
A fast solver for a class of linear systems ∗

Ioannis Koutis
Computer Science Dept.

U. of Puerto Rico-Rio Piedras
ioannis.koutis@upr.edu

Gary L. Miller
Computer Science Dept.

Carnegie Mellon University
glmiller@cs.cmu.edu

Richard Peng
Computer Science Dept.

Carnegie Mellon University
yangp@cs.cmu.edu

ABSTRACT
The solution of linear systems is a problem of fundamental
theoretical importance but also one with a myriad of appli-
cations in numerical mathematics, engineering and science.
Linear systems that are generated by real-world applications
frequently fall into special classes. Recent research led to a
fast algorithm for solving symmetric diagonally dominant
(SDD) linear systems. We give an overview of this solver
and survey the underlying notions and tools from algebra,
probability and graph algorithms. We also discuss some of
the many and diverse applications of SDD solvers.

1. INTRODUCTION
One of the oldest and possibly most important computa-

tional problems is that of finding a solution to a system of
linear equations. There is evidence that humans have been
solving linear systems to facilitate economic activities since
at least the first century AD. With the advent of physical
sciences and engineering, linear systems have been, for cen-
turies now, a central topic of applied mathematics. And over
the last two decades, the digital revolution has expanded the
use of linear system solvers to applications of surprising va-
riety.

Figure 1: Representing a social network as a graph.

Many of these new applications typically model entities

∗This work is partially supported by NSF grant number
CCF-1018463. I. Koutis is supported by NSF CAREER
award CCF-1149048. Part of this work was done while
I.Koutis was at CMU. R. Peng is supported by a Microsoft
Research Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

and their relationships as networks, also known as graphs,
and use solvers to extract information from them. The
resulting linear systems frequently obey simple constraints
which classifies them as symmetric diagonally dominant
(SDD).

An example of an area where such systems arise is in the
analysis of social networks. Such networks can be repre-
sented as a set of links connecting people; an example is
shown in Figure 1. A natural question to ask is how ‘close’
are two persons in the network. Purely graph-based meth-
ods measure either the length of the shortest path or the
maximum number of disjoint paths between the two nodes,
but not both. To take both of these quantities into account
we can view the network as an electric circuit with each
connection corresponding to an electrical wire. Hooking a
battery at the two nodes of interest and measuring the re-
sistance of the entire network gives a quantity known as
the effective resistance, which can be used as a ‘proxim-
ity’ measure. Since the electrical network is not physically
available, we can’t measure the effective resistance. We can,
however, compute it by solving an SDD linear system.

The above example is only one of many instances of infer-
ence on a graphical model. Similar methods are applicable
in a wide range of problems, such as measuring the impor-
tance of specific proteins in protein-protein interaction net-
works [14]; the link prediction problem in social networks
[13]; or even problems where graphs arise less directly, such
as segmenting the image shown in Figure 2.

Figure 2: Segmentation of medical scans [21].

More intricate uses of electrical networks have been dis-
covered in the context of classical graph optimization prob-
lems, with the recent network flow algorithm by Christiano
et al. [5] standing out as an algorithmic breakthrough. The
algorithms reduce the problem to not just one network, but
to a sequence of networks via successive readjustment of
edges. In these algorithms, some of the resulting systems
are significantly harder than ‘typical’ instances, capturing
–in some sense– the hardness of the optimization problems
themselves.

Current SDD solvers are empirically fast for some engi-
neering applications, but they are not able to efficiently solve
most cases of SDD linear systems. Besides these practical
limitations, the fact that existing SDD solvers lack guaran-
tees on arbitrary instances limits their implications to the
theory of algorithms as well.

These factors underline the need for ‘mathematically certi-
fied’ solvers that are provably fast for arbitrary SDD linear
systems, independently of their origin, be it –for instance–
social or protein networks. This paper describes our state
of the art solver for Symmetric Diagonally Dominant (SDD)
linear systems.

1.1 A glimpse at the solver
The class of SDD linear systems arises in particular in

the study of electrical networks, which provide us with a
concept crucial to understanding how our algorithm works:
the effective resistance between two points in a network.
In addition, the connection to networks enables adopting a
second alternative view of our linear system, as a weighted
graph. We give the details in Section 2.

We then move to the algebraic component of our solver.
The approximate solution of linear systems via iterative meth-
ods is a topic not commonly encountered in computer science
but thoroughly studied in the context of numerical linear
algebra and scientific computation. Section 3 explains iter-
ative methods via an analogy with the computation of the
inverse of a real number in a calculator with a broken divi-
sion key, where only addition and multiplication operations
are available. This leads us to preconditioning, a term first
used by Alan Turing. In the graph theoretic context, precon-
ditioning provides a measure of similarity between graphs.
This measure is used to formalize design conditions suffi-
cient for the construction of a fast iterative method.

What distinguishes our solver from classical iterative meth-
ods is its combinatorial component and specifically the
use of graph theoretic algorithms. It was understood before
our work that the key to a fast solver is finding a subgraph
(the preconditioner) which is similar to a given graph, but
has substantially fewer edges [20]. Our contribution is a con-
ceptually simple procedure for constructing good precondi-
tioners, this is the topic of Section 4.

The base of our preconditioner is a spanning tree of the in-
put graph, in other words a minimally connected subgraph.
Our algorithm needs a special type of spanning tree called
a low-stretch tree (LSST) which we describe in Section 4.1.
This can be found using very sophisticated but fast algo-
rithms.

