
Faster algebraic algorithms for path and packing problems

Ioannis Koutis
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213 USA

ioannis.koutis@cs.cmu.edu

April 30, 2008

Abstract

We study the problem of deciding whether an n-variate polynomial, presented as an arith-
metic circuit G, contains a degree k square-free term with an odd coefficient. We show that if
G can be evaluated over the integers modulo 2k+1 in time t and space s, the problem can be
decided with constant probability in O((kn+ t)2k) time and O(kn+s) space. Based on this, we
present new and faster algorithms for two well studied problems: (i) an O∗(2mk) algorithm for
the m-set k-packing problem and (ii) an O∗(23k/2) algorithm for the simple k-path problem, or
an O∗(2k) algorithm if the graph has an induced k-subgraph with an odd number of Hamiltonian
paths. Our algorithms use poly(n) random bits, comparing to the 2O(k) random bits required
in prior algorithms, while having similar low space requirements.

1 Introduction

This paper presents new and faster randomized algorithms for the well studied parameterized simple
path and set packing problems.

The k-path problem asks for a simple path of length k in a graph of n vertices V and m
edges E, or a report that no such path exists. In the general case where k is not considered a
parameter, the longest path and the Hamiltonian path problems are well known to be NP-hard.
The earliest algorithm for the k-path in general directed graphs was given by Monien in [10];
the complexity of the algorithm is O(k!nm). For undirected graphs Bodlaender gave a O(2kk!n)
algorithm [2]. Papadimitriou and Yannakakis conjectured that the O(log n)-path problem can be
solved in polynomial time [11]. Alon, Yuster and Zwick confirmed the conjecture by describing
an O∗(5.44k) randomized algorithm and an O∗((2c)k) deterministic algorithm for some constant
c > 4000 [1] 1. The algorithm of [1] is based on the observation that the Hamiltonian path problem
can be solved by a fairly simple dynamic programming algorithm which essentially records all
subsets S ⊆ V for which there is a simple path that uses exactly the vertices of S; since there
are 2n such subsets, the algorithm runs in time and space O∗(2n). This deterministic dynamic
programming algorithm can be used in the k-path problem when coupled with the color-coding
technique of [1]: each vertex v is assigned one of k colors C, and the dynamic programming
algorithm records all subsets S ⊆ C for which there is a simple path that uses exactly the colors
in C. In this way the running and space requirements become O∗(2k) and the algorithm finds a

1Following the parameterized complexity notation, we use O∗(f(k)) to hide a poly(n) factor, but we will also use
O∗(f(k)poly(n)) to hide factors of lower order.

1

k-path, if and only a k-path P existing in G is properly colored. As shown in [1] an expected
number of O(ek) colorings must be tried before P gets properly colored; this gives the randomized
algorithm. The derandomization is achieved by using a family F of O(ck) colorings, where each
subset S ⊆ V with |S| = k is properly colored by at least one of the colorings in F . A big step
towards closing the gap between the randomized and the deterministic complexity was taken by
Kneis et. al. who presented an O∗(16k) deterministic algorithm [7]. The deterministic complexity
was further reduced by Chen et. al. [3], who presented more efficient color-coding schemes and gave
an O∗(12.8k) time deterministic algorithm. A new randomized divide-and-conquer algorithm -the
first to deviate from the color-coding approach- was given in [7] and independently in [3]. Its time
complexity is O∗(4kmk3.42) and its space complexity is O(k log kn+m), a remarkable improvement
over the exponential (in k) space complexity of the color-coding approach.

The m-set k-packing problem gives a universe of n elements and a collection C of N sets each
consisting of m elements; it asks for a sub-collection of k pairwise disjoint sets from C or a report
that no such collection exists. In the general case where k is not considered a parameter, the set
packing problems for all m ≥ 3 are well known to be NP-hard. For the special case m = 3, the
problem was first considered in [4] where a deterministic O∗(2O(k)(3k)!) algorithm was given. The
bound was subsequently improved to O∗(5.7k)k in [6]. Later, it was realized that the m-set packing
problem is amenable to a dynamic programming approach, which led to an O∗(5.44mk) randomized
algorithm in [8], and (when m = 3) to an O∗(12.7D)3k for D ≥ 10.4 deterministic algorithm in [5].
In both cases the space complexity is O∗(23k). The deterministic time complexity was improved
to O∗(4.683k) in [9]. The randomized divide-and-conquer approach of [3] improved the randomized
time complexity to O∗(2.523kn) and the space complexity to O(nk log k).

