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Abstract

Several algorithms for problems including image segmentation, gradient inpainting and total variation
are based on solving symmetric diagonally dominant (SDD) linear systems. These algorithms generally
produce results of high quality. However, existing solvers are not always efficient, and in many cases
they operate only on restricted topologies. The unavailability of reliably efficient solvers has arguably
hindered the adoptability of approaches and algorithms based on SDD systems, especially in applications
involving very large systems.

A central claim of this paper is that SDD-based approaches can now be considered practical and
reliable. To support our claim we present Combinatorial Multigrid (CMG), the first reliably efficient
SDD solver that tackles problems in general and arbitrary weighted topologies. The solver borrows the
structure and operators of multigrid algorithms, but embeds into them powerful and algebraically sound
combinatorial preconditioners, based on novel tools from support graph theory. In order to present the
derivation of CMG, we review and exemplify key notions of support graph theory that can also guide
the future development of specialized solvers. We validate our claims on very large systems derived from
imaging applications. Finally, we outline two new reductions of non-linear filtering problems to SDD
systems and review the integration of SDD systems into selected algorithms.

1 Introduction and Motivation

The Laplace operator has played a central role in computer vision for nearly 40 years. In his early work
Horn employed finite element methods for elliptical operators in shape from shading [Hor70], to produce
albedo maps [Hor74], and flow estimates [Hor81]. In his seminal work, Witkin [Wit83] studied the diffusion
properties of matrix equations derived from the Laplace operator for linear filtering, later generalized by
Perona and Malik [PM90] to the anisotropic case. More recently, Laplacians of combinatorial graphs have
formed the algorithmic core of spectral methods [SM00, NJW02, BN03, YS04, CLL+05, TM06, CS07],
random walks segmentation [Gra06], in-painting [Sze06, MP08, BCCZ08], and matting methods [LRAL07].
Further research, such as the work by Grady et.al [GA08] on Mumford-Shah segmentation, aims to address
traditional image processing problems via algorithms that solve a number of symmetric diagonally dominant
(SDD) systems 1.

Given the pervasiveness of SDD systems in computer vision applications, the design of SDD solvers is
an important endeavor. We argue that a good SDD solver targeting computer vision applications should
have the following characteristics:

1. Speed and Scalability. Many applications require timely performance. Images such as medical scans
already provide enormous volumes of data, while increases in resolution are expected.

∗This work was partially supported by NSF CCF-0635257 and CCF-1018463.
1A symmetric matrix A is diagonally dominant when Aii ≥

∑
j ̸=i |Aij |.
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2. Reliability. The solver speed should not be overly instance-dependent. For example, a medical scan
analyzer should be expected to work reasonably fast on all scans.

3. Black-box quality. The solver must not require any user interaction.

4. Support of general sparse weighted topologies. Many applications, such as the spectral segmentation
and convex programming, generate systems with wildly varying weights and often employ randomly
sampled or loosely localized topologies. Algorithms for optimization problems initially defined on
regular lattices can also benefit in terms of speed, as they often can be localized to subgraphs of
lattices.

With computer vision-generated linear systems pushing the limits of computational feasibility, re-
searchers inevitably have relied on iterative algorithms, such as a class of solvers known as Algebraic
Multigrid (AMG) [RS87, Bra00] and specialized solvers developed by researchers in computer vision
[SBB01, Sze06, GO07, MP08, BCCZ08, GS08, Gra08]. AMG algorithms have been developed and fine-
tuned targeting engineering applications, requiring from the user the experience to deal with a large space
of algorithmic knobs [HY02]. On the other hand the vision-specializing solvers don’t require advanced
skills from the user, but they operate only on restricted topologies that limit their applicability. Most im-
portantly, all known solvers are heuristic and –as a result– none of them is reliable 2. While their empirical
performance is frequently very good, that is not always the case.

Is it even possible to design an SDD solver that concentrates all the desired characteristics? In this
work we describe the Combinatorial Multigrid (CMG) solver that provides an affirmative answer. As its
name suggests, CMG borrows the structure and operations of multigrid algorithms. What differentiates
CMG from other multigrid solvers is its setup phase which is based on a sound algebraic machinery. This
machinery is provided by support theory, a set of techniques developed for the construction of combinatorial
preconditioners.

The rest of the paper is organized as follows. In Section 2 we give background material on certain useful
fragments of support theory. The purpose of Section 2 is not only to explain the derivation of CMG but
also stimulate further research by providing a lens through which the strengths and weaknesses of other
solvers can be viewed, understood, and improved. We illustrate this through the discussion of Section 2.4.
In Section 3 we give some background material on solvers and present CMG. The theoretical foundation
of CMG has been laid in previous work [KM08], but the solver itself and its application to computer
vision systems are new. In Section 4, after discussing a methodology for picking test SDD systems, we
present experiments that compare CMG to other publicly available solvers. The experiments highlight the
reliability of CMG and demonstrate its power as a software primitive.

Finally in Section 5 we provide timing and complexity bounds for selected computer vision methods
that require the solutions to SDD systems at their core. Among else, we outline how non-linear filtering
operations such as ℓ2, ℓ1 Total Variation [ROF92, CS05] and Non-Local Means [BCM08, BKC08] can also
be formulated as optimizations with these linear systems at their core. To the best of our knowledge these
reductions are novel.

