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Abstract

We consider the problem of computing the squared volume of the largest j-simplex contained
in an n-dimensional polytope presented by its vertices (a V -polytope). We show that the related
decision problem is W [1]-complete, with respect to the parameter j. We also improve the
constant inapproximability factor given in [Packer, 2004, Discrete Applied Mathematics, 134],
by showing that there are constants µ < 1, c > 1, such that it is NP-hard to approximate within
a factor of cµn the volume of the largest bµnc-simplex contained in an n-dimensional polytope
with O(n) vertices.

1 Introduction

A polytope is the convex hull of a finite set of points in the Euclidean space. A polytope can
be presented either as a finite set of linear inequalities (H-representation), or as the convex hull
of its vertices (V -representation). It is well known that for a given polytope, the size of its V -
representation can be exponentially bigger than the size of its H-representation, and vice-versa.
Because of that, the two encodings are not equivalent when studying questions of efficient com-
putability. A more general but weaker way of presenting a polytope is by means of a membership
oracle which when presented with a point, it answers whether the point is in the polytope or not.
A j-simplex is the convex hull of j + 1 affinely independent points in the Euclidean space. For a
full exposition of basic notions of convex geometry we refer the reader to [13].

In this paper we focus on the problem of computing the volume of the largest j-simplex in a
polytope given in its V -representation. Besides its theoretical importance in convex geometry, the
problem has applications in situations where one is given a set of data points in a high dimensional
space, and there is reason to believe that the ideal shape of the cloud of the data points is that of
a simplex [11].
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1.1 Previous results

The largest 1-simplex of a polytope is its diameter. The diameter of a V -polytope can be computed
trivially in polynomial time, by computing the distances of all pairs of vertices. Brieden showed that
it is NP-hard to approximate within any constant the diameter and several other functionals of H-
polytopes [2]. Brieden et al. gave a deterministic polynomial time algorithm which approximates
the diameter of a convex body given by a membership oracle, within a factor of O(

√
n/log n).

They also showed that unless P=NP, this is up to a constant the best approximation that can be
achieved, even if randomization is allowed [3]. This is the best algorithm known for H-polytopes.
The problem of finding the j-simplex of largest volume in an n-dimensional H-polytope, for j ≤ µn,
where µ < 1 is any constant, was shown NP-hard by Gritzmann et al. [7]. The NP-hardness was
extended to the special case j = n by Packer [11]. Brieden et al. gave a polynomial time algorithm
that approximates within O((cn)j) the largest j-simplex contained in a convex body given by an
oracle [4]. Again, this is the best algorithm known for H-polytopes.

The problem of computing the squared volume of the largest j-polytope in an n-dimensional V -
polytope was shown NP-hard in [7], for j = Ω(n1/k) , where k is some natural number. The result
was improved by Packer who showed an inapproximability factor of 1.09 [12]. Packer also gave a
polynomial time algorithm that finds a simplex whose squared volume is within a factor of O((cj)j)
of the maximum, for some constant c. The simplest class of V -polytopes for which these hardness
results hold are polytopes whose coordinates are restricted to {−1, 1, 0}, and as noted in [7], it is
an open question whether some of the hardness results can be extended to the even simpler class of
{0, 1} V -polytopes. Also, as discussed in [7] and [12], there are no hardness results for j = o(n1/k).

1.2 Our contributions

We characterize the complexity of the problem for arbitrary functions j = g(n). We show that
with j considered as a parameter, the related decision problem is W[1]-complete. It is believed that
problems in this class are not fixed parameter tractable, in other words they don’t have algorithms
with complexity of the form f(j)poly(n), where f is any computable function. We refer the reader
to [5] for standard notions of parameterized complexity. We also show that there are constants
µ < 1, c > 1, such that it is NP-hard to approximate the volume of the largest bµnc-simplex,
within a factor of cµn. Our results remain true for {0, 1} polytopes. We will state our results in
terms of the squared volume, because it is always a rational number when the coordinates of the
polytope are rational numbers.