To get a better preconditioner we perform random sam-
pling: each edge of the input graph is put into the pre-
conditioner with a specified probability. It was known that
the effective resistance between the two endpoints of each
edge provides a good sampling probability for it [18]. Un-
fortunately the problem of computing the effective resistance
seems to require solving an SDD linear system, which is the
problem we are trying to solve in the first place.

Our main contributions are two ideas that allow us to
circumvent this ‘chicken and egg’ problem. The first idea
is to use an upper estimate on the effective resistance for
each edge. The second idea is to compute these estimates
on a modified graph, in which the estimates are sufficiently
good. The modification is in fact quite simple; we find an
LSST of the graph and increase the weight all of its edges.

To compute the upper estimate for the effective resistance
of an edge in the modified graph we only use the edges of
the LSST. A key side-effect of this modification is that the
number of non-tree edges in the preconditioner is much less
than the number of edges in the original graph. In this way
we meet the known design conditions and obtain the faster
solver.

2. NETWORKS, SYSTEMS, SOLVERS
Let us consider the problem of finding a voltage setting

given the desired net current flow at each of the vertices. A
simple 3-node example of an electric network is depicted in
Figure 3. The inverse of the resistance of wire, also known
as conductance, is a direct analogue to the edge weight in
a graph; because of that we choose to label each wire by its
conductance rather than its resistance. Setting the voltages
of the vertices to some values leads to an electrical flow
through the edges. There are two fundamental principles
governing this voltage setting. (a) Kirchhoff’s law, which
states that with the exception of the vertices where current
is injected/extracted, the net flow at each vertex is zero.
(b) Ohm’s law, which states that the current on an edge
equals the voltage difference between its endpoints times
the conductance of the wire.

As an example consider the network given in Figure 3
where we set the voltages at the three vertices to be x1, x2
and x3 respectively. By Ohm’s law we get that the current
flows along edges 1 → 2 and 1 → 3 are 1 · (x1 − x2) and
2 · (x1 − x3) respectively. Therefore the amount of current
we will need to inject into vertex 1 to maintain these voltages
is:

1 · (x1 − x2) + 2 · (x1 − x3) = 3x1 − x2 − 2x3

Identities for the required current entering/leaving vertices
2 and 3 can also be derived similarly. Therefore, if we want
one unit of current to enter at vertex 1 and leave at vertex
3, the voltages will need to satisfy the following system of
linear equations:

Figure 3: A simple network and linear system.

Using more compact notation, linear systems assume the
form Ax = b where x is a n× 1 column vector of unknowns,
also called variables, b is a n× 1 column vector of real num-
bers, and A is an n×n matrix containing the coefficients of
the variables. For example, the above linear system can be
expressed in matrix form as: 3 −1 −2

−1 2 −1
−2 −1 3

 x1
x2
x3

 =

 1
0
−1

 . (2.1)

Note that each off-diagonal entry is the negation of the
conductance of the resistor connecting its two vertices, and
each diagonal entry is the sum of the conductances of all re-
sistors incident to the corresponding vertex. Since resistive
networks can also be viewed as undirected graphs, this type

of matrix is known as a Graph Laplacian and we will rely
on this connection extensively in our algorithm. Symmet-
ric Diagonally Dominant (SDD) matrices are a further
generalization of graph Laplacians. However, an SDD sys-
tem can be easily transformed into a Laplacian system (e.g.
see [9]) and so we will restrict our attention entirely to graph
Laplacians.

Once we’re able to obtain the voltages at each vertex,
we can also compute the effective resistance between two
vertices. Intuitively, this notion can be viewed as thinking
of the entire network as a single electrical component. Then
by Ohm’s law the voltage drop required to send 1 unit of
current corresponds to the resistance of the component. In
our example, the effective resistance between vertex 1 and
2 is x1 − x3 = 2/5. Formally, this value equals vs − vt from
the solution of the linear system Lv = φ, where φ is zero
everywhere except in the two entries corresponding to the
nodes s and t, for which we set φs = 1 and φt = −1. As
we will see later, this metric is not only used for network
analytics, but also plays a crucial role in our solver itself.

2.1 Solvers and their speed
Despite its long history, the problem of constructing good

solvers is considered far from being solved, especially in
terms of speed. The speed of algorithms is commonly mea-
sured in terms of the input size. In the case of general linear
systems on n variables, the matrix has size n2. However, ma-
trices are often sparse, i.e. most of their entries are equal
to zero. Because of this we can easily ‘compress’ them to
size proportional to the number of non-zeros, denoted by
m. The best case scenario, which remains entirely consistent
with our current understanding, is that linear systems can
be solved with O(m) 1 operations.

It’s fair to say that Gaussian elimination is the most well-
known method for solving linear systems. It runs in O(n3)
time and it is known as a direct method in that, if the arith-
metic operations are performed exactly then one gets the
exact solution to the system. Although this exponent of 3
has been decreased to as low as 2.37 [24], direct methods in
general require storing n2 entries, creating a natural bottle-
neck that limits us to systems with a few thousand variables.

One possible remedy to the space and time limitations
of direct methods are iterative methods. These compute
progressively better approximate solutions by only perform-
ing matrix-vector products and other simpler vector op-
erations.

One of the most important iterative methods is Conjugate
Gradient, discovered by Lanczos, Hestenes and Stiefel in the
early 1950s. This method works for arbitrary symmetric
positive definite systems, a class that includes SDD systems.
While it requires only O(m) space, it is understood that its
running time –in its original form– can be large.