2 Support Theory for graphs

2.1 Preconditioners - Motivating Support Theory

In this Section we review fragments of support theory that are relevant to the design of our SDD solver.
We refer the reader to [BH03] for an extensive exposition of support theory. Iterative algorithms, such
as the Chebyshev iteration or the Conjugate Gradient, converge to a solution using only matrix-vector
products with A. It is well known that iterative algorithms suffer from slow convergence properties when

2An exception are solvers for regular unweighted lattices [MP08].
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the conditioning of A, κ(A), - defined as the ratio of the largest over the minimum eigenvalue of A - is
large [Axe94].

Preconditioned iterative methods attempt to remedy the problem by changing the linear system to
B−1Ax = B−1b. In this case, the algorithms use matrix-vector products with A, and solve linear systems
of the form By = z. The speed of convergence now depends on the condition number κ(A,B), defined
as

κ(A,B) = max
x

xTAx

xTBx
·max

x

xTBx

xTAx
(2.1)

where x is taken to be outside the null space of A. In constructing a preconditioner B, one has to deal
with two contradictory goals: (i) Linear systems in B must be easier than those in A to solve, (ii) The
condition number must be small to minimize the number of iterations.

Historically, preconditioners were natural parts of the matrix A. For example, if B is taken as the
diagonal of A we get the Jacobi Iteration, and when B is the upper triangular part of A, we get the
Gauss-Seidel iteration.

The cornerstone of combinatorial preconditioners is the following intuitive yet paradigm-shifting idea
explicitly proposed by Vaidya [Vai91]: A preconditioner for the Laplacian of a graph A should be the
Laplacian of a simpler graph B, derived in a principled fashion from A.

2.2 Graphs as electric networks - Support basics

There is a fairly well known analogy between graph Laplacians and resistive networks [DS00]. If G is
seen as an electrical network with the resistance between nodes i and j being 1/wi,j , then in the equation
Av = i, if v is the vector of voltages at the node, i is the vector of currents. Also, the quadratic form
vTAv =

∑
i,j wi,j(vi−vj)

2 expresses the power dissipation on G, given the node voltages v. In view of this,
the construction of a good preconditioner B amounts to the construction of a simpler resistive network
(for example by deleting some resistances) with an energy profile close to that of A.

The support of A by B, defined as σ(A/B) = maxv v
TAv/vTBv is the number of copies of B that are

needed to support the power dissipation in A, for all settings of voltages. The principal reason behind the
introduction of the notion of support, is to express its local nature, captured by the Splitting Lemma.

Lemma 2.1 (Splitting Lemma) If A =
∑m

i=1Ai and B =
∑m

i=1Bi, where Ai, Bi are Laplacians, then
σ(A,B) ≤ maxiσ(Ai, Bi).

The Splitting Lemma allows us to bound the support of A by B, by splitting the power dissipation in
A into small local pieces, and “supporting” them by also local pieces in B.

For example, in his work Vaidya proposed to take B as the maximal weight spanning tree of A. Then,
it is easy to show that σ(B,A) ≤ 1, intuitively because more resistances always dissipate more power. In
order to bound σ(A,B), the basic idea to let the Ai be edges on A (the ones not existing in B), and let
Bi be the unique path in the tree that connects the two end-points of Ai. Then one can bound separately
each σ(Ai, Bi). In fact, it can be shown that any edge in A that doesn’t exist in B, can be supported only
by the path Bi.

As a toy example, consider the example in Figure 1(a) of the two (dashed) edges A1, A2 and their two
paths in the spanning tree (solid) that share one edge e.

In this example, the dilation of the mapping is equal to 3, i.e. the length of the longest of two
paths. Also, as e is uses two times, we say that the congestion of the mapping is equal to 2. A core
Lemma in Support Theory [BGH+05, BH03] is that the support can be upper bounded by the product
congestion∗dilation.
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(b) A graph and its Steiner
preconditioner

Figure 1:

2.3 Steiner preconditioners

Steiner preconditioners, introduced in [Gre96] and extended in [KM08] introduce external nodes into pre-
conditioners. The proposed preconditioner is based on a partitioning of the n vertices in V into m vertex-
disjoint clusters Vi. For each Vi, the preconditioner contains a star graph Si with leaves corresponding to
the vertices in Vi rooted at a vertex ri. The roots ri are connected and form the quotient graph Q. This
general setting is illustrated in Figure 1(b).

Let D′ be the total degree of the leaves in the Steiner preconditioner S. Let the restriction R be an
n ×m matrix, where R(i, j) = 1 if vertex i is in cluster j and 0 otherwise. Then, the Laplacian of S has
n+m vertices, and the algebraic form

S =

(
D′ −D′R

−RTD′ Q+RTD′R

)
. (2.2)

A worrisome feature of the Steiner preconditioner S is the extra number of dimensions/vertices. So
how do we even use it? Gremban and Miller [Gre96] proposed that every time a system of the form Bz = y
is solved in an usual preconditioned method, the system

S

(
z
z′

)
=

(
y
0

)
should be solved instead, for a set of don’t care variables z′. They also showed that the operation is
equivalent to preconditioning with the dense matrix

B = D′ − V (Q+DQ)
−1V T (2.3)

where V = D′R, and DQ = RTD′R. The matrix B is called the Schur complement of S with respect to
the elimination of the roots ri. It is a well known fact that B is also a Laplacian.

