
EXCLUSION REGIONS AND FAST ESTIMATION OFPSEUDOSPECTRAI. KOUTIS� AND E. GALLOPOULOSyAbstract. The construction of an accurate approximation of the �-pseudospectrum ��(A) ofa matrix A by means of the standard grid method (GRID) is a highly demanding computationaltask, even for matrices of medium size. At each point of the domain of interest, (GRID) computes�min(zI � A) and uses that information in order to to classify the point as belonging to ��(A)or not. In that sense, GRID makes only \pointwise" use of the information it computes at each z.In this paper we prove that knowledge of the minimum singular triplet [�min(zI � A); umin; vmin]at z 2 C provides much more information that can be used to locate the pseudospectrum. Inparticular, from every z where we compute the triplet, we show that it is possible to construct\exclusion disks" that do not intersect the pseudospectrum. These results are used in the contextof an \inclusion-exclusion" methodology to implement the rapid and judicious pruning of the initialdomain enclosing the pseudospectrum. We propose two versions of the method and show that theselead to a substantial reduction of the cost of the computation while retaining the robustness andembarassingly parallel processing advantage of the standard grid approach.AMS subject classi�cations. 65F20.Key words. Matrix pseudospectrum, spectral portrait, modi�ed grid method, exclusions,eigenvalues1. Introduction and motivation. The pseudospectrum, ��(A), of a matrixA 2 C n�n has become a tool for the investigation of the behavior of several matrix-dependent algorithms, ranging from the behavior of iterative methods for large linearsystems to the behavior of time-stepping algorithms. It is widely acknowledged, how-ever, that computing pseudospectra with current technology is expensive, even whenthe matrix in question is of moderate size and this has led to several research activitiesattempting to address this problem. We refer to the recent paper by L.N. Trefethen([18]) for a survey of the state-of-the-art.If we denote by �(A) the eigenvalues of A, and by �min(B) the minimum singularvalue of a matrix B, two equivalent de�nitions of ��(A) are given in Table 1.1. Wecall the standard reference method for computing pseudospectra GRID and note thatit estimates �� at a region of the complex plane 
 by �rst discretizing the regionwith a grid 
h, then computing �min(zkI � A) for all zk 2 
h, and �nally plottingthe �-contours. This function is implemented as function pscont in the popular TestMatrix Toolbox for MATLAB [12]. Therefore, the cost of GRID is approximately equalto TGRID = j
hjC�min , where j
hj denotes the number of points of the grid and C�mindenotes the average cost for extracting the �min.It is clear that the cost of GRID becomes prohibitive as the grid or matrix sizesincrease. Methods that attempt to reduce the cost of computing pseudospectra viaa reduction of the factor C�min we call matrix-based, while those that are based on areduction of j
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2 De�nition 1:��(A) = fz 2 C : z 2 �(A+E) with kEk � �; � � 0g:De�nition 2: ��(A) = fz 2 C : �min(zI � A) � �; � � 0g;Table 1.1Equivalent de�nitions of the matrix pseudospectrum ��.We focus here on domain-based methods, i.e. methods that attempt to use avail-able information in order to reduce the number of points where it is necessary tocompute the minimum triplets.When the matrix is real, the simplest known method for reducing the work isdomain-based and is used routinely, e.g. in the Test Matrix toolbox; this is none otherthan applying the fact that complex eigenvalues of real matrices come in conjugatepairs, therefore we only need to compute the pseudospectrum at either the positiveor negative imaginary halfplanes.Other than this obvious but e�ective approach, the two major domain basedmethods that exist in the literature are: i) the method of Gallestey [9], that startsfrom an initial region and then builds an approximation to the pseudospectrum bymeans of systematic pruning and/or expansion of that region. These steps are basedon the subharmonicity of the function k(zI � A)�1k. ii) The approach of Bruehl[5] to compute ��(A) by tracing its boundary @��(A) using predictor-corrector pathfollowing; this method was further developed into a parallel and more robust algorithmby Bekas and Gallopoulos [2]. Path following has been shown to be very e�ective,but in some cases it might fail or miss certain parts of the pseudospectrum, e.g. whenthere are multiple components. Furthermore, even though it has been extended in [2]to o�er large grain parallelism, the parallelism is moderate and will not readily scaleto run on a large number of processors for a �xed matrix size and resolution of thepseudospectrum boundary.In these respects, the standard workhorse GRID method, still appears to o�ergreater robustness and more parallelism. Unfortunately, much of the work in GRIDis also redundant, since a portion of the gridpoints lie outside the region of interest.Recalling that the pseudospectral regions form nested sets, this means that manygridpoints lie outside ��(A) for the largest � of interest.In view of this, Braconnier et al. have studied the problem of approximating aregion enclosing the eigenvalues which could also serve as an approximation to thepseudospectrum [4]. Amongst the four methods they examined - tabulated in Table1.2 - they found that the one based on the �eld of values provides the most usefulapproximation to ��(A) - in terms of pertinent information and computational costs.Regarding the methods of Table 1.2, we note that i) the �rst three produce regions
 enclosing �(A); on the other hand, there is no guarantee that ��(A) � 
 as well -even though in many cases 
 is so large that it actually encloses the speci�c region;ii) all except the Gershgorin disks return convex shaped regions 
.It is worth noting also that a slight modi�cation of the �rst - \eigenvalue" method- is the default in function pscontmentioned earlier. The vertices of the rectangle arecomputed by �rst obtaining the eigenvalues, getting their minimum and maximumreal and imaginary parts, say [�Rmin; �Rmax; �Imin; �Imax], and then de�ning the vertices



3From eigenvalues: Use 
 = [mini=1:n Re(�i);maxi=1:nRe(�i)] �[�d; d] � �(A), where d = maxi=1:nj�i+1 � �ij and �i are theeigenvalues of A computed using a backward stable algorithm.From matrix norms: Use 
 = D(0; kAk2) � �(A):From Gershgorin disks: Use
 = [i=1:nD(�ii;Xi 6=j j�ij j) � �(A)Field of values (FOV): Use
 = FOV(A) +D(0; �kAk2) � ��(A);where FOV(A) denotes the �eld of values of A.Table 1.2Some methods for approximating a region 
 enclosing �(A).Fig. 1.1. Pseudospectrum contours, computed using pscont, for matrices grcar (left) and kahan(right) of size n = 32 and several values of �.