2 Background results

We first review some facts concerning volumes of simplices. Proofs or references to the proofs can
be found in [7],[11].

Theorem 2.1 Among all the largest j-simplices contained in a polytope P , there is a largest simplex
S whose vertices are also vertices of P .
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Theorem 2.2 Suppose that S is a j-simplex in Rn with vertices v1, . . . , vj+1. Let M̂ = (M̂i,k)
denote the (j + 1)× (j + 1) matrix given by M̂i,k = ||vi − vk||22. Then

2j(j!)2vol2(S) = |det(M)|

where M is the (j + 2)× (j + 2) matrix obtained by bordering M̂ with a top row (0, 1, . . . , 1) and a
left column (0, 1, . . . , 1)T .

The matrix M in the last Theorem is known as the Menger matrix of the simplex.

We will derive our results via a straightforward reduction from the set packing problem. An instance
of the set packing problem consists of a collection C of m sets over a domain of n elements, and
asks for the maximum number of mutually disjoints sets in C.

Theorem 2.3 Deciding whether a family of sets contains j mutually disjoint sets is W [1]-complete,
with respect to the parameter j. The problem remains W [1]-complete even when the sets in C
contain the same number of elements.

Proof. The usual representation of this problem consists of an n×m matrix whose rows corre-
spond to the elements, the columns to the sets, and the entries indicate membership of the elements
in the sets. So, the size of the instance is s = O(mn). It is well known that the problem in this
representation is W [1]-complete [5]. In other words, if there is a function f such that the problem
can be decided in time f(j)poly(s), then W [1] is fixed parameter tractable.

From any instance C of the problem, we can easily construct an instance C ′ such that each set in
C ′ contains the same number of elements, and C contains j mutually disjoint sets if and only if
C ′ contains j mutually disjoint sets. This can be done by forming S′ ∈ C ′ from each S ∈ C, by
appropriately padding S with extra elements that are contained only in S′. The new instance has
size s′ = O(n2m). So, if C ′ can be decided in time f(j)poly(s′), then C can also be decided in time
f(j)poly(s) for some function f . This completes the proof. ¤

We will also use, properly adapted, an inapproximability result of Hazan et al. [8]. Let C be a
collection of sets over a domain of n elements, with each set containing exactly 3 elements, and
|C| ≥ kn. Furthermore assume that either (i) C contains a set packing of size bµnc, or (ii) C does
not contain a set packing of size greater than dµn ln 3/3e. Let Iµ,κ be the set of instances of set
packing satisfying the above properties. Then Hazan et al. show the following.

Theorem 2.4 There are constants µ < 1, κ > 1 such that it is NP-hard to decide whether an
instance from Iµ,κ satisfies (i) or (ii).

We note that when (ii) is true, for every C ′ ⊆ C with |C ′| = µn, we can number the sets in C ′, so
that S2i−1 and S2i intersect, for 1 ≤ i ≤ bn(µ− (µ ln 3/3))/2c.
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3 Main results

3.1 Reduction from Set Packing

We are given a collection C over a domain x1, . . . , xn of n elements. We will assume that each set
in C contains exactly t elements. We construct a polytope P in Rn as follows. For each set S ∈ C
we define a point vS by vS(i) = 0 if xi 6∈ S, and vS(i) = 1 if xi ∈ S. We let P be the convex hull
of these points. Note that the coordinates of the vertices of P are restricted to {0, 1}.

3.2 Parameterized Complexity

Theorem 3.1 Given an n-dimensional V -polytope P , and λ ∈ Q, the problem of deciding whether
there is a j-simplex Q contained in P , such that vol2(Q) ≥ λ, is W [1]-complete.

