EXCLUSION REGIONS AND FAST ESTIMATION OF
PSEUDOSPECTRA

I. KOUTIS* AND E. GALLOPOULOST

Abstract. The construction of an accurate approximation of the e-pseudospectrum Ac(A) of
a matrix A by means of the standard grid method (GRID) is a highly demanding computational
task, even for matrices of medium size. At each point of the domain of interest, (GRID) computes
omin(2] — A) and uses that information in order to to classify the point as belonging to Ac(A)
or not. In that sense, GRID makes only “pointwise” use of the information it computes at each z.
In this paper we prove that knowledge of the minimum singular triplet [omin(2] — A), Umin, Ymin)
at z € C provides much more information that can be used to locate the pseudospectrum. In
particular, from every z where we compute the triplet, we show that it is possible to construct
“exclusion disks” that do not intersect the pseudospectrum. These results are used in the context
of an “inclusion-exclusion” methodology to implement the rapid and judicious pruning of the initial
domain enclosing the pseudospectrum. We propose two versions of the method and show that these
lead to a substantial reduction of the cost of the computation while retaining the robustness and
embarassingly parallel processing advantage of the standard grid approach.
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1. Introduction and motivation. The pseudospectrum, A.(A), of a matrix
A € C"*" has become a tool for the investigation of the behavior of several matrix-
dependent algorithms, ranging from the behavior of iterative methods for large linear
systems to the behavior of time-stepping algorithms. It is widely acknowledged, how-
ever, that computing pseudospectra with current technology is expensive, even when
the matrix in question is of moderate size and this has led to several research activities
attempting to address this problem. We refer to the recent paper by L.N. Trefethen
([18]) for a survey of the state-of-the-art.

If we denote by A(A) the eigenvalues of A, and by 0y,i,(B) the minimum singular
value of a matrix B, two equivalent definitions of A¢(A) are given in Table 1.1. We
call the standard reference method for computing pseudospectra GRID and note that
it estimates A, at a region of the complex plane 2 by first discretizing the region
with a grid Qp, then computing omin (2] — A) for all z;, € Qp,, and finally plotting
the e-contours. This function is implemented as function pscont in the popular Test
Matrix Toolbox for MATLAB [12]. Therefore, the cost of GRID is approximately equal
to Team = |Q4|Co,..,, Where || denotes the number of points of the grid and C,
denotes the average cost for extracting the omin.

It is clear that the cost of GRID becomes prohibitive as the grid or matrix sizes
increase. Methods that attempt to reduce the cost of computing pseudospectra via
a reduction of the factor C we call matriz-based, while those that are based on a

Omin

reduction of |2,] we call domain-based.

min
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Definition 1:
A(A)={z€C: zeAA+E) with |E|| <ee>0}.
Definition 2:

A(A)={z€C: omn(zl —A) <ee>0},
TABLE 1.1
Equivalent definitions of the matriz pseudospectrum Ac.

We focus here on domain-based methods, i.e. methods that attempt to use avail-
able information in order to reduce the number of points where it is necessary to
compute the minimum triplets.

When the matrix is real, the simplest known method for reducing the work is
domain-based and is used routinely, e.g. in the Test Matrix toolbox; this is none other
than applying the fact that complex eigenvalues of real matrices come in conjugate
pairs, therefore we only need to compute the pseudospectrum at either the positive
or negative imaginary halfplanes.

Other than this obvious but effective approach, the two major domain based
methods that exist in the literature are: i) the method of Gallestey [9], that starts
from an initial region and then builds an approximation to the pseudospectrum by
means of systematic pruning and/or expansion of that region. These steps are based
on the subharmonicity of the function ||(2I — A)~!||. ) The approach of Bruehl
[5] to compute A (A) by tracing its boundary OA.(A) using predictor-corrector path
following; this method was further developed into a parallel and more robust algorithm
by Bekas and Gallopoulos [2]. Path following has been shown to be very effective,
but in some cases it might fail or miss certain parts of the pseudospectrum, e.g. when
there are multiple components. Furthermore, even though it has been extended in [2]
to offer large grain parallelism, the parallelism is moderate and will not readily scale
to run on a large number of processors for a fixed matrix size and resolution of the
pseudospectrum boundary.

In these respects, the standard workhorse GRID method, still appears to offer
greater robustness and more parallelism. Unfortunately, much of the work in GRID
is also redundant, since a portion of the gridpoints lie outside the region of interest.
Recalling that the pseudospectral regions form nested sets, this means that many
gridpoints lie outside A¢(A) for the largest € of interest.

In view of this, Braconnier et al. have studied the problem of approximating a
region enclosing the eigenvalues which could also serve as an approximation to the
pseudospectrum [4]. Amongst the four methods they examined - tabulated in Table
1.2 - they found that the one based on the field of values provides the most useful
approximation to A(A4) - in terms of pertinent information and computational costs.

Regarding the methods of Table 1.2, we note that i) the first three produce regions
2 enclosing A(A); on the other hand, there is no guarantee that A.(4) C Q as well -
even though in many cases () is so large that it actually encloses the specific region;
i1) all except the Gershgorin disks return convex shaped regions (2.