The analysis of the support σ(A/S), is identical to that for the case of subgraph preconditioners. For
example, going back to Figure 1(b), the edge (v1, v4) can only be supported by the path (v1, r1, v4), and
the edge (v4, v7) only by the path (v4, r1, r2, v7). Similarly we can see the mappings from edges in A to
paths in S for every edge in A. In the example, the dilation of the mapping is 3, and it can be seen that
to minimize the congestion on every edge of S (i.e. make it equal to 1), we need to take D′ = D, where
D are the total degrees of the nodes in A, and w(r1, r2) = w(v3, v5) + w(v4, v7). More generally, for two
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roots ri, rj we should have

w(ri, rj) =
∑

i′∈Vi,j′∈Vj

wi,j .

Under this construction, the algebraic form of the quotient Q can be seen to be Q = RTAR.
So far no special properties of the clustering have been used. Those come into play in bounding the

support of S by A, σ(S/A). In [KM08] it was shown that the support σ(S/A) reduces to bounding the
support σ(Si, A[Vi]), for all i, where A[Vi] denotes the graph induced in A by the vertices Vi. How can we
bound σ(Si, A[Vi])? Before we answer this question, let us recall the definition of conductance.

Definition 2.2 The conductance ϕ(A) of a graph A = (V,E,w) is defined as

ϕ(A) = min
S⊆V

w(S, V − S)

min(w(S), w(V − S))

where w(S, V − S) denotes the total weight connecting the sets S and V − S, and where w(S) denotes the
total weight incident to the vertices in S.

The main result of [KM08] is captured by the following Theorem.

Theorem 2.3 The support σ(S/A) is bounded by a constant c independent from n, if and only if for all i
the conductance of the graph Ao[Vi] induced by the nodes in Vi augmented by the edges leaving Vi is bounded
by a constant c′.

2.4 Support Theory for predicting the performance of solvers

Theorem 2.3 doesn’t give a way to pick clusters, but it does provide a way to avoid bad clusterings. In
recent work [Gra08], Grady proposed a multigrid method where the construction of the “coarse” grid follows
exactly the construction of the quotient graph in the previous section. Specifically, Grady’s algorithm
proposes a clustering such that every cluster contains exactly one pre-specified ‘coarse’ nodes. It then
defines the restriction matrix R and he lets the coarse grid be Q = RTAR, identically to the construction
of the previous Section. The algorithm is iterated to construct a hierarchy of grids. The question then
is whether the proposed clustering provides the guarantees that by Theorem 2.3 are necessary for the
construction of a good Steiner preconditioner. In the following Figure, we replicate Figure 2 of [Gra08],
with a choice of weights that force the depicted clustering.

1

M M

1 1

2 1

1

2

1

Figure 2: A bad clustering

Every cluster in Figure 2 contains exactly one black/coarse node. The problem with the clustering is
that the top left cluster, has a very low conductance when M >> 1. In general, in order to satisfy the
requirement of Theorem 2.3, there are cases where the clustering has to contain clusters with no coarse
nodes in them. As we will discuss in Section 3.4 the behavior of the multigrid algorithm proposed in [Gra08]
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is closely related to the quality of the Steiner preconditioner induced by the clustering. This implies that
the multigrid of [Gra08] can suffer bad convergence.

The canonical clustering in Grady’s algorithm is very suitable for GPU implementations, when other
solvers may be less suitable. This gives to it an advantage on this type of hardware. Even in the presence
of a number of relatively bad clusters, it can be faster relative to a solver that uses better clusters. However
the advantage is lost when the computed clusters cross a negative threshold in quality, a threshold that
depends on several hardware-dependent factors. The value of Support Theory is evident in this case.
Grady’s algorithm can be instrumented with a very fast routine that measures the quality of the formed
clusters and predicts its performance, and reverts to another solver when needed. One can also imagine
hybrid clustering algorithms where the majority clusters are formed using the algorithm [Gra08] and the
‘sensitive’ parts of the system are treated separately.

3 The Combinatorial Multigrid Solver

In this section we describe the Combinatorial Multigrid Solver (CMG). We start with a short review of
multigrid algorithms and other SDD solvers, which is necessary to explain the differences of CMG from
previous multigrid algorithms.

3.1 Related work on SDD solvers

Multigrid was originally conceived as a method to solve linear systems that are generated by the discretiza-
tion of the Laplace (Poisson) equation over relatively nice domains [TSO00]. The underlying geometry of
the domain leads to a hierarchy of grids A = A0, . . . , Ad that look similar at different levels of detail; the
picture that the word multigrid often invokes to mind is that of a tower of 2D grids, with sizes 2d−i×2d−i for
i = 0, . . . , d. Its provably asymptotically optimal behavior for certain classes of problems soon lead to an
effort -known as Algebraic Multigrid (AMG)- to generalize its principles to arbitrary matrices. In contrast
to classical Geometric Multigrid (GMG) where the hierarchy of grids is generated by the discretization
process, AMG constructs the hierarchy of ‘coarse’ grids/matrices based only on the algebraic information
contained in the matrix. Various flavors of AMG –based on different heuristic coarsening strategies– have
been proposed in the literature. AMG has been proven successful in solving more problems than GMG,
though some times at the expense of robustness, a by-product of the limited theoretical understanding.