Proof. We construct the polytope P as described in subsection 3.1. By Theorem 2.1, to find
the volume of the largest j-simplex in P , it is enough to consider the j-simplices defined by all the
possible sets of j + 1 vertices of P . When two sets Si, Sj are disjoint, we have ||vSi − vSj ||22 = 2t.
When Si and Sj intersect, we have ||vSi−vSj ||22 ≤ 2t−2. If C contains a collection of j+1 mutually
disjoint sets, the polytope P contains the regular simplex QR of edge length

√
2t. This simplex

has the maximum volume among all simplices with edge lengths upper bounded by
√

2t ([13],[7]).
The squared volume of QR is (2t)j(j + 1)/2j(j!)2. Therefore, by Theorem 2.3, it is W [1]-hard to
decide whether there is Q ∈ P such that vol2(Q) ≥ vol2(QR). The completeness follows from the
fact that given any j + 1 vertices it can be easily verified whether they form the regular j-simplex.
¤

3.3 Inapproximability

In order to make the idea behind our inapproximability result more clear, we give the main part
of the proof in this subsection. In the proof we will need Lemma 3.5 which is a purely algebraic
statement proven separately in the following subsection.

Theorem 3.2 There are constants µ < 1 and c, k > 1, such that if P is an n-dimensional V -
polytope with kn vertices, it is NP-hard to approximate within a factor of cj the squared volume of
the largest j-simplex contained in P , with j = bµnc.

Proof. Given an instance of the set packing with the properties described in Theorem 2.4, we
construct a polytope P as described in subsection 3.1. We fix µ, k to be the constants appearing in
the statement of Theorem 2.4, and let j = µn. For notational simplicity let us assume that j is an
integer. Note that P has kn vertices. By Theorem 2.1, to find the volume of the largest j-simplex
in P , it is enough to consider the j-simplices defined by all the possible sets of j + 1 vertices of
P . Let Qmax be the largest j-simplex contained in P . If Qmax is not the regular j-simplex QR of
squared edge length 6, then, by Theorem 2.4, we can number the sets/vertices so that the Menger
matrix MQmax satisfies MQmax(2i, 2i + 1) ≤ 4 for i = 1, . . . , bj/tc, where t = 2/(µ− (µ ln 3/3)).
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To prove the theorem we need to show that there exists a constant c > 1 such that

vol2(QR)
vol2(Qmax)

≥ cj .

Then, since vol2(QR) is explicitly known, if we were able to compute the volume within a cj factor,
we would be able to decide whether the polytope contains QR, which corresponds to a set packing
of size j.

If we scale down all the edges of QR, Qmax by a factor of
√

6, the ratio of their volumes does not
change. So we may assume that the maximum edge length QR and Qmax is 1, and MQmax(2i, 2i +
1) ≤ 2/3, for i = 1, . . . , j/t. In this case det(M(QR)) = j + 1, and

vol2(QR)
vol2(Qmax)

= | det(MQR
)

det(MQmax)
| = | j + 1

det(MQmax)
|.

So, it is sufficient to show that there is a constant d < 1, such that |det(MQmax)| ≤ dj . By
substituting n = j, c = 2/3 and k = 2/(µ− (µ ln 3/3)) in Lemma 3.5, the proof is completed. ¤

3.4 Technical Lemmas

Lemma 3.3. Let λ1, . . . , λn be positive numbers, with
∑n

i=1 λi ≤ n. If
∏bεnc

i=1 λi = cn where
ε, c < 1 are constants, then

∏n
i=1 λi < dn, where d < 1 is a constant depending only on c, ε.

Proof. For notational simplicity, let us assume that εn is an integer. We seek to maximize

n∏

i=εn+1

λi subject to
n∑

i=εn+1

λi ≤ n−
εn∑

i=1

λi.

The maximum is achieved when
∑εn

i=1 λi is minimum subject to the condition on the corresponding
product. By standard facts, this minimum is achieved when the numbers λ1, . . . , λε are equal.
Hence,

εn∑

i=1

λi ≥ c1/εεn.

Therefore, we seek to maximize

n∏

i=εn+1

λi subject to
n∑

i=εn+1

λi ≤ n(1− εc1/ε).