It is worth noting also that a slight modification of the first - “eigenvalue” method
- is the default in function pscont mentioned earlier. The vertices of the rectangle are
computed by first obtaining the eigenvalues, getting their minimum and maximum
real and imaginary parts, say AR, AE_ AL AL and then defining the vertices

min’ “*max’ “‘min? ax]7



From eigenvalues: Use Q! = [min;_;., Re(\;), max;—1., Re(A;)] X
[—d,d] D A(A), where d = max;=1.,|\i+1 — Ai| and A; are the
eigenvalues of A computed using a backward stable algorithm.

From matrix norms: Use Q = D(0,||4]]2) D A(4).

From Gershgorin disks: Use

0= U D(Oémz lvij|) D A(A)

i=ln i#£j
Field of values (FOV): Use

Q = FOV(4) + D(0, e[| All2) > A.(4),

where FOV(A) denotes the field of values of A.

TABLE 1.2
Some methods for approzimating a region Q enclosing A(A).

Fi1G. 1.1. Pseudospectrum contours, computed using pscont, for matrices grcar (left) and kahan
(right) of size n = 32 and several values of €.

as AE—a(AE — AL ) etc. where a is some expansion factor (the default in
pscont is 0.1). It is easy, however, to construct examples where, for typical values
of ¢, the resulting 2 fails to include all of A.(A). For instance, Figure 1.1, shows
the pseudospectrum contours generated using pscont for matrices (also from [12])
grcar and kahan, of size n = 32, corresponding to values of € from 1071% to 1071;

unfortunately, some contours lie outside the region used by pscont.

If, on the other hand, one follows the field of values criterion described in Table 1.2
to estimate (2, then it is certain that A.(A) C Q. For that reason, in the remainder
of this paper, we will use this criterion in its simplest form. In particular, we let the
Hermitian, Ay = AJTTA*, and skew Hermitian, Asy = A=A parts of A we use the
known relations FOV (Ag) = ReFOV (A) and FOV (Asy) = iImFOV (A) and let

(L.1) Q= Amin(A#r) — €[l All; Amax (Arr) + €] All]
X[Amin(Asz) = €l|All, Amax(Asm) + €l|Alll;




Fic. 1.2. Pseudospectrum contours, computed using pscont and the field of values criterion
implemented by relation (1.1), for matrices grecar (left) and kahan (right) of size n = 32 and several

values of €.
o ‘

1. Obtain an inclusion region 0 D A.(A).

2. Compute set of exclusion regions A intersecting Q, ie. QﬁAj £,
so that Ac(A)NA; =0,j=1:n and set Q = Q\ Uj=1:n Aj.
Discretize €2 and call the resulting grid ), C Q.

4. Compute the opin’s on Q.

TABLE 1.3
General Inclusion-Exclusion methodology

@

we are assured that € will fully enclose the pseudospectrum of A. Furthermore, the
computation of the bounding rectangle is relatively easy since it only involves the
computation of the norm of A and of the extreme eigenvalues of Hermitian matrices.
On the other hand, this is a convex region that might cause many redundant com-
putations in GRID. This is illustrated in Figure 1.2, where we used the above region
together with function pscont for matrices grcar and kahan. Observe that in both
cases GRID would need to perform computations on too many extraneous points: In
the first case because of the mismatch of 2 (convex) with A, (non-convex), while in
the latter because of a significant overestimate of the bounding region.

The above discussion motivates the design of methods that i) guarantee that the
enclosing region contains the pseudospectrum and i7) the computational complexity
is not severely penalized by any mismatch of the shapes of 2 and A.(A4). The general
approach that we propose in this paper we call Inclusion-Exclusion, abbreviated Z&,
and has the general structure shown in Table 1.3. The idea is to start from an initial
region that contains the pseudospectrum (we call it “inclusion region”) and then
proceed to prune it from extraneous points, that do not belong to the pseudospectrum.
The question then becomes one of rapid computation of effective exclusion regions.

The original GRID method is a trivial case of Z&: It computes the singular value
decomposition at every point of 2 and depending on the result it classifies a point as
being inside or outside the pseudospectrum. In that sense, GRID makes only “point-
wise” use of the information it computes at each z. In this paper we prove that



knowledge of the minimum singular value provides much more information that can
be applied to effectively remove larger regions. The process can be further enhanced
if we know the corresponding minimum singular vectors. In particular, from every
z where we compute the triplet, we show that it is possible to construct “exclusion
disks” that do not intersect the pseudospectrum. These results are used in the context
of the “inclusion-exclusion” methodology to implement an algorithm, we call Modified
Grid Algorithm (MoG), for the rapid computation of the pseudospectrum. We propose
two versions of the method, one based on removing regions that provably exclude the
pseudospectrum and one based on removing regions that exclude larger regions that
most often exclude the pseudospectrum.

We show that both variants of MoG substantially reduce the number of singular
value evaluations while retaining the advantages of GRID, such as simplicity, robustness
and independent computations lending themselves to parallelism of high granularity.
Our numerical examples include standard test matrices of small size as well as larger
matrices whose singular values are computed by means of ARPACK [15]. We also
show that the algorithm is not very sensitive to the choice of the initial enclosing
region, in the sense that even if the region is much larger than the largest sought
pseudospectrum, it leads to very fast pruning of most of the extraneous regions.