While the recent algorithmic progress in the path and packing problems has been impressive,
both the color-coding and the randomized divide-and-conquer approaches seem to have an inherent
time complexity limitation, namely the O∗(2k) bound for the k-path and the O∗(23k) bound for the
3-set k-packing. For example, in the k-path packing problem, the color-coding method requires the
call of the O(2k) dynamic-programming algorithm for a number of different colorings. Breaking the
O(2.72k) lower bound of colorings ([3]) would require some extensive combinatorial preprocessing
of the graph, and even if this is possible a bound better than O(ck) seems unimaginable. In the
randomized divide-and-conquer approach, at least O(2k) tries are required to “hit” the correct top
level division. Breaking the additional O∗(2k) factor due to the recursion would require a very
complicated re-usage of the computation in previous failed trials; even if this is possible, again
it looks unimaginable that a complexity better than O∗((2 + c)k) can be achieved. On the other
hand, the Hamiltonian path and the general m-set (n/m)-packing problem have fairly easy O∗(2n)
algorithms. In view of this, a question presents itself.

Question: Is there a O∗(2kn) algorithm for the k-path and an O∗(2mk) algorithm for the
m-set k-packing?

1.1 Our approach and contributions

We answer the question in the affirmative for the m-set k-packing. We describe an algorithm that
decides the problem in O∗(2km(km)2N) expected time, and based on that, an algorithm that finds
a packing in O∗(2km(km)2N2) expected time. Both algorithms require O(kn) space. The answer is
“almost” positive for the k-path problem as well. In the case the graph contains an odd number of
k-paths (or generally when any subgraph induced by k vertices has an odd number of Hamiltonian
paths), we describe an algorithm that finds a k-path in O∗(2kk2m(n+ min(k2,m))) expected time
and O(kn + m) space. In the general case we describe an algorithm that decides the problem in

2

O∗(23k/2k2m) expected time and finds a k-path in O∗(23k/2k2m(n + min(k2,m))) expected time
and O(k2m) space. As we will discuss in more detail later, the possibility that our algorithm can
be derandomized with only a polynomial slowdown, doesn’t look very remote.

Our approach is based on reductions to the problem of detecting a square-free term of degree k
in polynomials represented as arithmetic circuits. The reduction for the Hamiltonian path problem
was mentioned in [13]. The basic idea for set packing was presented in [8] and we shortly describe
it here. Let xi be a variable corresponding to the ith element of the universe U of n elements, and
Yi be a monomial corresponding to the ith of the N sets in the given collection C. We let Yi be the
product of the elements contained in the corresponding set. For example, if Si = {1, 3, 5}, we let
Yi = x1x3x5. Then it is not hard to see that the polynomial (Y1 + . . .+ Yn)k contains a square-free
term of degree mk if and only if C contains a k-packing.

The problem of detecting square-free (or multilinear) terms in a polynomial presented as an
arithmetic circuit was implicitly considered in [8]. While the dynamic programming/color-coding
approach of [8] remains the only known solution for the general problem, in this paper we describe a
faster and space efficient algorithm for detecting square-free terms with odd coefficients. In Section
2 we show that if the polynomial P can be evaluated over the integers modulo 2k+1 in time t and
space s, the existence of the “odd” square-free term in P can be decided in time O((kn+ t)2k) and
space O(kn+ s) with constant probability. In Sections 3 and 4 we describe reductions of the m-set
k-packing and the k-path respectively, to the odd square-free term detection problem. Finally in
Section 5 we discuss some related open questions.

2 Detecting square-free terms with odd coefficients

Let X = x1, . . . , xn and let K[X] be the commutative ring of polynomials with coefficients from the
field K. Any non-zero polynomial Z2[X] is by definition a sum (or equivalently a set) of monomials.
A monomial is called square-free or multilinear if it is linear in all its variables. The total degree
of a monomial is the sum of the degrees of its variables. In general, any polynomial P ∈ Z2[X]
can be represented as an arithmetic circuit which is a directed acyclic graph with addition and
multiplication gates, and terminals corresponding to the variables.

Definition 2.1. The ODD MULTILINEAR k-TERM problem: Given an arithmetic circuit G
decide whether the polynomial P (X) ∈ Z2[X] represented by G contains a multilinear term of total
degree k or less.

The main idea of our algorithm for this problem is the evaluation of the given polynomial over
a suitably selected commutative algebra. In a commutative algebra the addition and multiplication
operators behave in the same way as in the common algebra of integers or reals. This enables
looking at the polynomial in two equivalent ways; its circuit representation allows its fast evaluation,
whereas its expanded form as a sum of monomials allows us reasoning about its value in terms of the
individual evaluations of its monomials. The slightly counterintuitive fact is that a commutative
algebra may contain elements whose square is 0. We will exploit this to annihilate non-multilinear
terms in the evaluation of P . It turns out that this can be done using commutative group algebras
of Zk2. We refer the reader to the Appendix for definitions and facts. We now give an algorithm for
the ODD MULTILINEAR k-TERM problem, that works with the assumption that P contains only
multilinear terms of degree exactly k. We will then see how this restriction can be easily removed.

decide-multilinear : Given an instance of the ODD MULTILINEAR k-TERM problem: (i)
For each xi ∈ X, independently pick a random vector vi ∈ Zk2 and assign to it the value (v0 + vi) ∈

3

Z2[Zk2], where v0 is the k-dimensional zero vector; Let X̄ denote the assignment xi ← v0 + vi. (ii)
-[option 1]: If the coefficient of v0 in P (X̄) is equal to 1, then return “yes” otherwise return “no”.
(ii) -[option 2]: Let bt denote the k dimensional vector containing the binary form of t, Λ̄t denote
the assignment xi ← 1 + (−1)v

T
i bt and Z =

∑2k−1
t=0 P (Λ̄t). If Z is equal to 2k mod 2k+1 then return

“yes”, otherwise return “no”.