By standard facts, the maximum is achieved when the numbers λεn+1, . . . , λn are equal. Hence,

n∏

i=εn+1

λi ≤
(

1− εc1/ε

1− ε

)(1−ε)n

⇒
n∏

i=1

λi ≤

c

(
1− εc1/ε

1− ε

)(1−ε)



n

.
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To upper bound the value of the base of the exponential above, we define the function

f(c, ε) = c

(
1− εc1/ε

1− ε

)(1−ε)

.

We have

∂f

∂c
=

(1− c1/ε)
(

1−εc1/ε

1−ε

)−ε

1− ε
.

It can be seen that the value of the derivative is positive for any ε, c < 1. Thus the function is
increasing in c, which in combination with the fact that f(1, ε) = 1, proves that f(c, ε) < d for
some constant d < 1, when c, ε < 1. ¤

Lemma 3.4. Let A be a real n× n positive definite matrix, with eigenvalues 0 ≤ λ1 ≤ . . . ≤ λn.
For m ≤ n, let X be an n×m matrix with minimum singular value σ. Let xi denote the ith column
of X. Then

m∏

i=1

xT
i Axi ≥ σ2m

m∏

i=1

λi.

Proof. The singular value decomposition for X gives X = UT ΣV , where U is a n×m matrix
with orthonormal columns, V is a m × k unitary matrix, and Σ is a m × m diagonal matrix,
with positive entries larger than σ. Let B = XT AX. B is a positive definite matrix. We have
B = V T ΣUAUT ΣV . Let 0 ≤ µ1 ≤ . . . ≤ µm be the eigenvalues of UAUT . By Cauchy’s interlacing
theorem (see [14], Corollary 4.4) we get µi ≥ λi. We have

m∏

i=1

xT
i Axi =

m∏

i=1

Bii ≥ det(B) = det2(Σ)det2(V )det(UAUT ) ≥ σ2m
m∏

i=1

µi ≥ σ2m
m∏

i=1

λi.

The first inequality is Hadamard’s inequality for positive definite matrices (see [9], sections 7.7-8).
¤

Lemma 3.5. Let k > 1, c < 1 be any fixed constants. Let M be the n × n Menger matrix of a
simplex, satisfying (i) M(i, i) = 0, (ii) M(i, j) ≤ 1, and (iii) M(2i, 2i + 1) ≤ c , for 1 ≤ i ≤ bn/kc.
Then, there is a constant d < 1, depending only on k, c such that |det(M)| ≤ dn.

Proof. In the proof we will use basic properties of eigenvalues of symmetric matrices. We refer
the reader to [9], [10]. For notational simplicity we assume n/k is an integer. The Menger matrix
of any simplex has only one positive eigenvalue [6], [1]. Let λ1 ≤ . . . < λn be the eigenvalues of M .
Each row sum in M does not exceed n− 1, and thus we have λn ≤ n− 1 by Gerschgorin’s theorem.
We have

tr(M) =
n∑

i=1

λi = 0 ⇒
n−1∑

i=1

|λi| ≤ λn ≤ n− 1. (1)
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Let γ2 = (
∑

i,j Mi,j)/n(n− 1), a parameter depending only the given matrix M . Note that γ < 1.
Let us assume that the following claim is true.

Claim A. There are constants γ1 < 1 and t < 1, depending only on c, k, such that if γ > γ1, M
has n/k eigenvalues with product smaller than tn.

If γ > γ1, and since k is a constant, Claim A, inequality 1, and Lemma 3.3 imply that there is a
constant t1 < 1 depending only on c, k, such that the absolute value of the product of the negative
eigenvalues is smaller than tn1 .

If γ ≤ γ1 we have
n∑

i=1

λ2
i =

∑

i,j

M2
i,j ≤

∑

i,j

Mi,j ≤ γ2n(n− 1) ≤ γ2
1n(n− 1) ⇒ λn ≤ γ1n.