The paper is organized as follows. In Section 2 we present the main theoretic
results that enable the construction of MoG. In Section 3 we describe MoG and analyze
its main characteristics. In Section 4 we present numerical experiments with MoG.
Finally, in Section 5 we set forth directions for future research.

2. Theoretical background. We first introduce some notation. Denote by
D(z,0) and D°(z, g) the closed and open disk respectively, with center z and radius
0. For any given (closed) disk D, we denote by D¢ its complement. For nonsingular
A e Cv " cond(A) = ||A||||A~1]| denotes the spectral condition number. For a given
eigenvalue z, of a matrix, the eigenvalue condition number or eigenvalue sensitivity
is the reciprocal of the cosine of the angle between the right and left eigenvectors of
A corresponding to z, i.e. k(ze) = W

For any matrix B with singular value decomposition B = U*XV, we will denote
by (0min, Umin, Umin) the triplet consisting of the minimum singular value and the
corresponding left and right singular vectors of B and call it minimum triplet. We
also use the letter N to denote a generic normal matrix.

We first collect known results that are for our presentation. One of the theorems
in the original paper of Bauer and Fike has an immediate interpretation in terms of
pseudospectra:

THEOREM 2.1. [1, Thm.Illa] . Let A € C**™ be diagonalizable and X 1 AX = A.
Let also ||E|| = €. Then the union of the disks D(zy,cond(X) - €) contains all the
eigenvalues of A+ E, that is Ac(A) C J; D(zi,cond(X) - €).

When the matrix is normal, Theorem 2.1 can be refined further:

COROLLARY 2.2. Let N € C**™ be normal and z;,i = 1,...,n its eigenvalues,
then

Ac(N) = D(zi€).
i
Proof. Since N normal then cond(X) = 1 and the rightward inclusion follows

from Theorem 2.1. Let @Q*N@Q = A where A is diagonal and @ unitary. The equality
follows since for any z € |J, D(2i,€), the diagonal matrix E = (z — #;)I is such that
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[|[E]| < € and one eigenvalue of N+ E is z since Q* (N+ E)Q = A+ (z—2;)I, where A is
the diagonal matrix of eigenvalues of IV, therefore, the eigenvalues of IV that are equal
to z; are driven to z by the perturbation E. Furthermore ||E|| = |[|A|| = |z — 2| < €. O

We next list some properties of the pseudospectrum that will be useful in the
sequel.

PROPERTIES 2.1.

1. A(A) C A(A) fore> 0.

2. e<e & A(A) CA,(A).

3. If N is a normal matriz whose eigenvalues coincide with those of A, i.e.
A(A) = A(N), then A(N) C A (A).

The first two properties follow directly from the definition of the pseudospectrum.
The last one is a consequence of Theorem 2.1, Corollary 2.2 and the facts that the
condition number of any matrix is at least 1 and that minimum is attained by all
normal matrices.

2.1. Localization theorems based on exclusions. In this section we develop
the theoretical tools that will form the bases of our algorithms.

DEFINITION 2.3. Given a matriz A and € > 0, we define a region A of the
complex plane to be an exclusion region with respect to the e-pseudospectrum of A
( “exlusion region” for short when the context is clear) if A does not contain any point
of Ac(A).

In many cases, the exclusion region will be a disk, in which case we will be referring
to is as “exclusion disk”.

Our first result provides a simple means for computing an exclusion region on the
basis of oy (2 — A).

THEOREM 2.4. If oin(2] — A) =1 > € then D°(z,7 — €) N A(A) = 0.

To prove the above theorem, we need the following lemma, whose proof can be
found in [13].

LEMMA 2.5. Let B, E € C"*™. Then the following inequality holds:

|Umin(B + E) - Umin(B)| S Umax(E)

We can now prove the previous theorem.

Proof. Let omin(2I — A) =7 > e and Z € D°(z,7 — €). We need to show that
Omin(Z] — A) > €. Then we can write 2l — A =21 — A — (2] —ZI). Let B=21— A
and E = zI — ZI. Using Lemma 2.5 it follows that

|omin(ZI — A) — omin (2] — A)| < omax(E) = |2 — Z|.
Therefore
—|Z2 —z| < omin(Z] — A) — opin (21 — A)

and since omin(2I — A) = r and |z — 2| < r — € the result follows. O

The above result tells us that if at any z € C we have computed omin (21 —A) = r,
then D(z,r —€) is an exclusion disk of A. Clearly, the knowledge of exclusion regions
can reduce the number of points where op,;;, is sought.

We next show that when a matrix is normal, the exclusion region obtained from
Theorem 2.4 is the disk with maximum radius that we can create that will not contain
any points of the pseudospectrum. In that sense, assuming that we follow the theorem



A(02) | A(04) | A(06) | A(0.8)
z1 = 0.5+ 0.5% 1.49e-03 | 1.02e-02 | 5.92e-02 | 1.72e-01
2 =02402i | 6.03e-07 | 1.78¢-04 | 6.06e-03 | 5.32e-02

z3 = —0.2+40.5¢ | 4.01e-09 | 2.36e-06 | 2.19e-04 | 3.91e-03
TABLE 2.1
Values of omin(21I — A(a)) where A(a)=pentoep(32,0,,0,0,1).

and obtain exclusion regions that are disks, the exclusions will be maximal, in the
sense that they “touch” A.(A) and therefore cannot be expanded any further.