It may appear that given the two options for step (ii), decide-multilinear gives two algorithms.
However, in Theorem 2.5 we will prove that option 2 is equivalent to option 1 and thus it just
provides an alternative implementation; from this we will derive our complexity claims. We will
prove the soundness of the algorithm in Theorem 2.4, using option 1. In order to proceed with
the proofs we need to introduce some notation. For simplicity let A denote Z2[Zk2]. If S ⊂ Zk2 is a
set of vectors, we denote by π(S) their product in A. By convention, for all sets V ⊆ Zk2 we will
consider the empty set as a subset of S and we will let π(∅) = v0. Note that π(A)π(B) = v0 if and
only if π(A) = π(B). We let J denote the element of A which is the sum of all vectors in Zk2, that
is J =

∑
v∈Zk

2
v. We also say that an element w of A is split if it is the sum of exactly 2k−1 distinct

vectors.
By construction, each monomial evaluates to an element of the form Π(V) =

∏
v∈V (v0 + v),

where V ⊂ Zk2. Using the fact that for all v ∈ Zk2 we have v0v = v, we can expand Π(V) into a
sum, to get

Π(V) =
∏
v∈V

(v0 + v) =
∑
S⊆V

π(S). (1)

Lemma 2.2. If the vectors in V ⊆ Zk2 are linearly dependent over Z2, Π(V) evaluates to 0. If the
vectors in V are linearly independent, Π(V) is a sum of 2|V | distinct vectors (including v0).

Proof. By definition, when the vectors in V are linearly dependent, there is V ′ ⊆ V such that
π(V ′) = v0. Then for all S ⊆ V ′ we have π(S)π(V ′−S) = v0, which implies that π(S) = π(V ′−S).
Hence, every term in the sum expansion (equality 1) of Π(V ′) is generated an even number of
times, which gives us Π(V ′) = 0. This in turn implies Π(V) = 0, because Π(V) = Π(V)Π(V − V ′).
This shows the first part of the Lemma. For the second part of the Lemma we observe that
for all Sa 6= Sb ⊆ V we have π(Sa) 6= π(Sb). To see why, note that if π(Sa) = π(Sb), then
π(Sa)π(Sb) = π(SaSb) = v0, which implies that the vectors in (Sa ∪ Sb − Sa ∩ Sb) are linearly
dependent, a contradiction. Therefore, since there are 2|V | possible subsets of V (including ∅),
Π(V) is a sum of 2|V | distinct vectors (including v0). �

Lemma 2.3. Let Pk−1 ∈ Z2[X] be a sum of multilinear monomials of degree exactly k−1. [a] For
all assignments X̄ of the form xi ← (v0+vi), Pk−1(X̄) is either split, or equal to 0, or equal to J . [b]
In the case Pk−1(X̄) is split, we have Probv∈Zk

2
((v0+v)Pk−1(X̄) = J) = Probv∈Zk

2
((v0+v)Pk−1(X̄) =

0) = 1/2.

Proof. Let Pk−1 =
∑

jMj where each Mj is a monomial of degree k − 1. We will derive
the Lemma by looking at I = (v0 + v)Pk−1(X̄) for a proper vector v. Note that Zk2 contains 2k

vectors. Lemma 2.2 then implies that for all v ∈ Zk2 and all Mj , we have (v0 + v)Mj(X̄) = 0 or
(v0 + v)Mj(X̄) = J . Therefore, we have I = 0 or I = J , so the coefficient of any vector in I
completely determines the value of I.

Clearly, this allows the possibilities Pk−1(X̄) = 0 and Pk−1(X̄) = J . Now assume that Pk−1(X̄)
is a sum of t distinct vectors, where 1 < t < 2k. We have

I = (v0 + v)Pk−1(X̄) = Pk−1(X̄) + vPk−1(X̄).

4

Since vv1 = vv2 implies v1 = v2, it must be that vPk−1(X̄) is a sum of t distinct vectors in Zk2.
Hence, every vector in the expansion of I is generated 0, 1 or 2 times. If some vector w is generated
two times, its coefficient in I will be 0, and hence I = 0.