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as �Rmin � �(�Rmax � �Imin), etc. where � is some expansion factor (the default inpscont is 0:1). It is easy, however, to construct examples where, for typical valuesof �, the resulting 
 fails to include all of ��(A). For instance, Figure 1.1, showsthe pseudospectrum contours generated using pscont for matrices (also from [12])grcar and kahan, of size n = 32, corresponding to values of � from 10�10 to 10�1;unfortunately, some contours lie outside the region used by pscont.If, on the other hand, one follows the �eld of values criterion described in Table 1.2to estimate 
, then it is certain that ��(A) � 
. For that reason, in the remainderof this paper, we will use this criterion in its simplest form. In particular, we let theHermitian, AH = A+A�2 , and skew Hermitian, ASH = A�A�2 , parts of A we use theknown relations FOV (AH) = ReFOV (A) and FOV (ASH ) = iImFOV (A) and let
 = [�min(AH )� �kAk; �max(AH ) + �kAk](1.1) �[�min(ASH)� �kAk; �max(ASH) + �kAk];



4 Fig. 1.2. Pseudospectrum contours, computed using pscont and the �eld of values criterionimplemented by relation (1.1), for matrices grcar (left) and kahan (right) of size n = 32 and severalvalues of �.
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1. Obtain an inclusion region 
̂ � ��(A).2. Compute set of exclusion regions �j intersecting 
̂, i.e. 
̂\�j 6= ;,so that ��(A) \�j = ;; j = 1 : n and set 
 = 
̂n [j=1:n �j .3. Discretize 
 and call the resulting grid 
h � 
.4. Compute the �min's on 
h.Table 1.3General Inclusion-Exclusion methodologywe are assured that 
 will fully enclose the pseudospectrum of A. Furthermore, thecomputation of the bounding rectangle is relatively easy since it only involves thecomputation of the norm of A and of the extreme eigenvalues of Hermitian matrices.On the other hand, this is a convex region that might cause many redundant com-putations in GRID. This is illustrated in Figure 1.2, where we used the above regiontogether with function pscont for matrices grcar and kahan. Observe that in bothcases GRID would need to perform computations on too many extraneous points: Inthe �rst case because of the mismatch of 
 (convex) with �� (non-convex), while inthe latter because of a signi�cant overestimate of the bounding region.The above discussion motivates the design of methods that i) guarantee that theenclosing region contains the pseudospectrum and ii) the computational complexityis not severely penalized by any mismatch of the shapes of 
 and ��(A). The generalapproach that we propose in this paper we call Inclusion-Exclusion, abbreviated IE ,and has the general structure shown in Table 1.3. The idea is to start from an initialregion that contains the pseudospectrum (we call it \inclusion region") and thenproceed to prune it from extraneous points, that do not belong to the pseudospectrum.The question then becomes one of rapid computation of e�ective exclusion regions.The original GRID method is a trivial case of IE : It computes the singular valuedecomposition at every point of 
 and depending on the result it classi�es a point asbeing inside or outside the pseudospectrum. In that sense, GRID makes only \point-wise" use of the information it computes at each z. In this paper we prove that



5knowledge of the minimum singular value provides much more information that canbe applied to e�ectively remove larger regions. The process can be further enhancedif we know the corresponding minimum singular vectors. In particular, from everyz where we compute the triplet, we show that it is possible to construct \exclusiondisks" that do not intersect the pseudospectrum. These results are used in the contextof the \inclusion-exclusion" methodology to implement an algorithm, we callModi�edGrid Algorithm (MoG), for the rapid computation of the pseudospectrum. We proposetwo versions of the method, one based on removing regions that provably exclude thepseudospectrum and one based on removing regions that exclude larger regions thatmost often exclude the pseudospectrum.We show that both variants of MoG substantially reduce the number of singularvalue evaluations while retaining the advantages of GRID, such as simplicity, robustnessand independent computations lending themselves to parallelism of high granularity.Our numerical examples include standard test matrices of small size as well as largermatrices whose singular values are computed by means of ARPACK [15]. We alsoshow that the algorithm is not very sensitive to the choice of the initial enclosingregion, in the sense that even if the region is much larger than the largest soughtpseudospectrum, it leads to very fast pruning of most of the extraneous regions.The paper is organized as follows. In Section 2 we present the main theoreticresults that enable the construction of MoG. In Section 3 we describe MoG and analyzeits main characteristics. In Section 4 we present