A solver with provable properties for arbitrary SDD matrices, perhaps the ‘holy grail’ of the multigrid
community, was discovered only recently. The path to it was Support Theory [BH03], a set of mathematical
tools developed for the study of combinatorial subgraph preconditioners, originally introduced by Vaidya
[Vai91, Jos97]. It has been at the heart of the seminal work of Spielman and Teng [ST06] who proved that
SDD systems can be solved in nearly-linear time. Koutis and and Miller [KM07] proved that SDD matrices
with planar connection topologies (e.g. 4-connectivity in the image plane) can be solved asymptotically
optimally, in O(n) time for n-dimensional matrices. The complexity of the Spielman and Teng solver was
recently significantly improved by Koutis, Miller and Peng [KMP10, KMP11], who described an O(m log n)
algorithm for the solution of general SDD systems with m non-zero entries.

It is fair to say that these theoretically described solvers are still impractical due to the large hidden
constants, and the complicated nature of the underlying algorithms. Combinatorial Multigrid (CMG)
[KM09] is a variant of multigrid that reconciles theory with practice. Similarly to AMG, CMG builds
a hierarchy of matrices/graphs. The essential difference from AMG is that the hierarchy is constructed
by viewing the matrix as a graph, and using the discrete geometry of the graph, for example notions like
graph separators and expansion. It is, in a way, a hybrid of GMG and AMG, or a discrete-geometric MG.
The re-introduction of geometry into the problem allows us to prove sufficient and necessary conditions
for the construction of a good hierarchy and claim strong convergence guarantees for symmetric diagonally
dominant (SDD) matrices based on recent progress in Steiner preconditioning [Gre96, Kou07, KM08].
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3.2 SDD linear systems as graphs

In this Section we discuss how SDD linear systems can be viewed entirely as graphs. Combinatorial
preconditioning advocates a principled approach to the solution of linear systems. The core of CMG and
all other solvers designed in the context of combinatorial preconditioning is in fact a solver for a special
class of matrices, graph Laplacians. The Laplacian A of a graph G = (V,E,w) with positive weights, is
defined by:

Ai,j = Aj,i = −wi,j and Ai,i = −
∑
i̸=j

Ai,j .

More general systems are solved via light-weight transformations to Laplacians. Consider for ex-
ample the case where the matrix A has a number of positive off-diagonal entries, and the property
Ai,i =

∑
i̸=j |Ai,j |. Positive off-diagonal entries have been a source of confusion for AMG solvers, and

various heuristics have been proposed. Instead, CMG uses a reduction known as double-cover [Gre96].
Let A = Ap + An +D, where D is the diagonal of A and Ap is the matrix consisting only of the positive
off-diagonal entries of A. It is easy to verify that

Ax = b⇔
(

D +An −Ap

−Ap D +An

)(
x
−x

)
=

(
b
−b

)
.

In this way, we reduce the original system to a Laplacian system, while at most doubling the size. In
practice it is possible to exploit the obvious symmetries of the new system, to solve it with an even smaller
space and time overhead.

Matrices of the form A + De, where A is a Laplacian and De is a positive diagonal matrix have also
been addressed in various ways by different AMG implementations. In CMG, we again reduce the system
to a Laplacian. If de is the vector of the diagonal elements of D, we have

Ax = b⇔

 A+De 0 −de
0 A+De −de
−dTe −dTe

∑
i de(i)

 x
−x
0

 =

 b
−b
0

 .

Again it’s possible to implement the reduction in a way that exploits the symmetry of the new system,
and with a small space and time overhead work only implicitly with the new system.

A symmetric matrix A is diagonally dominant (SDD), if Ai,i ≥
∑

i̸=j |Ai,j |. The two reductions above
can reduce any SDD linear system to a Laplacian system. Symmetric positive definite matrices with
non-positive off-diagonals are known as M -matrices. It is well known that if A is an M -matrix, there is
a positive diagonal matrix D such that A = DLD where L is a Laplacian. Assuming D is known, an
M -system can also be reduced to a Laplacian system via a simple change of variables. In many application
D is given, or it can be recovered with some additional work [SD08].

The reduction of SDD systems to Laplacians allows us to concentrate on them for the rest of the paper.
There is a one-to-one correspondence between Laplacians and graphs, so we will be often using the terms
interchangeably.

3.3 A graph decomposition algorithm

According to the discussion of §2.3, the crucial step for the construction of a good Steiner preconditioner is
the computation of a group decomposition that satisfies, as best as possible, the requirements of Theorem
2.3. Before the presentation of the Decompose-Graph algorithm, that extends the ideas of [KM08], we
need to introduce a couple of definitions. Let volG(v) denote the total weight incident to node v in graph
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G. The weighted degree of a vertex v is defined as the ratio

wd(v) =
vol(v)

maxu∈N(v)w(u, v)
.

The average weighted degree of the graph is defined as

awd(G) = (1/n)
∑
v∈V

wd(v).

Algorithm Decompose-Graph

Input: Graph A = (V,E,w)
Output: Disjoint Clusters Vi with V =

∪
i Vi

1. Let κ > 4 be a constant and W ⊆ V be the set of nodes satisfying

wd(v) > κ · awd(A)

2. Form F ⊂ G by keeping the heaviest incident edge for each v ∈ V

F is a forest of trees

3. For every vertex w ∈W such that

volT (w) < volG(w)/awd(A) :

Remove from F the edge contributed by w in Step 2.
4. Decompose each tree T in F into vertex-disjoint trees, trying to optimize the maximum
conductance over the vertex-disjoint trees.