Now pick a vector v such that vPk−1(X̄) contains a vector w which is not in Pk−1(X̄); this is
clearly always possible. In that case the coefficient of w in I is 1, thus I = J . In addition I is a
sum of at most 2t vectors, and since J is the sum of 2k vectors, we must have t ≥ 2k−1. If t > 2k−1,
a simple pigeonhole argument shows that there must be a vector w′ which is generated two times
in I, implying that I = 0. This is a contradiction, so we must have t = 2k−1. The [b] claim follows
from the fact that t = 2k−1 and the observation that I contains the vector v0 with probability 1/2,
with respect to the choice of v. �

We are ready to prove the soundness of the algorithm.

Theorem 2.4. If P does not contain a multilinear term, the algorithm decide-multilinear re-
turns “no”. Otherwise it returns “yes” with probability greater than 1/4.

Proof. For the first claim, note that every monomial q which is not multilinear can be written
as x2

i q
′ for some variable xi and monomial q′. Now observe that x̄2

i = (v0 + vi)2 = 0. Hence
x̄2
i q
′ = 0. So, if P does not contain multilinear terms, all its terms evaluate to 0. Thus, P (X̄) = 0,

and the algorithms returns “no”. We will show the other direction using induction on the number
of multilinear terms in P . Recall our assumption that all these terms have degree exactly k.

Base case: Let V = {v1, . . . , vk} be k random vectors drawn independently from Zk2. The
probability that a multilinear monomial of degree k evaluates to J is by construction equal to
Pr(

∏k
i=1(v0 + vi) = J). By Lemma 2.2, this is equal to the probability that the vectors in V

are linearly independent. By standard linear algebra facts, given that {v1, . . . , vj−1} are linearly
independent, the vectors {v1, . . . , vj} are independent if and only if vj is not in the vector space S
generated by {v1, . . . , vj−1}. In Lemma 2.2 we showed that there are exactly 2j−1 distinct linear
combinations of the j − 1 vectors, so there are 2k − 2j−1 vectors that are not in S. Hence,

Prob(
j∏
i=1

(v0 + vi) 6= 0) = (1− 2j−1

2k
)Prob(

j−1∏
i=1

(v0 + vi) 6= 0) ≥
k∏
i=1

(1− 1
2i

).

The last product is lower bounded by (1/2)
∏k
i=2(1− 1/i2) = (k + 1)/(4k) > 1/4.

Inductive argument: If P is not a single monomial, then there is a variable x such that
P = xPk−1 + P ′ where x does not appear in P ′ 6= 0, and Pk−1 is a sum of multilinear terms of
degree k − 1. Using Lemma 2.3[a] we can consider all possible cases under which P evaluates to
J , to get

Prob(xPk−1 + P ′ = J) =
Prob(P ′ = J)Prob(Pk−1 = 0 or Pk−1 = J/P ′ = J)+
Prob(P ′ = J)Prob(Pk−1 is split/P

′ = J)Prob(xPk−1 = 0/Pk−1 is split)+
Prob(P ′ = 0)Prob(Pk−1 is split/P

′ = 0)Prob(xPk−1 = J/Pk−1 is split) ≥
(1/2)Prob(Pk−1 is split) = Prob(xPk−1 = J).

The inequality came from dropping the first term and -after applying Lemma 2.3[b]- combining
the remaining two. The probabilities are taken with respect to the random assignment X̄. The
polynomial xPk−1 contains less monomials than xPk−1 +P ′, hence the inductive hypothesis applies.
�

5

Let A be a commutative algebra and Ȳ be an assignment xi ← ȳi ∈ A, for i = 1, . . . , n. We
denote by PA(Ȳ) the evaluation of P at Ȳ over A.

Theorem 2.5. Options 1 and 2 for step (ii) of decide-multilinear are equivalent. Furthermore,
if the input circuit G can be evaluated over the integers modulo 2k+1 in time t and space s, option
2 can be performed in O((nk + t)2k) time and O(nk + s) space.

Proof. Let G be an arithmetic circuit with n variables X and P ∈ Z[X] be the polynomial
represented by G. Also, let X̄ be the assignment xi ← (v0 +vi), as defined in decide-multilinear .
Let ρ(u) denote the matrix representation of u ∈ Z[Zk2] and trace(M) denote the sum of the diagonal
elements of the matrix M . Observe that

PZ[Zk
2](X̄) =

∑
g∈Zk

2

agg ⇒ PZ2[Zk
2](X̄) =

∑
g∈Zk

2

(ag mod 2)g. (2)

Thus, it is enough to consider the parity of the coefficient of v0 in PZ[Zk
2](X̄). Moving to Z[Zk2]

allows us working with the matrix representation of PZ[Zk
2](X̄), which is given by

ρ(PZ[Zk
2](X̄)) =

∑
g∈Zk

2

agρ(g).

For each g ∈ Zk2, ρ(g) is a permutation matrix of dimension 2k with zeros in the diagonal, with the
exception of the identity v0 of Zk2, for which ρ(v0) is the identity matrix. Hence all the diagonal
entries of ρ(PZ[Zk

2](X̄)) are equal. This, in combination with equality 2 implies that

PZ2[Zk
2](X̄) = 0 ⇒ trace(ρ(PZ[Zk

2](X̄))) = 0 mod 2k+1

PZ2[Zk
2](X̄) = J ⇒ trace(ρ(PZ[Zk

2](X̄))) = 2k mod 2k+1.