numerical experiments with MoG.Finally, in Section 5 we set forth directions for future research.2. Theoretical background. We �rst introduce some notation. Denote byD(z; %) and DÆ(z; %) the closed and open disk respectively, with center z and radius%. For any given (closed) disk D, we denote by Dc its complement. For nonsingularA 2 C n�n , cond(A) = kAkkA�1k denotes the spectral condition number. For a giveneigenvalue ze of a matrix, the eigenvalue condition number or eigenvalue sensitivityis the reciprocal of the cosine of the angle between the right and left eigenvectors ofA corresponding to ze, i.e. �(ze) = ky�k�kxkjy�xj .For any matrix B with singular value decomposition B = U��V , we will denoteby (�min; umin; vmin) the triplet consisting of the minimum singular value and thecorresponding left and right singular vectors of B and call it minimum triplet. Wealso use the letter N to denote a generic normal matrix.We �rst collect known results that are for our presentation. One of the theoremsin the original paper of Bauer and Fike has an immediate interpretation in terms ofpseudospectra:Theorem 2.1. [1, Thm.IIIa] . Let A 2 C n�n be diagonalizable and X�1AX = �.Let also kEk = �. Then the union of the disks D(zk; cond(X) � �) contains all theeigenvalues of A+E, that is ��(A) � SiD(zi; cond(X) � �).When the matrix is normal, Theorem 2.1 can be re�ned further:Corollary 2.2. Let N 2 C n�n be normal and zi; i = 1; : : : ; n its eigenvalues,then ��(N) =[i D(zi; �):Proof. Since N normal then cond(X) = 1 and the rightward inclusion followsfrom Theorem 2.1. Let Q�NQ = � where � is diagonal and Q unitary. The equalityfollows since for any z 2 SiD(zi; �), the diagonal matrix E = (z � zi)I is such that



6kEk � � and one eigenvalue of N+E is z since Q�(N+E)Q = �+(z�zi)I , where � isthe diagonal matrix of eigenvalues of N , therefore, the eigenvalues of N that are equalto zi are driven to z by the perturbation E. Furthermore kEk = k~�k = jz� zij � �.We next list some properties of the pseudospectrum that will be useful in thesequel.Properties 2.1.1. �(A) � ��(A) for � > 0.2. � < �1 , ��(A) � ��1(A).3. If N is a normal matrix whose eigenvalues coincide with those of A, i.e.�(A) = �(N), then ��(N) � ��(A).The �rst two properties follow directly from the de�nition of the pseudospectrum.The last one is a consequence of Theorem 2.1, Corollary 2.2 and the facts that thecondition number of any matrix is at least 1 and that minimum is attained by allnormal matrices.2.1. Localization theorems based on exclusions. In this section we developthe theoretical tools that will form the bases of our algorithms.Definition 2.3. Given a matrix A and � � 0, we de�ne a region � of thecomplex plane to be an exclusion region with respect to the �-pseudospectrum of A(\exlusion region" for short when the context is clear) if � does not contain any pointof ��(A).In many cases, the exclusion region will be a disk, in which case we will be referringto is as \exclusion disk".Our �rst result provides a simple means for computing an exclusion region on thebasis of �min(zI �A).Theorem 2.4. If �min(zI �A) = r > � then DÆ(z; r � �) \ ��(A) = ;:To prove the above theorem, we need the following lemma, whose proof can befound in [13].Lemma 2.5. Let B;E 2 C n�n . Then the following inequality holds:j�min(B +E)� �min(B)j � �max(E)We can now prove the previous theorem.Proof. Let �min(zI � A) = r > � and ~z 2 DÆ(z; r � �). We need to show that�min(~zI �A) > �. Then we can write ~zI �A = zI �A� (zI � ~zI). Let B = zI � Aand E = zI � ~zI . Using Lemma 2.5 it follows thatj�min(~zI �A)� �min(zI �A)j � �max(E) = jz � ~zj:Therefore �j~z � zj � �min(~zI �A)� �min(zI �A)and since �min(zI �A) = r and jz � ~zj < r � � the result follows.The above result tells us that if at any z 2 C we have computed �min(zI�A) = r,then D(z; r� �) is an exclusion disk of A. Clearly, the knowledge of exclusion regionscan reduce the number of points where �min is sought.We next show that when a matrix is normal, the exclusion region obtained fromTheorem 2.4 is the disk with maximum radius that we can create that will not containany points of the pseudospectrum. In that sense, assuming that we follow the theorem