It is not very difficult to prove that the algorithm Decompose-Graph produces a partitioning where
the conductance of each cluster depends only on awd(A) and the constant κ. In fairly general sparse
topologies that allow high degree nodes, awd(A) is constant and the number of clusters m returned by
the algorithm is such that n/m > 2 (and in practice larger than 3 or 4). There are many easy ways
to implement Step 3. Our current implementation makes about three passes of A. Of course, one can
imagine variations of the algorithm (i.e. a correction step, etc) that may make the clustering phase a little
more expensive with the goal of getting a better conductance and an improved condition number, if the
application at hand requires many iterations of the solver.

3.4 From Steiner preconditioners to Multigrid

In this subsection we outline the intuition behind the fact that Steiner preconditioners and multigrid.
Details and proofs can be found in [Kou07]. Algebraically, any of the classic preconditioned iterative
methods, such as the Jacobi and Gauss-Seidel iteration, is nothing but a matrix S, which gets applied
implicitly to the current error vector e, to produce a new error vector e′ = Se. For example, in the Jacobi
iteration we have S = (I − D−1A). This has the effect that it reduces effectively only part of the error
in a given iterate, namely the components that lie in the low eigenspaces of S (usually referred to as high
frequencies of A). The main idea behind a two-level multigrid is that the current smooth residual error
r = b − Ax, can be used to calculate a correction RTQ−1Rr, where Q is a smaller graph and R is an
m×n restriction operator. The correction is then added to the iterate x. The hope here is that for smooth
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residuals, the low-rank matrix RTQ−1R is a good approximation of A−1. Algebraically, this correction is
the application of the operator T = (I − RTQ−1RA) to the error vector e. The choice of Q is most often
not independent from that of R, as the Galerkin condition is employed:

Q = RART .

The Galerkin condition ensures that T is a projection operator with respect to the A-inner product. Two-
level convergence proofs are then based on bounds on the angle between the subspace Null(P ) and the
high frequency subspace of S.

At a high level, the key idea behind CMG is that the provably small condition number κ(A,B) where
B is given in expression 2.3, is equal to the condition number κ(Â, B̂) where Â = D−1/2AD−1/2 and
B̂ = D−1/2BD−1/2. This in turn implies a bound on the angle between the low frequency of Â and the
high frequency of B̂ [KM08]. The latter subspace is Null(RTD1/2). This fact suggests to choose RTD1/2

as the projection operator while performing relaxation with (I − Â) on the system Ây = D−1/2b, with
y = D1/2x. Combining everything, we get the following two-level algorithm.

Two-level Combinatorial Multigrid

Input: Laplacian A = (V,E,w), vector b, approximate solution x, n×m restriction matrix R
Output: Updated solution x for Ax = b

1. D := diag(A); Â := D−1/2AD−1/2;
2. z := (I − Â)D1/2x+D−1/2b;
3. r := D−1/2b− Âz; w := RD1/2r;
4. Q := RART ; Solve Qy = w;
5. z := z +D1/2RT y
6. x := D−1/2((I − Â)z +D−1/2b)

The two-level algorithm can naturally be extended into a full multigrid algorithm, by recursively calling
the algorithm when the solution to the system with Q is requested. This produces a hierarchy of graphs
A = A0, . . . , Ad. The full multigrid algorithm we use, after simplifications in the algebra of the two-level
scheme is as follows.

function x := CMG(Ai, bi)
1. D := diag(A)
2. x := D−1b
3. ri := bi −Ai(D

−1b)
4. bi+1 := Rri
5. z := CMG(Ai+1, bi+1)
6. for i = 1 to ti − 1
7. ri+1 := bi+1 −Ai+1z
8. z := z + CMG(Ai+1, ri+1)
9. endfor
10. x := x+RT z
11. x := ri −D−1(Aix− b)

If nnz(A) denotes the number of non-zero entries in matrix A, we pick

ti = max{⌈ nnz(Ai)

nnz(Ai+1)
− 1⌉, 1}.

This choice for the number of recursive calls, combined with the fast geometric decrease of the matrix sizes,
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targets a geometric decrease in the total work per level, while optimizing the condition number.

4 Experiments with CMG

The quality of SDD-based approaches and algorithms for computer vision problems has been demonstrated
in the several papers that we discuss in the introduction and, in more detail, in the next Section. The
purpose of this Section is to lend experimental support to our claim that SDD-based algorithms should
also be considered extremely practical and reliable, suitable for very large volumes of data in commercial
applications.

4.1 Selecting SDD systems for testing

The task of evaluating and comparing SDD solvers for computer vision problems can perhaps be approached
via the compilation of a large set of SDD systems arising in various computer visions and algorithms.
However, compiling such a set requires a daunting amount of work. This is not only because the number of
SDD-based algorithms is large, but also because certain algorithms iterate on systems and generate more
than one qualitatively different systems.

We argue that testing a solver on a large set of systems is probably wasteful too, especially if we want
to verify the speed and reliability of the solver. In such a case we follow a ‘selective’ approach that uses
mathematical intuition and previous experimental experience to select a number of instances that are hard.

In this work we follow the selective approach. To construct the test set, we set forth a set of require-
ments:

1. The test systems/graphs must be very large. Large sizes can reveal a bad underlying asymptotic
behavior. In addition, heuristic mistakes are more probable in large graphs.