Now instead of evaluating P at xi ← (v0 + vi) over Z[Zk2], we can equivalently evaluate it at
xi ← ρ(v0 + vi) over the isomorphic matrix algebra M = ρ(Z[Zk2]), and then compute (modulo
2k+1)

trace(PM(ρ(X̄))) = trace(ρ(PZ[Zk
2](X̄))).

By the representation theory of Zk2, there is a matrix U of dimension 2k such that for all v ∈ Zk2,
ρ(V) = UΛvU−1, where Λv is a diagonal matrix with the eigenvalues of ρ(v). Let Λi denote the
diagonal matrix containing the eigenvalues of ρ(v0 + vi) and Λ̄ denote the assignment xi ← Λi. Let
Λi,j denote the jth diagonal entry of Λi, and Λ̄j denote the assignment xi ← Λi,j . Using the well
known relationship of the trace with the eigenvalues, we have (taking all quantities modulo 2k+1)

trace(PM(ρ(X̄))) = trace(UPM(Λ̄)U−1) = trace(PM(Λ̄)) =
2k∑
j=1

PZ
2k+1

(Λ̄j).

If bj is the k-bit binary form of j, we can fix a U so that Λi,j = 1 + (−1)v
T
i bj−1 [12]. This completes

the proof for the equivalence of options 1 and 2.
We have reduced the original problem to 2k evaluations of P and the summation of the outputs

over Z2k+1 . The 2k evaluations can be performed sequentially, re-using the space, while the output
sum is updated. The algorithm needs to maintain in the memory the assignment X̄ which takes

6

space O(kn). For each j, the algorithm computes the input Λ̄j in O(nk) time. The evaluation of
P (Λ̄j) can be done in time O(t), and space O(nk + s), by assumption. Hence the total time is
O((nk + t)2k) and the space requirement is O(nk + s). �

Remark. If the smallest multilinear term in P has degree k − j, we can consider Pj =
(y1 . . . yj)P . By Lemma 2.2, any term of degree greater than k always evaluates to 0, so run-
ning decide-multilinear on P ′ has the same effect as running it with the assumed restriction. We
omit the details to the full paper.

3 Reducing m-set k-packing to multilinear mk-term

Let us start with a formal definition of the set packing problem.

Definition 3.1. The m-SET k-PACKING problem (decision and search): Given a collection C
of N sets, each containing m elements from a universe U of n elements, decide whether there is a
collection C ′ ⊆ C of k mutually-disjoint sets. If yes, find such a collection C ′.

The main result of this Section is the construction of a family PA(X) of 2|A| packing-encoding
polynomials, parameterized by a set A of variables taking binary values.

path-encoding polynomials: Given an instance I of the m-SET k- PACKING problem: (i)
assign variables X = {xi}, i = 1, . . . , n to the elements of U , (ii) assign to the set Si ∈ C the degree
m set-monomial Yi, defined as the product of the variables corresponding to the elements of Si.
(iii) Let A = {ai,j : i ∈ [1, k], j ∈ [1, N]} and define PA(X) =

∏k
i=1

(∑N
j=1 ai,jYj

)
.

Theorem 3.2. Let P ∈ Z2[X] be a polynomial picked uniformly at random from PA(X) by
letting Prob(ai,j = 0) = Prob(ai,j = 1) = 1/2, independently for all i, j. If I is a “yes” instance of
the m-set k-packing problem, the polynomial P ∈ Z2[X] has a multilinear term of degree mk with
probability at least 1/4. Otherwise, P has no multilinear terms.

Proof. It is clear that P can be expanded to a sum of what we will call set-products, each of
which is a product of k set-variables Yi. Each set-product is itself a monomial and has total degree
mk. If a set-product is a multiple of YiYj for two intersecting sets Si and Sj , then by construction
it is not multilinear. It follows that if I does not contain a k-set packing, P has no multilinear
terms.

Claim A: The coefficient cf(Y1 . . . Yk) (and thus of any product of k distinct set variables) in
P is odd with probability at least 1/4, with respect to the random assignment to the coefficients
ai,j .

To prove Claim A consider the k×k matrix Mi,j = ai,j . Let Sk denote the set of all permutations
of 1, . . . , k, and perm(M), det(M) denote the permanent and the determinant of M . We have

cf(Y1 . . . Yk) =
∑
π∈Sk

k∏
i=1

ai,π(i) = perm(M) = det(M) (mod 2).