7A(0:2) A(0:4) A(0:6) A(0:8)z1 = 0:5 + 0:5i 1.49e-03 1.02e-02 5.92e-02 1.72e-01z2 = 0:2 + 0:2i 6.03e-07 1.78e-04 6.06e-03 5.32e-02z3 = �0:2 + 0:5i 4.01e-09 2.36e-06 2.19e-04 3.91e-03Table 2.1Values of �min(zkI �A(�)) where A(�)=pentoep(32,0,�,0,0,1).and obtain exclusion regions that are disks, the exclusions will be maximal, in thesense that they \touch" ��(A) and therefore cannot be expanded any further.Corollary 2.6. If N 2 C n�n is normal with eigenvalues zi; i = 1; : : : ; n, and�min(zI �N) = r > � then the boundary @D(z; r � �) contains at least one point of��(N).Proof. From the de�nitions, it follows that z 2 �r(N). Theorem 2.2 implies that�r(N) = SiD(zi; r), therefore there is some eigenvalue zk for which z 2 @D(zk; r).Therefore the disks D(zk; �) and D(z; r � �) have exactly one point in common. Theproof follows from the observation that D(zk; �) � ��(N).The corollary also extends a result of Hald ([10]) and hence the list of necessaryconditions for normality presented in [6].The following lemma is also useful:Lemma 2.7. If N 2 C n�n is normal then for any A 2 C n�n that has exactly thesame eigenvalues as N and any given z, it holds that D(z; rA � �) � D(z; rN � �),assuming that rA = �min(zI � A) and rN = �min(zI � N) � 0. Furthermore, theexclusion disk D(z; r � �) will be the same for any other normal matrix that hasexactly the same eigenvalues.Proof. From standard results j�min(A)j�1 � kA�1k = 1=�min(A). Therefore�min(A) � j�min(A)j = �min(N). Furthermore, if N̂ is also normal and has thesame eigenvalues as N then �min(N � zI) = j�min(N � zI)j = j�min(N̂ � zI)j =j�min(N̂ � zI)j.The above lemma tells us that for a given spectral set, normal matrices achievemaximal exclusion region. When the matrix is highly non-normal, however, the ex-clusion region suggested by Theorem 2.4 becomes smaller and hence less e�ective.This is illustrated in Table 2.1, which shows the values of �min(zI � A) for severalpoints z and matrices A that are increasingly non-normal, the measure used beingthe Frobenius norm �(A) = kA�A � A�AkF [11]. Speci�cally, we use the matricesA(�)=pentoep(32,0,�,0,0,1) [12]. We note that the value of � has little e�ecton the distribution of the eigenvalues of A(�). On the other hand, for this matrixwe observed that as � decreases, the condition of the eigenvalues (computed by thefunction eigsens of Test Matrix Toolbox) as well as the spectral condition numberof A(�) increase monotonically.An interesting interpretation of the numbers in Table 2.1 is that increasing non-normality leads to faster expansion of the pseudospectrum. This motivates us tode�ne a measure of local sensitivity for the pseudospectrum.Definition 2.8. Let gA(z) = �min((x+ iy)I �A) where z = x+ iy 2 C n �(A).We call sensitivity of the pseudospectrum of a matrix A at a point z0 the inverse ofthe magnitude of the gradient of gA at z0, that ispssA(z0) = jrgA(z)j�1z=z0 :(2.1)Subsequently, we will use the notation pss(z) whenever is clear from the context



8to which matrix we refer. We next investigate the properties of pss(z). When z =x+ iy 2 C n�(A), what we call pseudospectrum sensitivity is immediately related tothe sensitivity of the minimum (simple) singular value, according to the de�nition ofSun in [8]. Therein, the sensitivity of a simple, non-zero, �min(zI � A) with respectto x and y was de�ned as the pair of absolute values j @@x�min(xI + iyI � A)j andj @@y�min(xI + iyI �A)j.How diÆcult is to compute the above pseudospectrum sensitivity? Not much, asthe following following theorem, stated in [5], indicates.Theorem 2.9. Let x+iy 2 C n�(A). Then g(x; y) is real analytic with respect toeach coordinate x and y in a neighborhood of (x; y) if �min((x+ iy)I �A) is a simplesingular value. Furthermore, the gradient of g at z isrg(x; y) = (Re(v�minumin); Im(vminumin)) = v�minumin:It follows that pss(z) is computable from the left and right minimum singular vectors,which in turn can be computed along with the minimum singular value. In particular:Corollary 2.10. Using the above notation, at any point z where �min(zI �A)is simple, the pseudospectrum sensitivity ispss(z) = 1jv�minuminj � 1:The inequality follows directly from the de�nition of the inner product and the factthat the singular vectors are of unit magnitude.Since any normal matrix is diagonalizable by means of orthogonal similarity trans-formations, Corollary 2.10 implies the following:Corollary 2.11. If N is normal then pssN (z) = 1 at every point z 2 C n�(A).Therefore, the minimum value of pss is 1 and is attained at all points where g isanalytic by the class of normal matrices. It is worth noting that Theorem 2.9 wasalso fundamental in establishing the original path following method of Bruehl forcomputing pseudospectra [5].The fact that g(x; y) is real analytic gives rise to an interesting association betweenits values and paths in the complex plane. In particular, we prove the following:Theorem 2.12. Let z0 = x0 + iy0 and z1 = x1 + iy1 be two points and let pssbe de�ned on those as well as on all points of the line segment L connecting them. Ifpss(z0) < pss(z) for every point z in L thenjg(x1; y1)� g(x0; y0)j � pss(z0) � jz1 � z0jProof. By de�nition g(x; y)� g(x0; y0) = H (x;y)(x0;y0)rg(x; y)~nLdL , where ~nL is theunit vector parallel to L oriented from z0 to z1. Then using Theorem 2.9jg(x1; y1)� g(x0; y0)j = j I (x1;y1)(x0;y0) rg(x; y) � ~nL dLj � I (x1;y1)(x0;y0) jrg(x; y) � ~nLj dL= I (x1;y1)(x0;y0) pss(z)�1 dL � pss(z0)�1 I (x1;y1)(x0;y0) dL = pss(z0)�1 � jz1 � z0j:Following the notation used in Theorem 2.12 we give a corollary that will beuseful in the localization of ��(A). Let R = (g(z0)� �) � pss(z0).