2. The very rich topological properties of 3D graphs relative to those of 2D graphs also increase the
probability of heuristic mistakes. So a number of 3D systems must be included in the test set.

3. The test set must contain graphs with a very large variation of weights and steep discontinuities in
local and long-range scales, as both experience and theory support the intuition that unweighted
graphs are relatively easier.

4. The test set must contain graphs with non-regular weighted topologies that are relevant to computer
vision applications.

4.2 Our test set of SDD systems

Previous related works (e.g. [Sze06, Gra08]) evaluate solvers on a very small number of systems coming
from natural images. In this paper we present more extensive experiments on affinity graphs/systems such
as those proposed in [SM00]. Most of our experiments are with 3-dimensional images; up to our knowledge
no previous experimental work has considered 3-dimensional systems.

We exclude natural images from our experiments, because our experience indicates that they are rela-
tively easier. Our experience seems to match that of other research groups [SK11]. For example, the solver
of [Sze06] works very well on natural images, but its performance degrades significantly on images derived
from the application of the random walker method on CT scans [Gra06].

In our tests we use systems derived from the application of the spectral rounding algorithm [TM06]
on EM microscopy images of the neural system of a sea specimen, provided to us by Eduardo Molinar’s
Biological Imaging Group at the University of Puerto Rico-Rio Piedras. The images are two-dimensional
cross-sectional scans of three-dimensional objects. The 2D images can be stacked into 3D images with no
volume registration. The images contain interesting ‘non-natural’ structures of different scales including
local noise, often uncorrelated between neighboring 2D frames. These features satisfy the third requirement
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in the list of the previous subsection. One image similar to those used in our experiments is shown in Figure
3.

Figure 3: An EM microscopy scan. Notice the presence of noise.

We experiment with 3D images consisting of different numbers of frames, including 2D images. This
creates a range of different graphs, with up to 16 million nodes, that allow us to observe the speed and
scalability of the solvers but also how the performance is affected by the transition from a 2D frame to
a –topologically richer– 3D images. In prior work [TKI+08], we found useful to add to the graph one
high-degree node that joins all the nodes on one face of the 3D lattice. We’ve repeated this approach for
the EM microscopy scans on the largest examples. We include these graphs as examples of systems with
a non-regular topology.

4.3 Experiments

To the best of our knowledge the only published variant of Algebraic Multigrid running in MATLAB is
AGMG [MN08, Not10]. We also compare with the classical Ruge-Stüben AMG [RS87], and Smoothed
Aggregation Multigrid [VBM01], implemented as part of the package PyAMG [BOS11], written in a com-
bination of Python and C++ for efficiency.

All solvers in our experiments consist of a setup and a solve phase. We do not report the setup
times because they consist only a negligible fraction of the total time to solve the system. The AGMG and
Smoothed Aggregation Multigrid multigrid solvers failed to converge (in a reasonable number of iterations)
on all our test systems. So, our report includes only CMG and the Ruge-Stüben variant of AMG.

The experiments with the solve phases of CMG and RS-AMG are reported in Figure 4. The systems
Ax = b were solved for a randomly picked b-side, and the stopping criterion for convergence was taken to
be ||Ax − b|| < 1e − 05 ∗ ||b||. The ’na’ symbol means that the corresponding number is not available.
This is not a problem with the AMG solver but it is ‘due to technical difficulties in loading the MATLAB-
generated .mat files containing the systems into PyAMG; the corresponding routine appeared to stagnate
or quit for the larger sizes, at least in our systems.

The leftmost column gives the dimensions of the lattice. The two other columns give the number
of iterations until convergence for CMG and RS-AMG respectively. The times per iteration for CMG
and RS-AMG are within 5% of each other, without a clear winner. Thus the number of iterations is
strongly correlated with the actual running times. The CMG solver is 3-4 faster than the RS-AMG solver
on all systems with the exception of the lattice including a high-degree node. This case highlights the
heuristic and inconsistent nature of RS-AMG. On the other hand it is clear that the performance of CMG
is consistent across sizes and topologies.
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Matrix CMG iter AMG iter

10242x1 25 77
10242x2 23 65
10242x4 20 82
10242x4+1 18 15
10242x8 23 na
10242x16 23 na
5122x1 22 36
5122x2 20 65
5122x4 21 75
5122x8 23 67
5122x16 21 70
5122x32 23 na
5122x64 23 na

Figure 4: Experiments with CMG and RS-AMG.

5 SDDs arising in Computer Vision

Many computer vision problems naturally suggest a graph structure - for example the vertices often corre-
spond to samples (e.g. pixels, patches, images), the edge set establishes pairwise comparisons or constraints
encoded in the graph and the weights are either data driven (for clustering) or the result of an ongoing
optimization procedure (weights in the tth iteration of Newton’s method).

The reformulation of fundamental objective functions in computer vision, such as the recent reduction
of the Mumford-Shah functional in [GA08], to optimizations on combinatorial graphs opens the door to
faster and more accurate algorithms. In this section we illustrate the pervasiveness and utility of SDDs
with a collection of related problems that reduce to solutions to SDDs in the inner loop. For the two Total
Variation applications we demonstrate that the systems reduce to SDDs at their core - for the others this
fact is obvious.

