in figure 2 where we see
the Gershgorin circles which are simple upper bounds on
the eigenvalues and the actual eigenvalues, and are in ac-
cordance with the observations made by Farkas, Derenyi,
Barabasi and Vicsek in [13].

4 Experiments

The graphs we used in our experiments are described
in Table 2. We implemented all our algorithms in MAT-
LAB and the experiments ran on a 4GB RAM, Intel(R)

Core(TM)2 Duo CPU at 2.4GHz Windows Vista machine.
We report the results of our method in terms of the speedup
vs. the NODEITERATOR.

Nodes Edges Description
404,733 2,110,078 Flickr

13,332 148,038 Reuters news,
Sept 9-11,2001.

13,579 37,448 AS Oregon
23,389 47,448 CAIDA AS

Table 2. Order and size of networks used.

In order to avoid running into dilemmas for the choice
of the tolerance parameter, we adapt the empirical rule-of-
thumb from [21], where it was observed in a wide range
of experiments that a) typically a 6.2 rank approximation
per average is good enough to acquire more than 95% ac-
curacy and b) the maximum number of eigenvalues needed
was 23. Therefore, in our experiments we compute for each
graph the top-30 eigenvalues, even if less eigenvalues can
provide an accurate estimation. The results are shown in
figure 3. For each dataset, we plot the accuracy and the
speedup vs. the NODEITERATOR for the esimation result-
ing after computing one to thirty top eigenvalues. Similar
results are obtained for other graphs of about the same size
as well, which are omitted here due to the limited space.
The plots presented are representative of what can see when
somebody runs SPARSIFYINGEIGENTRIANGLE (e.g., dif-
ferent scenarios that can occur in the convergence of the
estimate towards the real value).

These plots reveal the following facts: 1) Even when
we keep via the Achlioptas-McSherry sparsification a small
percentage e.g 10% of the graph edges the eigenvalues re-
main very close to the real ones. 2) Few top eigenvalues are
enough to get a good estimate of the total number of trian-
gles in the graph. 3) Speedups, even for graphs with few
tenths of thousand or few million edges are important. 4)
The expected trend of significant savings as the number of
non-zeros elements of the matrix gets smaller is not clearly
observed and this is due to the implementation properties
of MATLAB’s eigensolver. However, this this phenomenon
will be eliminated when our algorithm is applied to larger
graphs.

5 Conclusions

In this follow-up work, we introduced the SPARSI-
FYINGEIGENTRIANGLE , a fast, parallelizable algorithm
that can be used in cases where the graph of interest does
not fit in the main memory. The main idea of the algorithm
is to use a low-rank approximation of the matrix which is

4

generated via the Achlioptas-McSherry ([1]) sparsification
of the adjacency matrix to compute the number of triangles
based on the EIGENTRIANGLE algorithm ([21]). Further-
more, we show that even when keeping 10% of the graph
edges one can compute the number of triangles in a very
accurate and fast way.

References

[1] D. Achlioptas and F. McSherry. Fast computation of
low rank matrix approximation. In STOC, 2001.

[2] N. Alon, Y. Matias, and M. Szegedy. The space com-
plexity of approximating the frequency moments. In
STOC ’96: Proceedings of the twenty-eighth annual
ACM symposium on Theory of computing, pages 20–
29, New York, NY, USA, 1996. ACM.

[3] N. Alon, R. Yuster, and U. Zwick. Finding and count-
ing given length cycles. Algorithmica, 17(3):209–223,
1997.

[4] Z. Bar-Yosseff, R. Kumar, and D. Sivakumar. Reduc-
tions in streaming algorithms, with an application to
counting triangles in graphs. In SODA ’02: Proceed-
ings of the thirteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 623–632, Philadelphia,
PA, USA, 2002. Society for Industrial and Applied
Mathematics.

[5] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis.
Efficient semi-streaming algorithms for local triangle
counting in massive graphs. In Proceedings of ACM
KDD, Las Vegas, NV, USA, August 2008.

[6] L. S. Buriol, G. Frahling, S. Leonardi, A. Marchetti-
Spaccamela, and C. Sohler. Counting triangles in data
streams. In PODS ’06: Proceedings of the twenty-
fifth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 253–262, New
York, NY, USA, 2006. ACM.

[7] F. Chung, L. Lu, and V. Vu. Eigenvalues of random
power law graphs. Annals of Combinatorics, 7(1):21–
33, June 2003.

[8] D. Coppersmith and S. Winograd. Matrix multiplica-
tion via arithmetic progressions. In STOC ’87: Pro-
ceedings of the nineteenth annual ACM conference on
Theory of computing, pages 1–6, New York, NY, USA,
1987. ACM.

[9] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Lan-
dauer, and R. Harshman. Indexing by latent semantic
analysis. Journal of the American Society for Infor-
mation Science, 41:391–407, 1990.

[10] P. Drineas and R. Kannan. Pass efficient algorithms for
approximating large matrices. In SODA ’03: Proceed-
ings of the fourteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 223–232, Philadelphia,
PA, USA, 2003. Society for Industrial and Applied
Mathematics.

[11] J.-P. Eckmann and E. Moses. Curvature of co-links un-
covers hidden thematic layers in the world wide web.
PNAS, 99(9):5825–5829, April 2002.

[12] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On
power-law relationships of the internet topology. In
SIGCOMM, pages 251–262, 1999.

[13] I. J. Farkas, I. Derenyi, A.-L. Barabasi, and T. Vic-
sek. Spectra of ”real-world” graphs: Beyond the semi-
circle law. Physical Review E, 64:1, 2001.

[14] A. Frieze, R. Kannan, and S. Vempala. Fast monte-
carlo algorithms for finding low-rank approximations.
In In Proceedings of the 39th Annual IEEE Symposium
on Foundations of Computer Science, pages 370–378,
1998.

[15] G. Golub and C. Van Loan. Matrix Computations.
JohnsHopkinsPress, Baltimore, MD, second edition,
1989.

[16] D. J. Applied Numerical Linear Algebra. SIAM,
Philadelphia, PA, 1997.

[17] M. Latapy. Main-memory triangle computations for
very large (sparse (power-law)) graphs. Theor. Com-
put. Sci., 407(1-3):458–473, 2008.

[18] M. Mihail and C. Papadimitriou. the eigenvalue power
law, 2002.

[19] M. E. J. Newman. The structure and function of com-
plex networks. SIAM Review, 45:167–256, 2003.

[20] Thomas Schank and Dorothea Wagner . DELIS-TR-
0043 - finding, counting and listing all triangles in
large graphs, an experimental study. techreport 0043,
submitted, 2004.

[21] C. Tsourakakis. Fast counting of triangles in large real
networks, without counting: Algorithms and laws. In
ICDM, 2008.

[22] M. Turk and A. Pentland. Eigenfaces for recognition.
Journal of Cognitive Neuroscience, 3(1):71–86, 1991.

[23] S. Wasserman and K. Faust. Social network analysis.
Cambridge University Press, Cambridge, 1994.

5

Figure 3. Experimental Results for four different datasets. (a) Reuters (b) AS CAIDA (c) AS Oregon
(d) Flickr. Observe the following points: (1) the high accuracy obtained in the estimate after the top-5
eigenvalues, (2) the descending “oscillation” that moves towards the true value in different ways (3)
the important speedups that we obtain while being accurate.

6