9Corollary 2.13. Let z1 2 @��(A). If the assumptions of Theorem 2.12 hold,then Dc(z0; R)\��(A) 6= ;. If furthermore z1 is a point which minimizes the distanced(z0;��(A)), then DÆ(z0; R) is an exclusion disk.If A is normal, then R = g(z0) � � because of Corollary 2.11. In that case, weknow from Theorem 2.4 that the disk DÆ(z0; R) is an exclusion disk, hence Corollary2.13 reduces to Theorem 2.4, which is known to hold without the need to imposethe special assumptions of Theorem 2.12. In order to use Corollary 2.13, however, itbecomes necessary to discuss the implications of the aforementioned assumptions.We next extend the de�nition of pseudospectrum sensitivity at points, ze, thatare eigenvalues of A. Then zeI � A would be singular, therefore �min(zeI � A) = 0.Theorem 2.9 speci�cally excluded points of the spectrum because it was based ona result of Sun ([7]) that did not cover the case of zero singular values, which, ingeneral, are not di�erentiable. Di�erent analyses (see [7] and [17]) have shown thatin the neighborhood of a simple zero singular value, the following expansion holds:�2min(zI �A) = jv�minEuminj2 +O(kEk3); where E = (z � ze)I;= jv�minuminj2jz � zej2 +O(kEk3);from which it follows thatj j�min(zI �A)� �min(zeI �A)jjz � zej � jv�minuminjj = O(kEk1=2);(2.2)which tends to 0 as z ! ze. Therefore, jr�(z)jz=ze = jv�minuminj, consequently,pss(ze) = 1jv�minuminj . We are now in the position to prove the following:Theorem 2.14. Let ze be a simple eigenvalue of A 2 C n�n . Thenlimz!ze pss(z) = �(ze)Proof. We have already shown that limz!ze pss(z) = pss(ze) = 1jv�uj . Therefore,it is enough to show that 1jv�uj = �(ze): As before, matrix A�zeI is singular, thereforeit has a zero eigenvalue and its minimum singular value is 0. We also assumed thatze is a simple eigenvalue. Then (A � zeI)vmin = �min(A � zeI)umin = 0, thereforeAvmin = zevmin. This implies that vmin is parallel to x, the right eigenvector of Acorresponding to ze. In the same manner, u�min(A � zeI) = 0, therefore u�minA =zeu�min. Hence u�min is parallel to the left eigenvector y�. Since umin; vmin are unitvectors, it follows that jv�minuminj = j x�kxk ykykj = jx�yjkxkkyk ;which proves the assertion.We now give some general characteristics of the behavior of pssA(z) which areindependent from A, and which can justify the use of Corollary 2.13 as a localizationtool, even when it is not known whether the prerequisite assumptions hold.1. The function pss is continuous, therefore, if z is a point at which pss(z) <pss(ze) = �(ze), the line segment from z to ze is expected to contain aneighborhood in which the hypothesis of Theorem 2.14 holds.2. Let Q�AQ = � + R, where R strictly upper triangular be a Schur form ofA. Then kRk can be used as a measure of A's the departure from normality.