COROLLARY 2.6. If N € C"™™"™ is normal with eigenvalues z;,i = 1,...,n, and
omin(2L — N) =1 > € then the boundary 0D(z,r — €) contains at least one point of
A(N).

Proof. From the definitions, it follows that z € A,.(N). Theorem 2.2 implies that
A (N) = U; D(zi,7), therefore there is some eigenvalue z;, for which z € 0D (z, ).
Therefore the disks D(zy,€) and D(z,r — €) have exactly one point in common. The
proof follows from the observation that D(zy,€) C A(N). O

The corollary also extends a result of Hald ([10]) and hence the list of necessary
conditions for normality presented in [6].

The following lemma is also useful:

LEMMA 2.7. If N € C**™ is normal then for any A € C**™ that has ezactly the
same eigenvalues as N and any given z, it holds that D(z,ra —€) C D(z,rn — €),
assuming that 14 = omin(zI — A) and ry = omin(zI — N) > 0. Furthermore, the
exclusion disk D(z,r — €) will be the same for any other normal matriz that has
exactly the same eigenvalues.

Proof. From standard results [Amin(A4)]7* < [|A7Y| = 1/omin(A). Therefore
Omin(4) < | Amin(4)| = omin(N). Furthermore, if N is also normal and has the
same eigenvalues as N then omin(N — 2I) = [Apin(V — 2I)| = |)\min(1\7 —zI)| =
|Omin (N — 21)|. O

The above lemma tells us that for a given spectral set, normal matrices achieve
maximal exclusion region. When the matrix is highly non-normal, however, the ex-
clusion region suggested by Theorem 2.4 becomes smaller and hence less effective.
This is illustrated in Table 2.1, which shows the values of o, (2I — A) for several
points z and matrices A that are increasingly non-normal, the measure used being
the Frobenius norm v(A) = ||A*A — A*A||lr [11]. Specifically, we use the matrices
A(a)=pentoep(32,0,a,0,0,1) [12]. We note that the value of « has little effect
on the distribution of the eigenvalues of A(«). On the other hand, for this matrix
we observed that as a decreases, the condition of the eigenvalues (computed by the
function eigsens of Test Matrix Toolbox) as well as the spectral condition number
of A(«) increase monotonically.

An interesting interpretation of the numbers in Table 2.1 is that increasing non-
normality leads to faster expansion of the pseudospectrum. This motivates us to
define a measure of local sensitivity for the pseudospectrum.

DEFINITION 2.8. Let ga(z) = omin((z + ty)] — A) where z =z + iy € C'\ A(A).
We call sensitivity of the pseudospectrum of a matrix A at a point zo the inverse of
the magnitude of the gradient of ga at zg, that is

(2.1) pssalzo) = [Vga(2)| 2, -

Subsequently, we will use the notation pss(z) whenever is clear from the context



to which matrix we refer. We next investigate the properties of pss(z). When z =
x+iy € C\ A(4), what we call pseudospectrum sensitivity is immediately related to
the sensitivity of the minimum (simple) singular value, according to the definition of
Sun in [8]. Therein, the sensitivity of a simple, non-zero, oy, (21 — A) with respect
to z and y was defined as the pair of absolute values |2 oyin(2] + iyl — A)| and
|g—yamin(:nl +iyl — A)|.

How difficult is to compute the above pseudospectrum sensitivity? Not much, as
the following following theorem, stated in [5], indicates.

THEOREM 2.9. Let z+iy € C\A(A). Then g(z,y) is real analytic with respect to
each coordinate x and y in a neighborhood of (x,y) if omin((z +iy)I — A) is a simple
singular value. Furthermore, the gradient of g at z is

Vg(il?, y) = (Re(v:;linumin): [m(vminumin)) = U;ﬁnumin-

It follows that pss(z) is computable from the left and right minimum singular vectors,
which in turn can be computed along with the minimum singular value. In particular:
COROLLARY 2.10. Using the above notation, at any point z where oy, (21 — A)
is simple, the pseudospectrum sensitivity is
(5) = >1
pss(z) = —— > 1.
|'U:;11numin|
The inequality follows directly from the definition of the inner product and the fact
that the singular vectors are of unit magnitude.
Since any normal matrix is diagonalizable by means of orthogonal similarity trans-
formations, Corollary 2.10 implies the following:

COROLLARY 2.11. If N is normal then pssy(z) = 1 at every point z € C\ A(A).
Therefore, the minimum value of pss is 1 and is attained at all points where g is
analytic by the class of normal matrices. It is worth noting that Theorem 2.9 was
also fundamental in establishing the original path following method of Bruehl for
computing pseudospectra [5].