5.1 Gradient Inpainting

Recent work on gradient inpainting [Sze06, MP08, BCCZ08] has centered around the development of
specialized solvers for 4-connected meshes (either weighted or un-weighted). The gradient inpainting
problem seeks to integrate out an image from a (potentially sparse) set of image gradients. Formulated as
a least squares optimization, given a vector of gradient constraints ∆c for each channel c, the corresponding
set of relationships encoded in the edge-node incidence matrix Γ and a possible weighting of the constraints
W - the least squares image is obtained by solving:

ΓTWΓxc = ΓTW−1/2∆c (5.4)

for each color channel. As ΓTWΓ is a weighted Laplacian the solution can be computed in Õ(n) work for
the general case and O(n) work the weighted planar case (as addressed in [Sze06, MP08, BCCZ08]) - the
image reconstruction step requires less work than linear filtering.

The gradient inpainting problem is evocative of Total Variation (TV) approaches for image processing
problems. In the next section we outline optimization of related denoising functionals which can be used
to condition least squares inpainting.
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5.2 Non-linear Filtering and Convex Optimization

Non-linear methods in image processing based on Total Variation3 (TV) arise in image denoising [ROF92],
super resolution [PETM09], and inpainting [PBC08] in computer vision. In this section we demonstrate
that ℓ2, ℓ2 and anisotropic (i.e. Manhattan) ℓ2, ℓ1 TV-like functionals reduce to solving SDD systems and
can thus be integrated into CV pipelines at a cost comparable to applying a non-separable filterbank.

We begin with the discrete (anisotropic) form of the Rudin, Osher, Fatemi TV functional [ROF92], for
p−norms along the ℓ1 to ℓ2 continuum:

min
x

: ||x− s||22 + λ ||∇x||p (5.5)

where ℓp | 2 ≥ p ≥ 1 maintains the structural property of convexity, the existence of efficient algorithms,
and generalizes to weighted norms. We outline a method for the p = 1 case as work on the statistics of
natural images [RB94] and the success of sparse representations motivate the use of ℓ1 for penalizing the
image gradients. Write the primal for ℓ2, ℓ1 as:

min
x

1

2
(x− s)T (x− s) + 1T |Γx| (5.6)

where Γ is the node-edge incidence matrix, 1T |Γx| measures change across edges in ℓ1 and (x− s)T (x− s)
measures the deviation from the source s in ℓ2. Problem 5.6 can be formulated as follows:

minx,t 1T t+ 1/2(x− s)T (x− s)

t ≥ Γx
}
y+

t ≥ −Γx
}
y−

By introducing the Lagrangian variables y+, y−, we can write the dual as:

minx,tmaxy+≥0,y−≥0 1T t+ 1/2(x− s)T (x− s) + y+
T
(−t− Γx) + y−

T
(−t+ Γx)

Taking derivative with respect to x yields

x− s− ΓT (y+ − y−) = 0

Taking derivative with respect to t yields
y+ + y− = 1

Let y = y+ − y−. Since y+, y− ≥ 0, we have |y| ≤ 1 ⇐⇒ y+ + y− = 1 (to see this let y+ = y+1
2 and

y− = −y+1
2 .) Plugging this back into the original formulation yields

ξ(x) = max
|y|≤1

−1

2
yTΓΓT y + yTΓs. (5.7)

It is well known that interior point methods can be applied to the above constrained problem by creating
an unconstrained function ξ̂ that replaces the linear constraint |y| ≤ 1 with a log-barrier term4, λ log(1−
y) + λ log(1 + y). The interior point optimization now amounts to Newton’s method[Boy04] on ξ̂(x). To
uncover the computational complexity of the procedure we begin by calculating the gradient and hessian

3See [CS05] for a thorough survey of TV and related mathematical image processing methods.

4Recall: As λ → 0, we have λ log(x) =

{
0, x > 0
−∞, x ≤ 0

, here we assume log(x) = −∞ if x ≤ 0.

13



of ξ̂(x) and examine their structure:

∂ξ̂

∂y
= −ΓΓT y + Γs+ λ

1

y − 1
+ λ

1

y + 1
(5.8)

∂2ξ̂

∂y2
= −ΓΓT − λd(y − 1)−2 − λd(y + 1)−2 (5.9)

where d(x) promotes the vector x to a diagonal matrix. Recall for Newton’s method that the computational
bottleneck is solution to linear system Qty(t+1) = yt, where the hessian, Qt at iteration t is given by eq.
5.9.
Hence the algorithm is:

Algorithm 1: Solving TV-regularized smoothing problem.
Input: Γ, s, β, ϵ
t← 0;
y(t) ← 0;
λ← 1;
while λ > ϵ do

repeat

Q(t) ← ΓΓT + λdiag(y(t) − 1)−2 + λdiag(y(t) + 1)−2;

∆y(t) ← Q(t)−1
y(t);

α← 1;
repeat

y(t+1) ← y(t) + α∆y(t);
α← αβ;

until f(y(t+1), λ) ≤ f(y(t), λ) ;

until y(t)
T
∆y(t) ≥ ϵ ;

t← t+ 1;
λ← λ 1

1+1/
√
n
;

end

Observe that the hessian matrix is factored as Q(t) = (ΓΓT + C) where C is a diagonal matrix. Using

Binomial inverse theorem, we have Q(t)−1
= C−1−C−1(I+ΓTC−1Γ)−1C−1, where I is the identity matrix.