By standard linear algebra facts det(M) mod 2 = 0 if and only if the columns of M are linearly
dependent over Z2. However, the columns of M are random vectors picked independently and
uniformly from Zk2. In the proof of Theorem 2.4 (base case of induction), we showed that the
probability that they are linearly independent is at least 1/4. This finishes the proof of Claim A •

7

Assume now that I has at least one k-set packing, and fix one. Clearly its set-product is a
multilinear term T of degree mk. The same multilinear term T can be generated by a collection
CT of distinct set-products, corresponding to different k-set packings that cover the same subset of
U . It is then enough to show that the probability (with respect to the random assignment to the
coefficients ai,j) that CT generates an odd number of copies of T is at least 1/4. Let us denote this
probability by Prob(CT 1).

Claim B: For all C ′ ⊆ CT , there is a C ′′ ⊂ C ′ such that

Prob(C ′′ 1) ≤ Prob(C ′ 1).

Let Y = {Y1, . . . , YN} be the set of set-variables. Let CZ be a collection of set-products that
generate the same multilinear term T and share the common factor Z ∈ Y. Let AS denote the set
of assignments to the coefficients ai,j corresponding to the variables of S ⊆ Y in the factors of P .
Now fix an assignment A ∈ AY−Z and let ai,Z denote the coefficients that multiply Z in the factors
of P . Considering P as a function of ai,j , its partial evaluation at A is always of the form

P (A) = R+ T

(
k∑
i=1

ai,Zbi

)

where R is a sum of terms different than T , and bi = 0 or bi = 1 depending only on A. It can be
seen that there are two cases: (a) for all i, we have bi = 0 in which case for all assignments in AZ
the polynomial P (A) does not contain T , (b) there is at least one j for which bj = 1. In this case
we say that CZ is Z-dependent under the assignment A. Then, it is not hard to see that

ProbAZ
(CZ 1/CZ is Z-dependent) = 1/2. (3)

where as indicated by the notation the probability is taken with respect to the assignments in AZ .
Using the same notation, it follows that

ProbA(CZ 1) = ProbA(CZ 0) = (1/2)ProbAY−Z
(CZ is Z-dependent) (4)

We are now ready to move to the main part of the proof of Claim B. In the following, the
probability subscripts are implied by the context, and we will drop them for simplicity. Let C ′ be
an arbitrary subset of CT . Clearly, unless |C ′| = 1, there is Z ∈ Y such that C ′ = CZ ∪ CZ̄ where
CZ contains all set-products in C ′ that are multiple of a common factor of Z and CZ̄ = C ′−CZ 6= ∅.
Considering all possibilities, and appropriately using equalities 3 and 4, we have

Prob(C ′ 1) = Prob(CZ̄ 1)Prob(CZ is not Z-dependent/CZ̄ 1) +
Prob(CZ̄ 1)Prob(CZ is Z-dependent/CZ̄ 1)(1/2) +
Prob(CZ̄ 0)Prob(CZ is Z-dependent/CZ̄ 0)(1/2)

≥ (1/2)Prob(CZ is Z-dependent) = Prob(CZ 1).

The inequality came from dropping the first term and combining the remaining two. The set CZ
is the set C ′′ stated in Claim B. This completes the proof for Claim B •

Finally we observe that Claim B can be used repeatedly to show that there is a chain CT ⊃
C1 . . . ⊃ Cν , where |Cν| = 1, such that Prob(CT 1) ≥ Prob(C1 1) ≥ . . . ≥ Prob(Cν 1).
Claim A gives that Prob(Cν 1) ≥ 1/4 and the proof is completed. �

8

Theorem 3.3. There is an O∗(2km(km)2N) time algorithm such that, on a instance I of the
m-set k-packing problem, its output is “yes” with probability at least 1/16 only if I contains a
k-packing. In a “yes” instance, a k-packing can be found with constant probability by O(N logN)
calls to the decision algorithm. Both the decision and the search algorithms use O(kn) space.

Proof. A random polynomial P from the family of packing-encoding polynomials PA(X) can be
constructed in O(kN) time. The polynomial P can be evaluated over Zkm+1

2 with O(kmN) addition
and multiplication operations involving (km+ 1)-bits numbers, each of which takes O∗(km) time.
It is clear that O(kn) space is required to store an assignment over Zk2 to the variables, and it is
not hard to see that P can be evaluated in O(kn) space over Zk2 because apart from the assignment
to the variables, only three values must be kept around at any given time. The proof follows by
applying Theorem 2.5. The details of the search algorithm can be found in [8]. The key observation
is that if C ′ ⊆ C contains a k-packing, then O(logN) calls of the decision algorithm on C ′ − Z
decide with probability 1 − 1/N whether Z ∈ C ′ is contained in all k-packings of C ′ or C ′ − Z
contains a k-packing. Starting from C, the algorithm applies this procedure at most N times to
find the k-packing with probability (1− 1/N)N > 1/4. �

4 Reducing k-simple path to multilinear 3k/2-term

We start with a definition of the problem. We will work with directed graphs; if the graph is
undirected we can see it as a directed graph in the obvious way.

Definition 4.1. The k-PATH problem (decision and search): Given a graph G with n vertices V
and m directed edges E, decide whether the graph contains a path of length k − 1 which connects
k distinct vertices. If yes, find such a path.