The fact that g(x,y) is real analytic gives rise to an interesting association between
its values and paths in the complex plane. In particular, we prove the following:

THEOREM 2.12. Let zg = zo + iyo and zy = x1 + iy be two points and let pss
be defined on those as well as on all points of the line segment L connecting them. If
pss(zo) < pss(z) for every point z in L then

lg(z1,y1) — g(x0,y0)| - pss(20) < |21 — 20

Proof. By definition g(z,y) — g(zo,yo0) = f((fo’z)o) Vg(z,y)ii dL , where 7y, is the

unit vector parallel to L oriented from zg to z;. Then using Theorem 2.9

(z1,y1) (z1,91)

l9(z1,91) — 9(20,50)| = | Vo(e,y) - fip dL| < f Vg(e,y) - ie] dL

(z0,y0) (z0,y0)

(z1,91) (z1,91)
=4 psse) AL <pssa) T dL=psse) ol -l
(

%0,Y0) (z0,y0)

O
Following the notation used in Theorem 2.12 we give a corollary that will be
useful in the localization of A(A). Let R = (g(z0) — €) - pss(zo).
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COROLLARY 2.13. Let z; € OA(A). If the assumptions of Theorem 2.12 hold,
then D¢(z9, RYNA(A) # 0. If furthermore z1 is a point which minimizes the distance
d(z0,Ac(A)), then D°(z9, R) is an exclusion disk.

If A is normal, then R = g(z9) — € because of Corollary 2.11. In that case, we
know from Theorem 2.4 that the disk D°(zg, R) is an exclusion disk, hence Corollary
2.13 reduces to Theorem 2.4, which is known to hold without the need to impose
the special assumptions of Theorem 2.12. In order to use Corollary 2.13, however, it
becomes necessary to discuss the implications of the aforementioned assumptions.

We next extend the definition of pseudospectrum sensitivity at points, z., that
are eigenvalues of A. Then z.I — A would be singular, therefore oy, (2. — A) = 0.
Theorem 2.9 specifically excluded points of the spectrum because it was based on
a result of Sun ([7]) that did not cover the case of zero singular values, which, in
general, are not differentiable. Different analyses (see [7] and [17]) have shown that
in the neighborhood of a simple zero singular value, the following expansion holds:

Omin (2 = A) = |05, Bumin|* + O(|E|]®), where E = (2 — z.)1,
= ofyintminl2|z — 2|2 + O(IEI),

from which it follows that

|omin (2] — A) — omin(ze] — A)|

|z — z¢|

(2.2) | — [vintimin| | = O(|E|'?),

which tends to 0 as z — z.. Therefore, |V¢(2)|,=s. = |v};nUmin|, consequently,
pss(ze) = or 1u T We are now in the position to prove the following:

THEOREM 2.14. Let z. be a simple eigenvalue of A € C**™. Then

zlLH;E pss(z) = K(ze)

1
R
it is enough to show that ﬁ = r(z). As before, matrix A — 2.1 is singular, therefore
it has a zero eigenvalue and its minimum singular value is 0. We also assumed that
ze is a simple eigenvalue. Then (A — z.I)vmin = Omin (A — zel)umin = 0, therefore
AvUmin = ZeUmin- This implies that vy, is parallel to z, the right eigenvector of A
corresponding to z.. In the same manner, u’; (A — z.I) = 0, therefore u*, A =
ZeUni,- Hence wr . is parallel to the left eigenvector y*. Since wUmin,Umin are unit
vectors, it follows that

Proof. We have already shown that lim,_,. pss(z) = pss(z.) Therefore,

*

0 ] = |2 = 127
i min| — - ’
- 2l Myl llzlllyl

which proves the assertion. O

We now give some general characteristics of the behavior of pssa(z) which are
independent from A, and which can justify the use of Corollary 2.13 as a localization
tool, even when it is not known whether the prerequisite assumptions hold.

1. The function pss is continuous, therefore, if z is a point at which pss(z) <
pss(ze) = k(ze), the line segment from z to z. is expected to contain a
neighborhood in which the hypothesis of Theorem 2.14 holds.

2. Let Q*AQ = A + R, where R strictly upper triangular be a Schur form of
A. Then ||R|| can be used as a measure of A’s the departure from normality.
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Since Q* (21— A)Q = zI —A—R = z(I— AL it follows that for points z that
are far from the spectrum, matrix I — é becomes close to being diagonal and
thus normal. Since pss(z) is continuous and pss(z) = 1 for normal matrices
(see Corollary 2.11), pss(z) will approach 1 from above as z becomes very
distant from the spectrum. For such large z, the exlusion disk predicted by
Corollary 2.13 will be of size that is similar to the exclusion disk predicted by
the original Theorem 2.4. It is thus possible, at those points, to apply only
the latter theorem, thus avoiding the computation of singular vectors that
appear to be needed to apply the former Corollary.

3. Since g(z) is differentiable and real-valued, the mean value theorem states
that there is ¢ € L, the line segment between zy and z;, where |g(zo) —

g9(z1)| = ‘;gsf(g‘. The basic assumption of Theorem 2.12 can be relaxed to

pss(z) > pss(§) corresponding to an exclusion disk centered at ¢ with radius
R = lg(z1) — elpss(€).