Since
∑n

i=1 λi = 0, we get
∑n−1

i=1 |λi| ≤ γ1n. Subject to this condition, we have

n−1∏

i=1

|λi| ≤
(

γ1n

n− 1

)n−1

.

Recall that the determinant of a matrix equals the product of its eigenvalues, and that λn < n.
Hence, assuming the correctness of Claim A, for any value of γ, if we let 1 > d > max{t1, γ1/2},
we have det(M) < dn and the Theorem follows.

We now need to prove Claim A. Let p denote the unit norm eigenvector corresponding to λn. If e is
the unit vector with equal entries, then eT Me = γ2(n− 1). Since pT Mp ≤ n− 1, we get |eT p| ≥ γ.
For 1 ≤ i ≤ n/k, let vi be the unit vector with zero entries, with the exception of vi(2i) = 1/

√
2

and vi(2i + 1) = −1/
√

2. Note that vT
i vj = eT vi = 0. Also, we have 0 > vT

i Mvi > −c1, where
c1 < 1 is a constant which depends only on c.

In general, for each i, we can write
vi = xi + αip, (2)

where xT
i p = 0. We have pT vi = αi. Then, we have p =

∑n/k
i=1 αivi + (pT e)e + v, where vT vi =

vT e = 0. Taking the norm of the two parts of the equality, we get that

n/k∑

i=1

α2
i ≤ 1− γ2. (3)

Let γ0 < 1 satisfy (1− γ2
0)k = (1− c1)/2. Then, if γ > γ0, we have

k

n/k∑

i=1

α2
i ≤ (1− c1)/2. (4)

It is well known that any two eigenvectors of any symmetric matrix M are orthogonal and M -
orthogonal. Notice then that xi is a linear combination of the negative eigenvectors of M . Thus,
pT Mxi = 0. By taking the M -inner product of both parts of equality 2, we have

vT
i Mvi = xT

i Mxi + α2
i λn ⇒ |xT

i Mxi| ≤ c1 + α2
i n.
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By standard facts,
∏n/k

i=1 (c1 + α2
i n) is maximized when the α2

i ’s are equal to their average value
k

∑n/k
i=1 α2

i /n . Using inequality 4, if γ > γ0, we have

n/k∏

i=1

|xT
i Mxi| ≤

n/k∏

i=1

(c1 + α2
i n) ≤ ((1 + c1)/2)n/k.

Let X be the n × n/k matrix with columns xi, and σ be its smallest singular value. Then, since
pT xi = 0, we can apply Lemma 3.4 to the positive part of −M , to get

n/k∏

i=1

|λn−i| ≤
∏n/k

i=1 |xT
i Mxi|

σ2n/k
≤

(
1 + c1

2σ2

)n/k

. (5)

Now we show a bound on σ in terms of γ. We have σ2 = min||b||2=1 ||Xb||22. Let b = (βi) be a vector
such that

∑
i β

2
i = 1. Let x = Xb =

∑
i βixi. Using equality 2, we have

∑

i

βivi = x +
∑

i

βiαip ⇒ 1 = ||x||22 + (
∑

i

αiβi)2.

To minimize ||x||22, we seek to maximize (
∑

i αiβi)2, subject to the conditions
∑

i β
2
i = 1 and∑

i α
2
i ≤ 1− γ2. By the Cauchy-Schwarz inequality, we get

(
∑

i

αiβi)2 ≤ (
∑

i

α2
i )(

∑

i

β2
i ) ≤ 1− γ2.

Thus σ2 ≥ γ2.

Finally, let 1 > γ1 = max{γ0, (1 + (1 + c1)/2)/2}. Then, if γ > γ1, we have (1 + c1)/2σ2 ≤
(1 + c1)/(1 + (1 + c1)/2) < 1. By plugging this to inequality 5 the claim follows with t =
((1 + c1)/(1 + (1 + c1)/2))k.

¤
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