Strong evidence that iterative methods can combine low
space requirements and very fast running time was provided
by a family of iterative methods known as multigrid [22].
Multigrid solvers have an O(m) running time guarantee al-
beit for restricted and well-structured systems that arise in
scientific computing.

The solver we will review in this paper is also an iterative
method. It is the culmination of a line of work initiated
by Vaidya [23], which was brought to near-completion with

1We use f(n) = O(g(n)) to denote f(n) ≤ c · g(n) when
n ≥ n0 for some constants c and n0.

the breakthrough achievement of Spielman and Teng [19]:
the first solver that runs in time O(m logc n) for any graph
Laplacian, where c is a large constant. The work discussed
here, summarized in the following claim from [10], provides
a conceptually simpler, faster and more practical algorithm.

Theorem. Symmetric diagonally dominant systems can
be solved in Õ(m logn log(1/ε)) time2, where ε is a stan-
dard measure of the approximation error.

3. THE ALGEBRAIC COMPONENT

3.1 Iterative methods: Division-free inversion
Our way towards the faster solver starts with a basic and

perhaps seemingly unrelated question: is it possible to com-
pute the inverse 1/α of a number α using a calculator with
a broken division key?

To answer the question we can invoke a basic identity
that tells us that when 0 < α < 2, 1/α equals the following
infinite sum:

1/α = 1/(1− (1− α))

= 1 + (1− α) + (1− α)2 + (1− α)3 + . . . (3.2)

Of course, computing an infinite sum is not possible. But
keeping a number of terms will give us an approximation of
1/α; the more terms we keep the better the approximation.

But how is this related to the problem of solving linear
systems? Matrices borrow several of the usual properties of
scalar numbers. When A is symmetric, its inverse A−1 also
satisfies the identity in 3.2, substituting A for α, A−1 for
1/α and the identity matrix I for the number 1. Further-
more, if we want an approximation to x = A−1b 3 we can
actually avoid entirely taking powers of the matrix; the ith

approximate vector

x(i) = (I + (I −A) + . . . (I −A)i)b

can be produced with i applications of the following simple
recurrence:

x(0) =0

x(i+1) =b+ (I −A)x(i) for i > 0.

It can be seen that each step involves a matrix-vector mul-
tiplication by A. This is the simplest among iterative meth-
ods that in general attempt to approximate the solution of
a linear system using only a sum of results from a series of
matrix-vector multiplications.

3.2 Preconditioning
So far, our replacement for the division button is of rather

restricted value, since it only works when 0 < α < 2, and
can converge very slowly when α is close to 0 or 2. One
way to extend our method and to speed up its convergence
is to add a ‘restricted division’ key to our calculator. This
key allows us to ‘divide’ by a fixed scalar β of our choice,
which in the matrix setting corresponds to a matrix-vector
product involving the inverse, B−1 of a matrix B. We can
speed up our algorithm by pressing the ‘restricted division’

2The Õ() notation hides a log logn factor.
3If A−1 doesn’t exist, as in the case of Laplacians, we use
A−1 to denote the pseudoinverse as well.

button after each matrix-vector multiplication by A, giv-
ing the following modified recurrence known as precondi-
tioned Richardson iteration:

x(0) =0

x(i+1) =B−1b+ (I −B−1A)x(i) for i > 0.

The matrix B is known as the preconditioner and in-
stead of solving the system Ax = b, we are essentially solv-
ing the preconditioned system: B−1Ax = B−1b. It is
worth emphasizing that each step of this method involves
a matrix-vector multiplication by A followed by a ‘division’
by the matrix B.

3.3 Measuring similarity between matrices
Looking back at the single variable recurrence, the critical

condition for its convergence is 0 < α < 2. An extension
of it is needed in order to analyze preconditioned iterative
methods involving matrices A and B. For matrices A and
B, we say A � B when for all vectors x we have

xTBx ≤ xTAx.

Unlike the situation with scalars, this ordering is only ‘par-
tial’. Even for size 2 diagonal matrices, it is possible that
neither B � A nor A � B holds. But when A and B are
symmetric, there will be numbers κmax and κmin such that:

κminA � B � κmaxA.

We will say that B is a κ-approximation of A, where
κ = κmax/κmin. In this case, after introducing additional
scaling factors, it can be shown that the preconditioned
Richardson’s iteration gives a good approximation in O(κ)
iterations. There are iterative methods with faster conver-
gence rates, and –as we will see- our solver relies on one of
them, known as Chebyshev iteration.

3.4 Interpreting similarity
It is interesting to see what this measure of similarity

means in the context of electrical networks, that is when
both A and B are Laplacians. The quadratic form

xTAx

is equal to the energy dissipation of the network A, when
the voltages at vertices are set to the values in the vector x.
Then, the network B is a κ-approximation of the network A
whenever for all voltage settings, B dissipates energy which
is within a κ factor of that dissipated by A.

So, roughly speaking, two networks are similar when
their ‘energy profiles’ are similar. This definition doesn’t
necessarily correspond to intuitive notions of similarity; two
networks may appear to be very different but still be similar.
An example is shown in Figure 4.

3.5 What is a good preconditioner?
Armed with the measure of similarity, we’re now ready

to face the central problem in solver design: how do we
compute a good preconditioner?

To deal with the question we must first understand what
properties are desirable in a preconditioner. A big unknown
in the total running time is the cost incurred by the limited
division button that evaluates B−1y.

Figure 4: Two similar graphs: A complete graph and
a random small subset of its edges, made heavier.