Let Pt,v denote the set of directed paths of length t ending in v ∈ V . Let X = {xv1, . . . , xvn} be
a set of n variables corresponding to the vertices of G, and Y = ∪kt=1∪(vi,vj)∈E yvi,vj ,t be a set of nk
variables where each (directed) edge corresponds to k variables; the k different copies are intended
to encode the position of the edge along a path of length k. If p = (v1, v2, . . . , vt) is a path of length
t− 1 we define its encoding to be

enc(p) =

(
t∏
i=1

xvi

)bt/2c∏
j=1

yv2j−1,v2j ,2j−1


and the t-path encoding polynomial for v ∈ V as P (t, v) =

∑
p∈Pt,v

enc(p).

Lemma 4.2. For a path p, the encoding enc(p) is multilinear if and only if p is simple. If
p1, p2 are two distinct simple paths then enc(p1) 6= enc(p2). Hence, the path encoding polynomial
Pk =

∑
v∈V P (k, v) contains a multilinear term of degree k + bk/2c if and only if G contains a

simple path k.

Proof. If p is not a simple path then clearly the first factor in enc(p) contains a squared variable.
If p is simple, then all the vertices and edges it uses are distinct so enc(p) is multilinear. Now notice
that a directed path p is completely determined by: (i) its sink vertex, (ii) the list of the directed
edges whose source is at even distance from the first vertex on the path, along with their positions

9

in p. This list is completely determined by the second factor in p(e), while if the sink vertex is
missing in the list (when p has an even number of edges) it can be recovered from the first factor in
p(e). Hence every simple k-path ending in v is mapped to a distinct (thus with a unit coefficient)
multilinear monomial in Pk, and the monomial has degree k + bk/2c. �

We now describe a circuit for the computation of Pk. By convention we define P (0, v) = xv.
Assume we have constructed a circuit for P (t − 1, v) for all v ∈ V . It is not hard to see that the
circuit for P (t, v) can be constructed as follows:

P (t, v) =
∑

(u,v)∈E

xv(yu,v,t)(t mod 2)P (t− 1, u).

Theorem 4.3. There is an O∗(23k/2k2m) such that, on a graph G, it returns “yes” with proba-
bility at least 1/4 only if the graph contains a simple k-path. In a “yes” instance, a simple k-path
can be found with O∗(n + min(k2,m)) applications of the decision algorithm. Both the decision
and the search algorithm use O(k2m) space.

Proof. The algorithm runs decide-multilinear on Pk =
∑

v∈V P (k, v). Given the values for
P (t− 1, v), the values P (t, v) can be computed with O(m) additions and multiplications in Zk+1

2 .
Hence the polynomial P (k, v) can be evaluated over Zk+1

2 with O(km) operations taking O∗(k)
time each. For all t the circuit needs to remember ((k/2)m + n) variable values and the n values
of P (t − 1, v), taking space O(k2m). The claim follows by applying Theorem 2.5. The algorithm
and proof for the search version of the problem is similar to those for the search version of the
m-set k-packing. Roughly, the algorithm will keep removing vertices until it is left with an induced
k-subgraph which still contains a k-path, and then it will remove up to O(k2) edges until it is left
with a k-path. �

Remark 1. Assume that there is a subset V ′ ⊆ V with |V ′| = k such that the number nV ′
of (directed) Hamiltonian paths in the graph induced by V ′ is odd. If we set the edge variables
to Y = 1 in the definitions of the path encodings, it is not hard to see that the coefficient of∏
v∈V ′ xv in Pk(Y = 1) is equal to nV ′ .This observation can be used to reduce the time complexity

to O∗(2kk2m) and the space to O(kn+m).

5 Open questions

It is a possibility that the algorithms in this paper can be derandomized. A basic step seems to
be the construction of a family of assignments F : X → Zk2, such that for each k-subset X ′ of X,
there is an assignment in F under which the vectors in X ′ are linearly independent over Z2. Since
a random assignment satisfies this with probability at least 1/4, it is a plausible conjecture that
there is a polynomial size F with the required property.

6 Appendix. Group algebras of Zk
2 and their representation

Let Zk2 be the group consisting of k-dimensional 0-1 vectors with the group multiplication being
entry-wise addition modulo 2. The group algebra K[Zk2], where K is a field, is the set of all linear
combinations of the form ∑

v∈Zk
2

avv

10

where av ∈ K. The addition operator of K[Zk2] is defined by∑
v∈Zk

2

avv +
∑
v∈Zk

2

bvv =
∑
v∈Zk

2

(av + bv)v.

Multiplication by a scalar α ∈ K is defined by

α
∑
v∈Zk

2

avv =
∑
v∈Zk

2

(αav)v.

The multiplication operator of K[Zk2] is defined by

(
∑
v∈Zk

2

avv)(
∑
u∈Zk

2

buu) =
∑

v,u∈Zk
2

(avbu)(uv).