Since C is a diagonal matrix, C−1 is easy to compute. Further note that ΓTC−1Γ is a weighted Laplacian
matrix, so I + ΓTC−1Γ is SDD. Given that Newton’s method takes O(

√
n) many iterations [Boy04], the

total running time is at most Õ(n3/2) for the optimization of ℓ2, ℓ1.

5.2.1 Non-Local Means

Motivated by Efros’ texture work [EL99], the non-local means (NLM) [BCM08] energy functional has
received a great deal of recent attention [BKC08, PBC08, PETM09] due to its empirical performance in
textured regions. We observe that the discrete instance of the functional can be written in terms of solving
a weighted SDD. The NLM energy functional takes the following form:

min
x

: ||x− s||22 + λ
∑

(ij)∈N

||pi − pj ||2W (5.10)

where s is the observed signal, x the de-noised signal, pi is the image patch centered at location i, and W
and an empirical weighting function over the patch pairs (ij).
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The second term
∑

(ij)∈N ||pi − pj ||2W in Eq 5.10 can be written out as a symmetric quadratic form.

Where Ri is the k2 by n restriction matrix, as in §2.3, that selects the pixels from patch i and places them
in a vector. The non-local term can now be written as

∑
(ij)∈N

wij (Rix−Rjx)
T (Rix−Rjx) = xT

 ∑
(ij)∈N

wij(Ri −Rj)
T (Ri −Rj)

x

= xTMx.

The matrix M is clearly positive semi-definite as it is the sum of products, further, we see that it is a
weighted Laplacian matrix as Ri−Rj terms are exactly edge-node incidence matrices over the patch pixels.

To solve the NLM problem replace the patch term λ
∑

(ij)∈N ||pi − pj ||2W , in eq 5.10, with λxTMx and
take the derivative with respect to x, setting to zero we arrive at linear system (I+λM)x = s. The matrix
(I + λM) is SDD as it the sum of SDD matrices, therefore x can be found in Õ(n) work. Note that the
above is a single step due to the ℓ2 smoothness term, ℓ1 penalization of the patch smoothness is easily
achieved by adapting the duality algorithm to NLM.

5.3 Clustering, Maps, Matting and Segmentation

In recent years data clustering, embedding, image matting and image segmentation problems have been
formulated as optimizations on combinatorial graphs representing the data [SM00, NJW02, BN03, YS04,
CLL+05, LRAL07, Gra06, CS07]. Laplacians, normalized Laplacians and related linear operators of graphs
arise naturally in formulating the objective functions and optimization procedures. In this section we briefly
relate a handful of recent approaches that ultimately reduce to solving SDD linear systems.

As an example, the resistive network analogy (see §2.2) motivated an assisted segmentation method
for images and volumes. Grady et al. [Gra06, SG07] exploited the relationship between graph Laplacians
and random walks to segment images given sparse labels. This method requires a single solve and a sort
to achieve its solution (a cost is dominated the vertex sort in the planar case).

Similar work [YS04, CS07, EOK07] extends the NCuts and related objectives, discussed below, to
include membership constraints yielding assisted clustering procedures. These approaches differ from the
Random Walks procedure, and Linear Programming5 based k−way min-cut approaches in that the relative
sizes of the partitions are explicitly balanced.
5.3.1 Eigencalculations in Vision

Calculating a minimal, say k−dimensional, eigenspace forms the computational core of the spectral re-
laxation for NCuts [SM00], spectral clustering [NJW02], Laplacian eigenmaps [BN03], diffusion maps
[CLL+05], and the typical case for Levin et. al.’s image matting algorithm [LRAL07].

Recall that any symmetric matrix has n distinct pairs (λi, xi) such that Axi = λixi. Pairs of symmetric
positive definite matrices, (A,B) also have n distinct pairs (λi, xi) such that Axi = λixi. The case where A
is a Laplacian and B = D is its diagonal is of great interest. In this case the generalized problem Ax = λDx
can be reduced to the simple eigenvalue problem for the normalized Laplacian A = D−1/2AD−1/2, which
has the same eigenvalues as A, and eigenvectors y = D1/2x.

Iterative algorithms -such the power method or Lanczos’ method- for the computation of approximate
subspaces of A, are based on matrix-vector multiplications with A. For example, if x is a random vector
orthogonal to the null space of A, the vector (I −A/2)kx converges to the eigenvector of A corresponding
to its smallest non-trivial eigenvalue. For most interesting cases, iterative methods need a very large
number of iterations with A to converge. However, it is easy to show (see for example [ST06]) that
only O(log n log(1/ϵ)) iterations of the power method with A−1 are required for the computation of a

5It is worth noting that the best theoretical upper bound for computing min-cut\max-flow can be obtained by solving SDD
systems [CKM+10].
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vector x such that xTAx is within a (1 + ϵ) factor from λ2, when the exact eigenvector x2 for λ2 satisfies
xT2 Ax2 = λ2. An approximation of this kind is sufficient for most applications. The discussion about the
second eigen-pair extends to the first few eigenpairs.

Thus the complexity of finding a few (approximate) eigenvectors of A is O(m log2 n) using the solver
of [KMP10]. In practice using the CMG solver which runs in linear time, we achieve approximate NCuts
solutions in time roughly proportional to sorting the vertices (pixels) by value.
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