To evaluate B−1y we do not need to compute B−1. We
can instead solve the system Bz = y; the solution z will be
equal to B−1y. Clearly, we would like to solve systems in-
volving B as quickly as possible. At the same time we would
like the number of iterations to be as small as possible, since
each of them requires at least m operations. Furthermore,
a slow algorithm for computing the preconditioner B would
defeat the purpose of a fast solver. So, we should also be
able to find B quickly. Balancing these three opposing goals
makes the problem quite challenging.

3.6 Recursion and design conditions
In order to solve the linear system fast, we will need a pre-

conditioner B which is an extremely good approximation
of A and can be solved in linear time. Satisfying both these
requirements is too much to hope for. In practice any good
graph preconditioner B won’t be significantly easier to solve
comparing to A. As a result, there is no hope that precon-
ditioned Richardson’s iteration or any other preconditioned
method can lead to fast solvers.

The remedy to the problem is recursion. In a recursive
preconditioned method, the system in the preconditioner B
is not solved exactly but approximately, via a recursive in-
vocation of the same iterative method. We now have to find
a preconditioner for B, and furthermore a preconditioner
for it and etc. This produces a multilevel hierarchy of
progressively smaller graphs.

Figure 5: The sequence of calls of a recursive itera-
tive method. The matrix is fixed at each level.

Rohklin, Spielman and Teng [19] analyzed a recursive it-
erative method which moves between levels of the hierarchy
as shown in Figure 5; for each visit at level i, the algorithm
makes k visits to level i+1. Every time the algorithm returns
to the ith level it performs matrix-vector multiplications

with the graph Ai, and other simpler operations; so the work
is proportional to the number of edges of Ai. To keep the
total work as small as possible, i.e. O(km), the graphs in
the hierarchy must get smaller sufficiently fast. In partic-
ular, it is sufficient that the graph on level i + 1 is smaller
than the graph on level i by a factor of 1/(2k).

However, the algorithm must converge within the O(km)
time bound. To achieve this the iterative method analyzed
within this recursive framework is a method known as Cheby-
shev iteration. It requires only O(k) iterations, when B is
a k2-approximation of A, as compared to the O(k2) iter-
ations required by Richardson’s iteration. Using this fact
Spielman and Teng arrived at design conditions that are
sufficient for a fast solver [20]. It was actually shown that
a good algorithm for preconditioning extends to a good
solver. More specifically, assume that for some fixed value
C and any value of k, we have a fast algorithm that given A,
produces a k2-approximation with n+C ·m/k edges. Then
we automatically get a solver that runs in time O(k ·m).

Carefully checking the above statement, we realize that
there is a slight discrepancy. If m is close to n and k is
large, then n+C ·m/k will be bigger than m, which contra-
dicts our promise for a multilevel hierarchy of progressively
smaller graphs. However, as observed by Vaidya [23], when
m is almost the same n, the graph has several ‘tree-like’
parts, and these can be reduced via a ‘partial’ Gaussian
elimination that runs in O(m) time. So whenever this case
appears, it makes sense to first run partial elimination. This
will decrease the vertex count n, leading to a much smaller
instance on which recursion is applicable.

The multilevel analysis of Spielman and Teng is significant
not only for its actual algorithmic value but also the concep-
tual reduction of the multi-level solver design problem to a
well-defined two-level preconditioning problem, allowing us
now to focus on the combinatorial component of the solver.

4. THE COMBINATORIAL COMPONENT
Although graph theory has been used to speed up direct

methods, it took a paradigm-shifting idea of Pravin Vaidya
to enter a systematic study of using graph theory for it-
erative methods. In particular, Vaidya suggested the use of
a spanning tree of the graph A as a building base for
the preconditioner B. A spanning tree of a graph is a con-
nected subgraph without loops. The choice of a tree stems
from the observation that linear systems whose matrix is the
Laplacian of a tree can be solved in O(n) time via Gaussian
elimination. Adding a few edges of A back onto the tree
returns a preconditioner B which can only be better than
the tree, while still being relatively easy to solve. Vaidya’s
idea set forth two questions: (i) What is an appropriate
base tree? (ii) Which off-tree edges should be added into
the preconditioner?

While these questions seem to be interrelated, we can ac-
tually address them separately.

4.1 Low-stretch: The base spanning tree
The goal of finding a preconditioning tree B which is as

similar as possible to the graph A led Vaidya to a natural
idea: use a tree which concentrates the maximum possible
weight from the total weight of the edges in A.

The maximum-weight spanning tree idea led to the first
non-trivial results, but does not suffice for our algorithm.
In fact, the weight measure doesn’t distinguish trees in un-

weighted graphs, where all trees have equal weight.
The key to finding a good tree to use as a building base

is the notion of stretch: For every edge (u, v) of the graph,
there is a unique ‘detour’ path between u and v in a tree
T . The stretch of the edge with respect to T is equal to
the distortion caused by this detour, and in the unweighted
case, it’s simply the length of the tree path. This notion
generalizes naturally to the weighted case, which we’ll for-
malize in Section 4.3. The total stretch of a graph A with
respect to a tree T is the sum of the stretches of all the
off-tree edges. A low-stretch tree (LSST) is one for which
we have a good upper bound on the total stretch. So, at a
high level, an LSST has the property that it provides good
(on average) ‘detours’ for edges of the graph. A concrete
example on a larger unweighted graph is given in Figure 6,
where the tree on the right has lower total stretch, and as it
turns out is a better base tree to add edges to.

Figure 6: Two possible spanning trees of the un-
weighted square grid, shown with red edges.