It can be verified that K[Zk2] is commutative. In the particular case of Z2[Zk2], an element can also
be seen as a subset of Zk2.

Matrices of dimension d with integer entries form a group Md×d with matrix multiplication
and an algebra Md×d with matrix addition, multiplication by a scalar, and matrix multiplication.
It is well known ([12], p. 172), that there is a one-to-one map ρ : Zk2 → M2k×2k

such that
ρ(uv) = ρ(u)ρ(v). The map ρ is an isomorphism. For Z2, the map ρ : Z2 → M2×2 is defined by
the representations of the Z2 elements:

ρ(0) =
(

1 0
0 1

)
and ρ(1) =

(
0 1
1 0

)
.

If ρ(Zk2) denotes the set of matrix representations of the Zk2 elements, it is easy to prove that

ρ(Zk2) =
⋃

X∈ρ(Zk−1
2)

{
(
X 0
0 X

)
,

(
0 X
X 0

)
}.

The map ρ can be extended to a one-to-one map of Z[Zk2] to M2k×2k
, as follows:

ρ(
∑
v∈Zk

2

avv) =
∑
v∈Zk

2

avρ(v).

It can be verified that if w1, w2 are elements of Z[Zk2] and α ∈ Z, we have ρ(w1+w2) = ρ(w1)+ρ(w2),
ρ(w1w2) = ρ(w1)ρ(w2) and ρ(αw1) = αρ(w1). Hence, the map ρ defines an isomorphic matrix
algebra which we will denote by ρ(Z[Zk2]).

The matrices ρ(Zk2) are simultaneously diagonalizable, i.e. there is a matrix U such that for all
v ∈ Zk2, we have ρ(v) = U−1ΛvU , where Λv are the eigenvalues of ρ(v), also known as the characters
of v. If b(i) is the vector containing the k-bit binary form of i, the ith eigenvalue of ρ(v) is given
by (−1)v

T b(i) [12].

7 Acknowledgments

This work was partially supported by the National Science Foundation under grant number CCF-
0635257.

11

References

[1] Noga Alon, Raphael Yuster, and Uri Zwick. Color coding. Journal of the ACM, 42(4):844–856,
1995.

[2] Hans L. Bodlaender. On linear time minor tests with depth-first search. J. Algorithms,
14(1):1–23, 1993.

[3] Jianer Chen, Songjian Lu, Sing-Hoi Sze, and Fenghui Zhang. Improved algorithms for path,
matching, and packing problems. In SODA ’07: Proceedings of the eighteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 298–307, Philadelphia, PA, USA, 2007. Society
for Industrial and Applied Mathematics.

[4] Rod G. Downey and Mike R. Fellows. Parameterized Complexity. Springer, 1999.

[5] Michael R. Fellows, Christian Knauer, Naomi Nishimura, Prabhakar Ragde, Frances A. Rosa-
mond, Ulrike Stege, Dimitrios M. Thilikos, and Sue Whitesides. Faster fixed-parameter
tractable algorithms for matching and packing problems. In Algorithms - ESA 2004, 12th
Annual European Symposium, Bergen, Norway, September 14-17, 2004, Proceedings, pages
311–322, 2004.

[6] Weijia Jia, Chuanlin Zhang, and Jianer Chen. An efficient parameterized algorithm for m-set
packing. J. Algorithms, 50(1):106–117, 2004.

[7] Joachim Kneis, Daniel Mölle, Stefan Richter, and Peter Rossmanith. Divide-and-color. In WG:
Graph-Theoretic Concepts in Computer Science, 32nd International Workshop, pages 58–67,
2006.

[8] Ioannis Koutis. A faster parameterized algorithm for set packing. Information Processing
Letters, 94(1):4–7, 2005.

[9] Yang Liu, Songjian Lu, Jianer Chen, and Sing-Hoi Sze. Greedy localization and color-coding:
Improved matching and packing algorithms. In Parameterized and Exact Computation, Second
International Workshop, IWPEC 2006, Zürich, Switzerland, September 13-15, 2006, Proceed-
ings, pages 84–95, 2006.

[10] Burkhard Monien. How to find long paths efficiently. Annals of Discrete Mathematic, 25:239–
254, 1955.

[11] Christos H. Papadimitriou and Mihalis Yannakakis. On limited nondeterminism and the com-
plexity of the V-C dimension. J. Comput. Syst. Sci., 53(2):161–170, 1996.

[12] A. Terras. Fourier Analysis on Finite Groups and Applications. Cambridge University, 1999.

[13] Leslie G. Valiant. Why is boolean complexity difficult? Boolean Function Complexity, Lond.
Math. Soc. Lecure Note Ser., 169.

12

	Introduction
	Our approach and contributions

	Detecting square-free terms with odd coefficients
	Reducing m-set k-packing to multilinear mk-term
	Reducing k-simple path to multilinear 3k/2-term
	Open questions
	Appendix. Group algebras of Z2k and their representation
	Acknowledgments