10 Since Q�(zI�A)Q = zI���R = z(I� �+Rz ), it follows that for points z thatare far from the spectrum, matrix I � Az becomes close to being diagonal andthus normal. Since pss(z) is continuous and pss(z) = 1 for normal matrices(see Corollary 2.11), pss(z) will approach 1 from above as z becomes verydistant from the spectrum. For such large z, the exlusion disk predicted byCorollary 2.13 will be of size that is similar to the exclusion disk predicted bythe original Theorem 2.4. It is thus possible, at those points, to apply onlythe latter theorem, thus avoiding the computation of singular vectors thatappear to be needed to apply the former Corollary.3. Since g(z) is di�erentiable and real-valued, the mean value theorem statesthat there is � 2 L, the line segment between z0 and z1, where jg(z0) �g(z1)j = jz0�z1jpss(�) . The basic assumption of Theorem 2.12 can be relaxed topss(z) � pss(�) corresponding to an exclusion disk centered at � with radiusR = jg(z1)� �jpss(�).The �rst observation above also implies that if the conditions of the Theoremcannot be guaranteed, it is also possible that there will be erroneous exclusions ,i.e. the exclusion disk will contain parts of ��(A). We next conduct experiments toshow that in practice, this situation rarely occurs. In particular, we used MATLABand a 100 � 100 grid and checked the gridpoints excluded by means of Corollary2.13 for four matrices, from [12], that are commonly used to test pseudospectrumcodes (propeller, triangle, smoke, grcar). Figure 2.1 illustrates, for given �,the eigenvalues of each matrix (denoted by \x"), as well as the grid points (denotedby \�") that are erroneously considered not to belong to the pseudospectrum becausethey fall inside the exclusion disk corresponding to Corollary 2.13. It is clear from theillustrations that relatively few points are excluded erroneously, and that most areclustered in the neighborhood of eigenvalues. Since the IE methodology is principallydesigned to provide a fast pruning of the region, such points are of little interestanyway. We conclude that even when the assumptions leading to Corollary 2.13cannot be checked, the computed disks are very likely to be exclusion regions and canbe used as long as we have a mechanism in place to correct any wrongly excludedpoints.3. The Modi�ed Grid Algorithms. In the remainder of this paper we demon-strate the e�ectiveness of these ideas. We describe two simple implementations of MoGthat automate the process of pruning. We emphasize that our objective was to seethe concepts established in the discussion so far in practice rather than providing themost eÆcient implementation.For a given grid, the objective of the proposed algorithms is to classify gridpointsas \in", if they belong ��(A) or as \out" otherwise. The algorithm sweeps the grid-points in some prede�ned order, e.g. from left to right and from top to bottom, thegridpoints, and marks the points appropriately. Initially, all points are marked asbelonging to the pseeudospectrum. If for the point z that is currently under consid-eration it is found that �min(zI �A) � �, then the point lies in the pseudospectrum.Otherwise, �min(zI �A) > �, in which case we have two alternatives:Standard exclusion: We compute the disk centered at z with radius r = �min(zI�A)� � and mark all gridpoints within the disk as not belonging to the pseu-dospectrum. According to Theorem 2.4, these points can safely be excludedfrom future consideration.Large exclusion: We compute the disk centered at z with radius R = (�min(zI �A) � �)pss(z). According to Corollary 2.13, z is not in the pseudospectum
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Fig. 2.1. Erroneous exclusions and their frequency.while all other points inside the disk are marked as candidates for exclusion;in fact, as the numerical evidence presented above suggests, in all likelihood,these points will be outside the pseudospectrum.In the MoG algorithm, presented in Table 3.1, variable mmx is set by the user to selectone of the above versions. When mmx=1, we must apply a correction procedure, torecover any points that were mistakenly excluded. There are several alternative waysfor setting up a systematic correction procedure, applied whenever mmx = 1, to recoverany points that were erroneously excluded by Corollary 2.13; see [9] for one suchexample. Our correction consists of two parts.proc corr A Before applying an exclusion, check whether DÆ(z;R) would contain pointsẑ for which it is already known that they satisfy �min(ẑI � A) < �. If yes,exclude only the gridpoints in the disk DÆ(z; �min(zI �A)).proc corr B Inspect all excluded gridpoints that are adjacent to points that are markedas \in" and check if they satisfy �min(zI �A) < �. For any point that does,�nd the center, ẑ, of the disk that led to its exclusion, mark again all pointsof the excluded disk as \in" and repeat the exclusion using the (smaller) disk



12 1. choose enclosing region 
 � ��(A),discretize it with 
h and mark all points of 
h as in.2. for every grid point z 2 
hcompute � = �min(zI �A).if � > � thencase mmx = 0: mark all points in DÆ(z; � � �) as outand set 
h = 
h nDÆ(z; � � �)case mmx = 1: mark all points in DÆ(z; pss(z)(� � �)) as outand set 
h = 
h nDÆ(z; pss(z)(� � �)).Apply proc corr Aend for3. if mmx = 1 apply proc corr B:4. Draw contours for the selected values of � at all points marked as \in".Table 3.1The MoG algorithm.1. Choose 
 and discretize 
h � 
.2a. On each grid column move downwards using exclusions.Stop when the �rst point inside ��(A) is encountered.2b. On each grid column move upwards using exclusions.Stop when the �rst point inside ��(A) is encountered.3a. On each grid line move rightwards using exclusions.Stop when the �rst point inside ��(A) is encountered.3b. On each grid line move leftwards using exclusions.Stop when the �rst point inside ��(A) is encountered.Table 3.2The MoGB algorithm for approximating the pseudospectrum boundary.DÆ(ẑ; �min(zI �A)). Repeat until no further erroneous exclusions appear.We �nally note that if we are only interested to estimate the boundary @��(A)for some given value of �, MoG can be easily modi�ed to approximate such a boundaryat much less cost than its full version. The idea is to apply exclusions from the outerboundary of the enclosing region 