Trees for the grid: a quantitative example

The two spanning trees of the 8×8 grid shown in Figure 6
can guide our understanding of the general

√
n×
√
n grid.

In the tree on the left, for each vertical edge beyond col-
umn

√
n/2, at least

√
n horizontal edges are needed to

travel between its endpoints; that means that its stretch
is at least

√
n. So the n/2 edges in the right half of the

square grid contribute a total stretch of n1.5.

In the tree on the right, all edges along the middle row and
column still have stretch O(

√
n). However, the middle row

and column only have O(
√
n) edges and so they contribute

only O(n) to the total stretch. Recall that all we need is a
low total stretch, so a small number of high-stretch edges
is permitted. Having accounted for the edges in the middle
row and column, the argument can then be repeated on
the 4 smaller subgraphs of size n/4 formed by removing
the middle row and column. These pieces have trees that
are constructed similarly, leading to the recurrence

TotalStretch(n) = 4 ∗ TotalStretch(n/4) +O(n).

Its solution is TotalStretch(n) = O(n logn).

A generalization of this type of ‘accounting’, that keeps

the number of high stretch edges small, forms the basis of

the current state-of-the-art algorithms [1].

Algorithms for the computation of LSSTs were first stud-
ied in an unrelated context [2], where it was shown that any
graph contains a spanning tree with total stretch O(m1+ε);
the tree can be found in O(m logn) time. The total stretch

was lowered to O(m log2 n) in [6], and further to Õ(m logn)
in [1], giving the following theorem.

Theorem. Every graph has a spanning tree of total

stretch Õ(m logn). The tree can be found in Õ(m logn)
time.

Boman and Hendrickson first introduced LSSTs as stand
alone preconditioners in 2001. This was a catalyst to sub-
sequent progress, which used LSSTs as a base for building
even more intricate preconditioners. In fact, LSSTs are in-
dispensable components of all nearly-linear time SDD sys-
tem solvers. It is worth pointing out that while LSSTs were
originally conceived as potentially good two-level precondi-
tioners, their full power in the context of multilevel solvers
wasn’t realized until our work, which we describe in Sec-
tion 4.3.

4.2 Sparsification
Spielman and Teng’s [19] main contribution was a ‘tour de

force’ algorithm for finding a preconditioner that’s the LSST
plus a small number of edges. It took many by surprise as
it yielded the first nearly-linear time SDD solver.

Describing the algorithm is out of the scope of this article,
but it is worth noting its two enhancements over previous
approaches. First, instead of just adding off-tree edges from
A back onto the tree, the algorithm re-weights them. The
tree edges may themselves be re-weighted in the final pre-
conditioner B. Second, the procedure for adding edges in
B is not deterministic but randomized, as it contains a
process for sampling edges from A.

However the major conceptual and technical contribu-
tion of Spielman and Teng that formed the cornerstone of
their solver was a sparsification algorithm. They showed
that every graph A has a 2-approximation B which has
O(n logc n) edges for some large constant c. The graph B
is called the sparsifier and, of course, it can be used as a
preconditioner when A is dense.

After the first sparsification result, progress towards faster
SDD solvers took a detour through the study of spectral
sparsification as a stand-alone problem. Works by Batson,
Kolla, Makarychev, Saberi, Spielman, Srivastava and Teng
led to nearly-optimal spectral sparsifiers, albeit at the cost
of much higher running time. These results were motivated
by the work of Spielman and Srivastava [18], who gave an
extremely simple algorithm for finding spectral sparsifiers
with only O(n logn) edges. Their algorithm, as well as the
Spielman-Teng spectral sparsification algorithm builds upon
a framework established by Benczur and Karger for sampling
and re-weighting a graph.

The framework requires positive numbers te assigned to
each edge, corresponding to the relative probabilities of sam-
pling them. It calculates the sum of these numbers, t =∑
e te and proceeds for O(t logn) rounds. In each round one

new edge is added to the sparsifier B. The edge is picked
randomly with replacement among the m edges of A, but
not in a ‘fair’ way. An edge e is picked with relative proba-
bility te, which equates to a probability of pe = te/t. Once
an edge is picked, it is added to B with weight scaled down
by a factor of O(te logn). Furthermore, if an edge is picked
twice or more during this process, each new copy is added
as a parallel edge, making B potentially a multi-graph.

Understanding re-weighting

While it may appear complicated, the re-weighting choice

is quite natural. The reasoning is that the ‘expected value’

of B should be A itself on an edge-to-edge basis. In other

words, the average of many B’s output by the algorithm

should be A itself.

Spielman and Srivastava found the probabilities that give
sparsifiers with the fewest number of edges with the help of
some experimentation. Amazingly, the answer turned out
to be related to the effective resistance of the edge, specifi-
cally te = weRe. With hindsight, it is interesting to reflect
about the natural meaning of effective resistance. If there is
a wire of resistance re = 1/we, between i and j, the effec-
tive resistance Re will in general be smaller than re because
most probably there will be other network connections to
accommodate the flow; this is known as Rayleigh’s mono-
tonicity theorem. The extreme case weRe = 1 occurs only
when there is no other route between i and j except the wire
joining them. In this situation, the edge (i, j) is crucial for
the network. On the other hand if weRe is very small, there
must be significant alternative network connections between
(i, j). Therefore, the product weRe as a measure of the im-
portance of a wire. Using tools from modern matrix theory
[15], Spielman and Srivastava proved that this algorithm
does return a good spectral sparsifier with high probability.
Combining with the fact that t =

∑
e weRe = n − 1 yields

the overall number of edges: O(n logn).
Despite being a major improvement in the theory of graph

sparsification, the algorithm of Spielman and Srivastava did
not accelerate the SDD solver as current methods for quickly
computing effective resistances require the solution of linear
systems. The guarantee of O(n logn) edges is also hard to
connect with the n + C · m/k edges needed by the design
condition. However, it is fair to say that their result cleared
the way to our contribution to the problem.