The first observation above also implies that if the conditions of the Theorem
cannot be guaranteed, it is also possible that there will be erroneous exclusions ,
i.e. the exclusion disk will contain parts of A.(A). We next conduct experiments to
show that in practice, this situation rarely occurs. In particular, we used MATLAB
and a 100 x 100 grid and checked the gridpoints excluded by means of Corollary
2.13 for four matrices, from [12], that are commonly used to test pseudospectrum
codes (propeller, triangle, smoke, grcar). Figure 2.1 illustrates, for given e,
the eigenvalues of each matrix (denoted by “x”), as well as the grid points (denoted
by “”) that are erroneously considered not to belong to the pseudospectrum because
they fall inside the exclusion disk corresponding to Corollary 2.13. It is clear from the
illustrations that relatively few points are excluded erroneously, and that most are
clustered in the neighborhood of eigenvalues. Since the ZE methodology is principally
designed to provide a fast pruning of the region, such points are of little interest
anyway. We conclude that even when the assumptions leading to Corollary 2.13
cannot be checked, the computed disks are very likely to be exclusion regions and can
be used as long as we have a mechanism in place to correct any wrongly excluded
points.

3. The Modified Grid Algorithms. In the remainder of this paper we demon-
strate the effectiveness of these ideas. We describe two simple implementations of MoG
that automate the process of pruning. We emphasize that our objective was to see
the concepts established in the discussion so far in practice rather than providing the
most efficient implementation.

For a given grid, the objective of the proposed algorithms is to classify gridpoints
as “in”, if they belong A (A) or as “out” otherwise. The algorithm sweeps the grid-
points in some predefined order, e.g. from left to right and from top to bottom, the
gridpoints, and marks the points appropriately. Initially, all points are marked as
belonging to the pseeudospectrum. If for the point z that is currently under consid-
eration it is found that o, (2] — A) < €, then the point lies in the pseudospectrum.
Otherwise, omin(2f — A) > €, in which case we have two alternatives:

Standard exclusion: We compute the disk centered at z with radius r = oy (21 —
A) — € and mark all gridpoints within the disk as not belonging to the pseu-
dospectrum. According to Theorem 2.4, these points can safely be excluded
from future consideration.

Large exclusion: We compute the disk centered at z with radius R = (omyin(z] —
A) — e)pss(z). According to Corollary 2.13, z is not in the pseudospectum
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propeller(32), erroneous exlusions 1.76% triangle(32), erroneous exlusions 1.82%
15 T T T T 15 T T T T

smoke(32) erroneous exclusions 6.69% grear(32), erroneous exlusions 3.58%
15 T T T 25 T T T T T T T

e

F1a. 2.1. Erroneous exclusions and their frequency.

while all other points inside the disk are marked as candidates for exclusion;
in fact, as the numerical evidence presented above suggests, in all likelihood,
these points will be outside the pseudospectrum.
In the MoG algorithm, presented in Table 3.1, variable mmx is set by the user to select
one of the above versions. When mmx=1, we must apply a correction procedure, to
recover any points that were mistakenly excluded. There are several alternative ways
for setting up a systematic correction procedure, applied whenever mmx = 1, to recover
any points that were erroneously excluded by Corollary 2.13; see [9] for one such
example. Our correction consists of two parts.
proc_corr_A Before applying an exclusion, check whether D°(z, R) would contain points
z for which it is already known that they satisfy oymin(21 — A) < €. If yes,
exclude only the gridpoints in the disk D°(z, oyin(2I — A)).
proc_corr B Inspect all excluded gridpoints that are adjacent to points that are marked
as “in” and check if they satisfy omin(2I — A) < €. For any point that does,
find the center, 2, of the disk that led to its exclusion, mark again all points
of the excluded disk as “in” and repeat the exclusion using the (smaller) disk
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1. choose enclosing region 2 D A (A),
discretize it with Q; and mark all points of 25, as in.
2. for every grid point z € Qp
compute o = oy (21 — A).
if o > € then
case mmx = 0: mark all points in D°

z,0 —€) as out
and set Qp = Qp \ D° )

Z,0 —€

S~~~ P~

case mmx = 1: mark all points in D°(z,pss(z)(c — €)) as out
and set ), = Qp \ D°(z,pss(z)(o — ¢€)).
Apply proc_corr A
end for

3. if mmx = 1 apply proc_corrB.

4. Draw contours for the selected values of € at all points marked as
TABLE 3.1
The MoG algorithm.

4 Y

‘in”.

1. Choose Q and discretize Q C Q.
2a. On each grid column move downwards using exclusions.
Stop when the first point inside A¢(A) is encountered.
2b. On each grid column move upwards using exclusions.
Stop when the first point inside A¢(A) is encountered.
3a. On each grid line move rightwards using exclusions.
Stop when the first point inside A.(A) is encountered.
3b. On each grid line move leftwards using exclusions.
Stop when the first point inside A¢(A) is encountered.

TABLE 3.2
The MoGB algorithm for approzimating the pseudospectrum boundary.

D°(2,0min(2I — A)). Repeat until no further erroneous exclusions appear.
We finally note that if we are only interested to estimate the boundary dA.(A)
for some given value of €, MoG can be easily modified to approximate such a boundary
at much less cost than its full version. The idea is to apply exclusions from the outer
boundary of the enclosing region 2 moving inwards, in some systematic manner, until
Ac(A) is reached. We call this, the Modified Grid Boundary Algorithm (MoGB) and
present it in Table 3.2.