 moving inwards, in some systematic manner, until��(A) is reached. We call this, the Modi�ed Grid Boundary Algorithm (MoGB) andpresent it in Table 3.2.3.1. MoG basic characteristics and analysis.. The cost of MoG is approxi-mately equal to TMoG = (j
hj � jXhj)C�min ;(3.1)where j
hj denotes the number of points of the grid, Xh denotes the number of pointsof the grid that were excluded, and C�min denotes the average cost for extractingthe �min. The term jXhj depends clearly on �, and on the speci�c topology of ��.Thus, the task of determining approximately the size of jXhj is diÆcult and we donot pursue such an analysis here. On the other hand, MoG retains the advantagesof GRID. It is robust, since erroneous exclusions can be corrected with not muchdiÆculty, and accurate, in the sense that for a given grid detail, it will produce the



13best possible approximation to ��(A). Like GRID, MoG contains a great amount oflarge-grain parallelism. As we will see, the use of exclusion theorems, dramaticallyreduces the cost, which becomes practically independent from the choice of the initialregion 
.Regarding MoGB, we need to compare it with path following methods, which areconsidered the most economical means for computing the pseudospectrum boundary.The two advantages of MoGB are i) that it is able to compute all connected componentsof @��, as long as the initial enclosing region already contains them; ii) MoGB hasmuch more potential for large-grain parallelism, compared to path following, wherethis potential is only moderate [2]. Thus, MoGB could be an attractive alternative topath following. A disadvantage is that without further enhancements, MoGB will onlyaccess boundary points z� = (x�; y�) that have the following property: At least oneof the lines x = x�; y = y� reaches from a boundary gridpoint of 
h to z� withoutencountering on the way any other point of the pseudospectrum.Finally, we make some remarks concerning the domain-based algorithm of Gallestey(called \SH" in [9]) which shares some features with MoG. SH also attempts to com-pute exclusion regions. This is achieved using the fact that the function k(zI�A)�1kis subharmonic in regions that do not include any eigenvalues and therefore obeys amaximum principle. For a given value of �, SH, like MoG, labels every gridpoint z con-tained in ��(A) with the corresponding �min(zI � A). On the other hand, SH startsfrom a region that does not necessarily enclose all of �� on which it applies a combina-tion of subdivisions, exclusions and expansions to approximate the pseudospectrum.As a result, it di�ers from the IE methodology. The exclusion regions are rectanglesinstead of disks. The exclusions are performed using a discrete form of the maximumprinciple; because of discretization errors, the process always requires the applicationof correction steps. This is in contrast to our method, where corrections are eitherunnecessary version (MoG0) or rarely needed.4. Numerical Results. We have experimented with MoG using codes developedin MATLAB 5.3 and running on a 700 MHz Pentium based system. All test matricesare from the Test Matrix Toolbox [12].We used as 
 and grid 
h the rectangular regions computed by pscont using auser-set gridsize. The minimum triplets were computed using MATLAB's intrinsic svdfunction. In the sequel, in order to distinguish the performance of the two versions ofMoG, we call MoG0 the �rst version, based on the guaranteed exclusions of Theorem 2.4to distinguish from the second version, based on the aggressive strategy of Corollary2.13. In all examples the grid was swept in a natural order, from left to right andfrom top to bottom.The �rst three experiments are with matrices kahan and grcar of size n = 32,� = 1e� 1 and a 40� 40 grid. Figure 4.1 shows the disks that are generated from theapplication of Theorem 2.4 and the contours that result from those points that do notbelong to any exclusion disk. In this particular experiment, we did not exploit thefact that the image is symmetric with respect to the real axis. The total number of�min computations was 894 as opposed to 1600 for GRID, highlighting the e�ectivenessof the method.The next experiment shows the impact of Theorem 2.4 (Figure 4.2 and of Corollary2.13 (Figure 4.3) to matrix kahan. The center of each disk is marked with `+'. Thetotal number of �min computations using the former was 372, whereas for the latterit was 273. The initial region is marked in the rectangle with thick sides, while therest we provide for convenience. As you can see, in addition to the reduction to the



14 Fig. 4.1. Application of Theorem 2.4 using grid of size 40 � 40 for matrices grcar of sizen = 32 and � = 1e� 1.
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matrix region 
 MoG0 MoGgrcar(n) [�0:91; 3:27]� [�3:41; 3:41] 659 617kahan(n) [�3:29; 1:89]� [�2:83; 2:83] 248 183chebspec(n,0) [�428:49; 428:49]� [�317:65; 317:65] 220 86chebspec(n,1) [�456:45; 164:68]� [�337:55; 337:55] 154 60chow(n) [�2:63; 19:60]� [�12:22; 12:22] 228 135triangle(n) [�0:87; 1:37]� [�1:22; 1:22] 776 762propeller(n) [�1:16; 1:63]� [�1:50; 1:50] 748 723fish(n) [�0:62; 3:82]� [�1:70; 1:70] 697 675Table 4.1Number of �min evaluations in a 50 � 50 grid using the two versions of algorithm MoG for� = 1e� 1 and n = 32.number of triplet computations, these diagrams suggest that there is little damage inoverestimating the size of the domain.The next experiments are with several matrices with interesting pseudospectra,all of size n = 32, using for initial domain 
 the rectangles de�ned by the �eld ofvalues criterion for two di�erent � = 1e�1 and 1e�3. Once again, the improvementsin performance are signi�cant. Tables 4.1 and 4.2 show the number of �min evaluationsusing both versions of the algorithm: The conservative, based on Theorem 2.4, as wellas the more aggressive one based on Corollary 2.13. In the latter case, the algorithmwas instrumented to correct any erroneous exclusions. We observe that both versionsof the algorithm o�er signi�cant reductions, while the aggressive version at timesachieving threefold reductions in the number of �min calculations.