4.3 Which off-tree edges?
If we can’t effectively compute effective resistances, can

we at least approximate them quickly, even poorly? A closer
look at the matrix concentration bounds allows us to relax
this goal a bit further: the sampling algorithm described in
Section 4.2 can be shown to work with any choice of te, as
long as te ≥ weRe. The observant reader may notice that
the expected number of times e is picked is O(te logn), so
increasing te only results in more copies of e being picked
without affecting the expectations of all other edges.

The intuition that the low-stretch spanning tree must be
part of the preconditioner leads us to taking tree-based esti-
mates R′e for the effective resistances Re. In particular, for
an off-tree edge e we let R′e be the sum of the resistances
along the unique path between the endpoints of e in the tree,
as shown in Figure 7. By Rayleigh’s monotonicity theorem,
we know that this estimate will be higher than the actual
Re. This leads to the tree-based sampling probability for an
off-tree edge e being proportional to te = weR

′
e. Further-

more, if we keep the entire tree in B, we can modify the
sampling algorithm presented in Section 4.2 to only sample
off tree edges. Then the total number of off-tree (multi)
edges sampled in B is O(t logn) where t is the sum of all
tes, which in turn . This brings us to the question: how big
is t?

This question leads us back to the discussion of low-stretch

4

5
2

2

Figure 7: The effective resistance R′e of the blue off-
tree edge in the red tree is 1/4 + 1/5 + 1/2 = 0.95. Its
stretch weR

′
e is (1/4 + 1/5 + 1/2)/(1/2) = 1.9

spanning tree and the definition of stretch for the gen-
eral weighted case: if we view the length of an edge e as
the inverse of its weight, then its stretch equals to weR

′
e

4.
Therefore, t is the total stretch of the off-tree edges with
respect to the tree. Then, using the low-stretch spanning
tree of the Theorem in Section 4.1, we can upper bound t
by O(m logn). Recall that the number of samples will be
t logn and so it appears that we don’t gain much from the
sampling process unless the graph A has a very special tree.

Our key idea is to make a special graph Ã out of A. We do
so by scaling up, by a factor of κ, the weights of edges of a
low-stretch spanning tree in A. For an edge that’s not part
of the tree, its weight does not change, while the tree path
connecting its endpoints is now heavier by a factor of κ. So
the stretch decreases by a factor of κ and the total stretch of
these edges becomes t = O(m logn/κ). Now, consider what

happens if we sample the off-tree edges in Ã. The output
B will be a 2-approximation of Ã. On the other hand, the
graph Ã is a κ-approximation to A, and by transitivity B is
2κ-approximation to A. Also, the number of non-tree edges
sampled will be O(t logn) = O(m log2 n/κ). Adding in the
n−1 tree edges gives a total of n+O(m log2 n/κ) edges in B.
Recall that the two-level design conditions stated in Sec-
tion 3.6 require a k2-approximation with n+C ·m/k edges
in order to obtain a running time of O(k ·m). So by setting κ
to O(log4 n), we meet the conditions with k = O(log2 n) and
arrive at our first result:

Theorem [9]. Symmetric diagonally dominant systems

can be solved in Õ(m log2 n log(1/ε)) time, where ε is a
standard measure of the approximation error.

As it turned out, the low-stretch spanning tree is not only a
good base tree, but also tells us which off-tree edges should
go to the preconditioner. Our faster, O(m logn) time al-
gorithm will come via an even better understanding of the
properties of the tree.

4.4 The final push: Low-stretch spine
Assume that we’re given a graph A, found its low-stretch

tree TA, and based on it, computed the preconditioner B.
Then the O(m log2 n) time solver algorithm dictates that we
recursively do the same with B. But do we really have to
scrap TA and find another low-stretch tree TB? After all, it
may be the case that TA is a low-stretch tree of B, or close
to being one.

What the O(m log2 n) algorithm [9] missed is the obser-
vation that we can keep sampling based on the same
tree, gradually generating all levels of the multilevel hierar-

4An alternate view is that the stretch of e is the weighted
length of the tree path between e’s end points divided by e’s
own length.

chy, until what is left is the tree itself. This justifies thinking
of a low-stretch spanning tree as a graph spine, and is de-
picted in Figure 8.

Figure 8: Low-stretch spanning tree as a spine.
The ‘cloud’ of off-tree edges becomes progressively
sparser.

When the sparsifier B is viewed as a graph, it’s possible
for some of its edges to have high stretch. However, a more
careful reexamination of the sampling algorithm shows that
these edges are the result of an edge being sampled many
times. From this perspective, these heavy edges are in fact
many multi-edges, each with low stretch. Therefore, if we
process these multi-edges separately, the tree TA will be a
low-stretch spanning tree in B, and the higher edge count
is still bounded by the number of rounds made by the sam-
pling algorithm. This allows us to use TA as a low-stretch
spanning tree and sample the off-tree edges in B according
to it. Note that with this modification, it’s possible for us
to observe a temporary ‘slow down’ in the reduction of the
overall edge count; the preconditioner of B may have the
same number of off-tree edges as B itself. However the to-
tal number of multi-edges will decrease at a rate that meets
the design conditions. This reuse of the tree for generating
sparsifiers is a crucial deviation from prior works.