3.1. MoG basic characteristics and analysis.. The cost of MoG is approxi-
mately equal to
(3.1) Thoe = (1% = [Xn])Copin
where || denotes the number of points of the grid, X}, denotes the number of points
of the grid that were excluded, and C,, ,, denotes the average cost for extracting
the omin. The term |X}| depends clearly on €, and on the specific topology of A..
Thus, the task of determining approximately the size of |X}| is difficult and we do
not pursue such an analysis here. On the other hand, MoG retains the advantages
of GRID. It is robust, since erroneous exclusions can be corrected with not much
difficulty, and accurate, in the sense that for a given grid detail, it will produce the
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best possible approximation to A.(A). Like GRID, MoG contains a great amount of
large-grain parallelism. As we will see, the use of exclusion theorems, dramatically
reduces the cost, which becomes practically independent from the choice of the initial
region (2.

Regarding MoGB, we need to compare it with path following methods, which are
considered the most economical means for computing the pseudospectrum boundary.
The two advantages of MoGB are 7) that it is able to compute all connected components
of A, as long as the initial enclosing region already contains them; ii) MoGB has
much more potential for large-grain parallelism, compared to path following, where
this potential is only moderate [2]. Thus, MoGB could be an attractive alternative to
path following. A disadvantage is that without further enhancements, MoGB will only
access boundary points z* = (z*,y*) that have the following property: At least one
of the lines x = z*,y = y* reaches from a boundary gridpoint of ;, to z* without
encountering on the way any other point of the pseudospectrum.

Finally, we make some remarks concerning the domain-based algorithm of Gallesteylll
(called “SH” in [9]) which shares some features with MoG. SH also attempts to com-
pute exclusion regions. This is achieved using the fact that the function ||(zI — A) 72|
is subharmonic in regions that do not include any eigenvalues and therefore obeys a
maximum principle. For a given value of €, SH, like MoG, labels every gridpoint z con-
tained in A¢(A) with the corresponding omin(zf — A). On the other hand, SH starts
from a region that does not necessarily enclose all of A, on which it applies a combina-
tion of subdivisions, exclusions and expansions to approximate the pseudospectrum.
As a result, it differs from the ZE methodology. The exclusion regions are rectangles
instead of disks. The exclusions are performed using a discrete form of the maximum
principle; because of discretization errors, the process always requires the application
of correction steps. This is in contrast to our method, where corrections are either
unnecessary version (MoGO) or rarely needed.

4. Numerical Results. We have experimented with MoG using codes developed
in MATLAB 5.3 and running on a 700 MHz Pentium based system. All test matrices
are from the Test Matrix Toolbox [12].

We used as 2 and grid 2, the rectangular regions computed by pscont using a
user-set gridsize. The minimum triplets were computed using MATLAB’s intrinsic svd
function. In the sequel, in order to distinguish the performance of the two versions of
MoG, we call MoGO the first version, based on the guaranteed exclusions of Theorem 2.4
to distinguish from the second version, based on the aggressive strategy of Corollary
2.13. In all examples the grid was swept in a natural order, from left to right and
from top to bottom.

The first three experiments are with matrices kahan and grcar of size n = 32,
e = le—1 and a 40 x 40 grid. Figure 4.1 shows the disks that are generated from the
application of Theorem 2.4 and the contours that result from those points that do not
belong to any exclusion disk. In this particular experiment, we did not exploit the
fact that the image is symmetric with respect to the real axis. The total number of
Omin cOmputations was 894 as opposed to 1600 for GRID, highlighting the effectiveness
of the method.

The next experiment shows the impact of Theorem 2.4 (Figure 4.2 and of Corollary
2.13 (Figure 4.3) to matrix kahan. The center of each disk is marked with ‘4+’. The
total number of oy, computations using the former was 372, whereas for the latter
it was 273. The initial region is marked in the rectangle with thick sides, while the
rest we provide for convenience. As you can see, in addition to the reduction to the
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Fic. 4.1. Application of Theorem 2.4 using grid of size 40 X 40 for matrices grcar of size
n =32 and ¢ = le — 1.

matrix region (2 MoGO | MoG
grcar (n) —0.91,3.27] x [-3.41,3.41 659 | 617
kahan (n) —3.29,1.89] x [—2.83,2.83 248 | 183

chebspec(n,0) | [—428.49,428.49] x [-317.65,317.65 220 | 86
chebspec(n,1) | [—456.45,164.68] x [—337.55,337.55 154 | 60

chow(n) —2.63,19.60] x [—12.22,12.22] 228 | 135

triangle(n) —0.87,1.37] x [-1.22,1.22 776 | 762

propeller(n) —1.16,1.63] x [—1.50,1.50 748 | 723

fish(n) —0.62,3.82] x [-1.70,1.70 697 | 675
TABLE 4.1

Number of omin evaluations in a 50 x 50 grid using the two versions of algorithm MoG for
e=1le—1 and n = 32.

number of triplet computations, these diagrams suggest that there is little damage in
overestimating the size of the domain.