15Fig. 4.2. Application of Theorem 2.4 using grid of size 40 � 40 for matrices kahan of sizen = 32 and � = 1e� 1. The center of each disk is marked with `+'.
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matrix region 
 MoG0 MoGgrcar(n) [�0:59; 2:95]� [�3:09; 3:09] 678 397kahan(n) [�2:84; 1:45]� [�2:38; 2:38] 231 92chebspec(n,0) [�376:03; 376:03]� [�265:18; 265:18] 271 95chebspec(n,1) [�400:66; 108:89]� [�281:76; 281:76] 200 64chow(n) [�0:52; 17:49]� [�10:11; 10:11] 285 104triangle(n) [�0:75; 1:24]� [�1:09; 1:09] 726 595propeller(n) [�1:02; 1:48]� [�1:35; 1:35] 709 524fish(n) [�0:27; 3:48]� [�1:35; 1:35] 832 624Table 4.2Number of �min evaluations in a 50 � 50 grid using the two versions of algorithm MoG for� = 1e� 3 and n = 32.Table 4.3 shows the e�ect of increasing gridsize (70� 70 and 90� 90 ) on someof the matrices used above.We already saw earlier (Figure 4.2) that when the �eld of values criterion is appliedto obtain a starting region for kahan of size n = 32 and � = 1e� 1 on a 40� 40 grid,the initial domain was [�3:3; 1:9]� [�2:9; 2:9] and the total number of singular valueevaluations was 372. How would the number of evaluations be if the initial regionwere selected to be much larger? We know that in the case of GRID, such a choicewould increase signi�cantly the cost. To see the e�ect on our algorithm, we applied iton the same matrix, using this time an initial region that was expanded by 10 unitsin each direction, i.e. [�13:3; 11:9]� [�12:9; 12:9]. In order to obtain the same kindof resolution for the pseudospectrum, for the latter case we use the same grid with



16 Fig. 4.3. Application of Corollary 2.13 using grid of size 40 � 40 for matrices kahan of sizen = 32 and � = 1e� 1. The center of each disk is marked with `+'.
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matrix size n region 
 MoG0 MoGgrcar 70 [�0:59; 2:95]� [�3:09; 3:09] 1216 62590 1881 881kahan 70 [�2:84; 1:45]� [�2:38; 2:38] 379 13190 558 189triangle 70 [�0:75; 1:24]� [�1:09; 1:09] 1377 104590 2210 1615propeller 70 [�1:02; 1:48]� [�1:35; 1:35] 1327 90690 2095 1367Table 4.3Number of �min evaluations for varying grid sizes using two versions of algorithm MoG and� = 1e� 3.the smaller initial region. This led to a grid of 190� 177. The application of MoG0required 383 singular value evaluations, that is only 11 more than the use of the muchtighter domain. On the other hand, GRID would have required 33; 630 = 190 � 177evaluations compared to 1; 600. The disks are shown in Figure 4.4. The large size ofthe disks that are far away from the pseudospectrum enable the fast pruning of theinitial region. The above shows that the algorithm is not sensitive to the choice ofthe initial enclosing region, in the sense that even if the region is much larger thanthe largest sought pseudospectrum, the exclusion disks rapidly reduce the size of thedomain. As remark 2 after Theorem 2.14 indicates, when jzj is large relative to theelements of A, zI�A is near diagonal with diagonal terms almost equal to z, therefore�min(zI � A) � jzj, therefore the exclusion disk D(z; �min(zI � A) � �) would have



17Fig. 4.4. Application of Corollary 2.13 using grid of size 190 � 177 for matrix kahan of sizen = 32 and � = 1e� 1 in a large initial region. The center of each disk is marked with `+'.
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large radius and hence would exclude many of the redundant points of 
.5. Further Research. We have presented new algorithms for the computationof matrix pseudospectrum and the localization of matrix spectrum. Our results wereencouraging and suggest that pseudospectrum localization is a powerful tool for thefast computation of pseudospectra. There are several issues that are currently underinvestigation.The �rst question is how matrix-based methods can be integrated eÆciently in ouralgorithms. It could be interesting to �nd if exclusion theorems can be transferred inthe context of these methods. In general, we believe that our results could be provenvery useful in the task of integrating di�erent approaches in state-of-the-art software,as proposed in [18]. The second issue is the implementation of these algorithms,especially in a parallel environment. Our initial experiments, using ARPACK on anSGI Origin 2000 system with 8 processors, and running MoG in MIPS Fortran ledto encouraging speedups; a state-of-the-art implementation is under development.Another line of research follows from the observation that our exclusion results canalso help for spectrum localization. Furthermore, the fact that �min(zI � A) is 0when z is an eigenvalue, can be used as a starting point for algorithms for computingpseudospectra [3] and eigenvalues [14].Notes and acknowledgments. Part of this work was included in the DiplomaThesis of the �rst author while he was a student at the Department of Computer En-gineering and Informatics of the University of Patras. We thank Mr. A. Sidiropoulos,who implemented the algorithm in Java and Mr. C. Bekas for helpful discussions.The authors would also like to thank the organizers of the celebration of ProfessorRichard Varga's 70th birthday at Kent State University as well as of the Foundations
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