But this doesn’t fully explain the faster solver algorithm.
To achieve it we need an extra trick. Assume for a moment
that our graph A is what we call spine-heavy; that is,
it has a tree of total stretch equal to O(m/ logn). Then
by an argument analogous to the one using a standard low
stretch spanning tree, we can show that B actually satisfies
the two-level preconditioning requirement for an even lower
value of κ, namely a fixed constant. This, in combination
with spine-based sampling allows us to solve spine-heavy
graphs in linear time. A more global view of this algorithm,
as shown in Figure 8 is that it progressively makes the tree
heavier, while removing off-tree ones.

Since our initial graph A can’t be expected to be spine-
heavy, we make a spine-heavy graph Ã out of A, by scaling-
up its low-stretch tree by an O(log2 n) factor. Now Ã is
an O(log2 n)-approximation to A and we can solve it in
O(m) time. Using it as preconditioner for A completes the
O(m logn) time solver. So, we have arrived at our destina-
tion.

Theorem [10]. Symmetric diagonally dominant systems

can be solved in Õ(m logn log(1/ε)) time, where ε is a
standard measure of the approximation error.

5. EXTENSIONS

5.1 Parallelization
Several algorithms in numerical linear algebra have par-

allel versions that are work-efficient. A parallel algorithm is
called work-efficient if it performs roughly the same work
as its best sequential algorithm for the same problem, while
allowing the use of parallel processing.

The first steps towards studying the parallelism poten-
tial of SDD solvers were taken in [3], which presented a
nearly (up to log factors) work-efficient algorithm, running

in O(m1/3) parallel time. Informally, this means that up to

m2/3 parallel processes can be used to accelerate the algo-
rithm, a non-trivial potential for parallelism.

5.2 Implementation
The most complicated component of our solver is the al-

gorithm for computing a low-stretch tree. It is however ex-
pected that a conceptually simpler algorithm for this prob-
lem is to be discovered, leading to a fast and ‘clean’ im-
plementation, and quite likely the removal of the log logn
factors from the running time.

In a practical implementation, it would be a good idea to
substitute the recursive preconditioned Chebyshev iteration
by a recursive preconditioned Conjugate Gradient (PCG)
iteration. It is known that, in two-level methods, PCG is
essentially able to automatically optimize the performance
of the preconditioner. It is expected that the same should
be true for some multilevel variant of PCG, but this is yet
to be proven.

We expect that, eventually, the best implementations of
SDD solvers will combine ideas from this work and other
existing graph-based techniques [8], or entirely new ideas.
Such ideas will certainly be needed to achieve –if possible–
a ‘fully parallel’, O(logn) time, work-efficient SDD solver.

6. THE LAPLACIAN PARADIGM
Solvers for SDD systems are increasingly viewed as an

algorithmic primitive; a fundamental subroutine that can
be used to design many other efficient algorithms. Indeed,
since the Spielman-Teng breakthrough, the availability of
fast SDD solvers has sparked what has been dubbed the
Laplacian paradigm: an entire class of new algorithms
spanning various areas. Because it is impossible to do justice
to each one of these topics, we will present some unifying
themes and only point to some representative examples of
applications.

Perhaps the most direct example of using the solver as a
primitive is the computation of eigenvectors. It was shown
in [20] that O(logn) iterations of solves produce a good ap-
proximation to a basic eigenvector of a graph. More closely
related to preconditioned iterative methods is a solver for
elliptic finite element linear systems [4]. This work showed
that such systems can be preconditioned with graph Lapla-
cians and so they can be solved in nearly-linear time.

A more general framework stems from one of the most
powerful discoveries in combinatorial optimization: interior
point algorithms. It was shown by Daitch and Spielman [17]
that interior point algorithms allow us to reduce a broad
class of graph problems to solving a small number of SDD
linear systems. This led to the best known running times
for problems such as minimum cost flow and loss generalized
flow. These problems are extensions of the maximum flow
problem, which in its simplest version asks for the maximum

number of edge disjoint routes (or ‘flow’) between two nodes
s and t. Further work in this direction led to the first im-
provement in 20 years on the approximate maximum flow
problem [5]. The max-flow result is in turn directly applica-
ble to graph partitioning, i.e. the separation of a graph to
two well connected pieces; the fastest known algorithm for
this problem repeatedly applies the fast max-flow algorithm
[16].

It is also worth noting that the solver presented in [3]
readily gives –for all the above problems- parallel algorithms
that are essentially able to split evenly the computational
work and yield speedups even when only a small number of
processors is available. This is a rare feature among previous
algorithms for these problems.

Solver-based algorithms have already entered practice, par-
ticularly in the area of computer vision, where graphs are
used to encode the neighboring relation between pixels. Sev-
eral tasks in image processing, such as image denoising,
gradient inpainting, or colorization of grayscale images, are
posed as optimization problems for which the best known
algorithms solve SDD systems [11, 12]. Linear systems in
vision are often ‘planar’, a class of SDD systems for which
an O(m) time algorithm is known [7].

Given the prevalence of massive graphs in modern prob-
lems, it is expected that the list of applications, both theo-
retical and practical, will continue expanding in the future.
We believe that our solver will accelerate research in this
area and will move many of these algorithms into the prac-
tical realm.