The next experiments are with several matrices with interesting pseudospectra,
all of size n = 32, using for initial domain  the rectangles defined by the field of
values criterion for two different € = 1le — 1 and 1le — 3. Once again, the improvements
in performance are significant. Tables 4.1 and 4.2 show the number of oy,;, evaluations
using both versions of the algorithm: The conservative, based on Theorem 2.4, as well
as the more aggressive one based on Corollary 2.13. In the latter case, the algorithm
was instrumented to correct any erroneous exclusions. We observe that both versions
of the algorithm offer significant reductions, while the aggressive version at times
achieving threefold reductions in the number of o, calculations.
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Fic. 4.2. Application of Theorem 2./ using grid of size 40 X 40 for matrices kahan of size
n =32 and ¢ = le — 1. The center of each disk is marked with ‘+.

2.54

2
15
14,

05F

matrix region (2 MoGO | MoG
grecar (n) —0.59,2.95] x [—3.09, 3.09 678 | 397
kahan (n) —2.84,1.45] x [—2.38,2.38 231 | 92

chebspec(n,0) | [-376.03,376.03] x [—265.18,265.18 271 | 95
chebspec(n,1) | [—400.66,108.89] x [—281.76,281.76 200 | o4

chow(n) —0.52,17.49] x [—10.11,10.11] 285 | 104

triangle(n) —0.75,1.24] x [-1.09,1.09 726 | 595

propeller(n) —1.02,1.48] x [-1.35,1.35 709 | 524

fish(n) [-0.27,3.48] x [-1.35,1.35] 832 | 624
TABLE 4.2

Number of omin evaluations in a 50 X 50 grid using the two versions of algorithm MoG for
€ =1le—3 and n = 32.

Table 4.3 shows the effect of increasing gridsize (70 x 70 and 90 x 90 ) on some
of the matrices used above.

We already saw earlier (Figure 4.2) that when the field of values criterion is applied
to obtain a starting region for kahan of size n = 32 and € = 1le — 1 on a 40 x 40 grid,
the initial domain was [—3.3,1.9] x [-2.9,2.9] and the total number of singular value
evaluations was 372. How would the number of evaluations be if the initial region
were selected to be much larger? We know that in the case of GRID, such a choice
would increase significantly the cost. To see the effect on our algorithm, we applied it
on the same matrix, using this time an initial region that was expanded by 10 units
in each direction, i.e. [—13.3,11.9] x [—12.9,12.9]. In order to obtain the same kind
of resolution for the pseudospectrum, for the latter case we use the same grid with
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Fic. 4.3. Application of Corollary 2.13 using grid of size 40 X 40 for matrices kahan of size
n = 32 and € = le — 1. The center of each disk is marked with ‘+.

25

2

15
1

05

matrix size n region 2 | MoGO | MoG

grecar 70 [-0.59,2.95] x [-3.09,3.09] | 1216 | 625
90 1881 | 881

kahan 70 [—2.84,1.45] x [-2.38,2.38] | 379 | 131
90 558 | 189

triangle | 70 [-0.75,1.24] x [-1.09,1.09] | 1377 | 1045
90 2210 | 1615

propeller | 70 [-1.02,1.48] x [-1.35,1.35] | 1327 | 906
90 2095 | 1367

TABLE 4.3

Number of omin evaluations for varying grid sizes using two versions of algorithm MoG and
e=le— 3.

the smaller initial region. This led to a grid of 190 x 177. The application of MoGO
required 383 singular value evaluations, that is only 11 more than the use of the much
tighter domain. On the other hand, GRID would have required 33,630 = 190 x 177
evaluations compared to 1,600. The disks are shown in Figure 4.4. The large size of
the disks that are far away from the pseudospectrum enable the fast pruning of the
initial region. The above shows that the algorithm is not sensitive to the choice of
the initial enclosing region, in the sense that even if the region is much larger than
the largest sought pseudospectrum, the exclusion disks rapidly reduce the size of the
domain. As remark 2 after Theorem 2.14 indicates, when |z| is large relative to the
elements of A, zI — A is near diagonal with diagonal terms almost equal to z, therefore
omin(2I — A) & |z|, therefore the exclusion disk D(z,0min (2] — A) — €) would have
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Fic. 4.4. Application of Corollary 2.13 using grid of size 190 x 177 for matriz kahan of size
n =32 and € = le — 1 in a large initial region. The center of each disk is marked with ‘+’.

10

o

large radius and hence would exclude many of the redundant points of (2.

5. Further Research. We have presented new algorithms for the computation
of matrix pseudospectrum and the localization of matrix spectrum. Our results were
encouraging and suggest that pseudospectrum localization is a powerful tool for the
fast computation of pseudospectra. There are several issues that are currently under
investigation.

The first question is how matrix-based methods can be integrated efficiently in our
algorithms. It could be interesting to find if exclusion theorems can be transferred in
the context of these methods. In general, we believe that our results could be proven
very useful in the task of integrating different approaches in state-of-the-art software,
as proposed in [18]. The second issue is the implementation of these algorithms,
especially in a parallel environment. Our initial experiments, using ARPACK on an
SGI Origin 2000 system with 8 processors, and running MoG in MIPS Fortran led
to encouraging speedups; a state-of-the-art implementation is under development.
Another line of research follows from the observation that our exclusion results can
also help for spectrum localization. Furthermore, the fact that oy, (2 — A) is 0
when z is an eigenvalue, can be used as a starting point for algorithms for computing
pseudospectra [3] and eigenvalues [14].
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