7. REFERENCES
[1] I. Abraham and O. Neiman. Using petal

decompositions to build a low stretch spanning tree.
In Proceedings of the 44th symposium on Theory of
Computing, STOC ’12, pages 395–406, New York, NY,
USA, 2012. ACM.

[2] N. Alon, R. Karp, D. Peleg, and D. West. A
graph-theoretic game and its application to the
k-server problem. SIAM J. Comput., 24(1):78–100,
1995.

[3] G. E. Blelloch, A. Gupta, I. Koutis, G. L. Miller,
R. Peng, and K. Tangwongsan. Near linear-work
parallel SDD solvers, low-diameter decomposition, and
low-stretch subgraphs. In Proceedings of the 23rd
ACM symposium on Parallelism in algorithms and
architectures, SPAA ’11, pages 13–22, New York, NY,
USA, 2011. ACM.

[4] E. G. Boman, B. Hendrickson, and S. A. Vavasis.
Solving elliptic finite element systems in near-linear
time with support preconditioners. SIAM J.
Numerical Analysis, 46(6):3264–3284, 2008.

[5] P. Christiano, J. A. Kelner, A. Ma̧dry, D. Spielman,
and S.-H. Teng. Electrical Flows, Laplacian Systems,
and Faster Approximation of Maximum Flow in
Undirected Graphs. In Proceedings of the 43rd ACM
Symposium on Theory of Computing (STOC), 2011.

[6] M. Elkin, Y. Emek, D. A. Spielman, and S.-H. Teng.
Lower-stretch spanning trees. In Proceedings of the
37th Annual ACM Symposium on Theory of
Computing (STOC), pages 494–503, 2005.

[7] I. Koutis and G. L. Miller. A linear work, O(n1/6)
time, parallel algorithm for solving planar Laplacians.

In Proc. 18th ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2007.

[8] I. Koutis and G. L. Miller. Graph partitioning into
isolated, high conductance clusters: Theory,
computation and applications to preconditioning. In
Symposiun on Parallel Algorithms and Architectures
(SPAA), 2008.

[9] I. Koutis, G. L. Miller, and R. Peng. Approaching
optimality for solving SDD systems. In Proceedings of
the 51st Annual IEEE Symposium on Foundations of
Computer Science, FOCS. IEEE Computer Society,
2010.

[10] I. Koutis, G. L. Miller, and R. Peng. A near-m logn
solver for SDD linear systems. In Proceedings of the
52nd Annual IEEE Symposium on Foundations of
Computer Science, FOCS. IEEE Computer Society,
2011.

[11] I. Koutis, G. L. Miller, and D. Tolliver. Combinatorial
preconditioners and multilevel solvers for problems in
computer vision and image processing. Computer
Vision and Image Understanding, 115(12):1638–1646,
2011.

[12] D. Krishnan and R. Szeliski. Multigrid and multilevel
preconditioners for computational photography. ACM
Trans. Graph., 30(6):177, 2011.

[13] D. Liben-Nowell and J. M. Kleinberg. The
link-prediction problem for social networks. JASIST,
58(7):1019–1031, 2007.

[14] P. V. Missiuro, K. Liu, L. Zou, B. C. Ross, G. Zhao,
J. S. Liu, and H. Ge. Information flow analysis of
interactome networks. PLoS Comput Biol,
5(4):e1000350, 04 2009.

[15] M. Rudelson and R. Vershynin. Sampling from large
matrices: An approach through geometric functional
analysis. J. ACM, 54(4):21, 2007.

[16] J. Sherman. Breaking the multicommodity flow
barrier for O(

√
logn)-approximations to sparsest cut.

In Proceedings of the 2009 50th Annual IEEE
Symposium on Foundations of Computer Science,
FOCS ’09, pages 363–372, Washington, DC, USA,
2009. IEEE Computer Society.

[17] D. A. Spielman and S. I. Daitch. Faster approximate
lossy generalized flow via interior point algorithms. In
Proceedings of the 40th Annual ACM Symposium on
Theory of Computing (STOC), May 2008.

[18] D. A. Spielman and N. Srivastava. Graph
sparsification by effective resistances. In Proceedings of
the 40th Annual ACM Symposium on Theory of
Computing (STOC), pages 563–568, 2008.

[19] D. A. Spielman and S.-H. Teng. Nearly-linear time
algorithms for graph partitioning, graph sparsification,
and solving linear systems. In Proceedings of the 36th
Annual ACM Symposium on Theory of Computing
(STOC), pages 81–90, June 2004.

[20] D. A. Spielman and S.-H. Teng. Nearly-linear time
algorithms for preconditioning and solving symmetric,
diagonally dominant linear systems. CoRR,
abs/cs/0607105, 2006.

[21] D. A. Tolliver, I. Koutis, H. Ishikawa, J. S. Schuman,
and G. L. Miller. Automatic multiple retinal layer
segmentation in spectral domain oct scans via spectral
rounding. In ARVO Annual Meeting, May 2008.

[22] U. Trottenberg, A. Schuller, and C. Oosterlee.
Multigrid. Academic Press, 1st edition, 2000.

[23] P. M. Vaidya. Solving linear equations with symmetric
diagonally dominant matrices by constructing good
preconditioners. A talk based on this manuscript was
presented at the IMA Workshop on Graph Theory and
Sparse Matrix Computation, October 1991.

[24] V. Vassilevska Williams. Breaking the
Coppersmith-Winograd barrier. In Proceedings of the
44th symposium on Theory of Computing, STOC ’12,
2012.

