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Abstract. Let G be an additive finite abelian p-group. For a given (long) sequence S in G and some
element g ∈ G, we investigate the number of subsequences of S which have sum g. This refines some

classical results of J.E. Olson and recent results of I. Koutis.

1. Introduction and main result

Let G be an additively written finite abelian group. The enumeration of subsequences of a given (long)
sequence in G, which have some prescribed properties, is a classical topic in combinatorial number theory
going back to P. Erdős, J.E. Olson et al. In the meantime there is a huge variety of results achieved by
many authors (see [2, 4, 10, 5, 6, 3, 15, 1, 9, 13, 14, 8] and the literature cited there, for an overview of
the various types of results).

In this note we concentrate on finite abelian p-groups. In order to state our main result, we need some
notations (for details see Section 2). Suppose that G = Cn1 ⊕ . . .⊕ Cnr , where 1 < n1 | . . . | nr and set
d∗(G) =

∑r
i=1(ni − 1). For a sequence S in G, an element g ∈ G and some k ∈ N0, let Ng(S) ( N+

g (S),
N−g (S) resp. Nk

g(S) ) denote the number of subsequences T of S having sum g (and even length, odd
length resp. length k).

Theorem 1.1. Let G be a finite abelian p-group, g ∈ G, k ∈ N0 and S ∈ F(G) a sequence of length
|S| > k exp(G) + d∗(G).

1. N+
g (S) ≡ N−g (S) mod pk+1.

2. If p = 2, then Ng(S) ≡ 0 mod 2k+1.

3. If j ∈ [0, exp(G)−1] and m∗ = k−1+d 1+d∗(G)
exp(G) e, then the numbers N

m exp(G)+j
g (S) for all m > m∗

are modulo mod pk uniquely determined by Nj
g(S),Nexp(G)+j

g (S), . . . ,Nm∗ exp(G)+j
g (S).

For k = 0, the first statement was proved by J.E. Olson [12, Theorem 1]. For elementary p-groups,
slightly weaker results were recently obtained by I. Koutis (see [11, Theorems 7, 8, 9 and 10]), who used
representation theory. We work with group algebras which have turned out to be a powerful tool in this
area. However, up to now mainly group algebras over finite fields or over the field of complex numbers
were used. We work over the group algebra Z[G], and this is the reason why in the above theorem we
obtain congruences not only modulo p but also modulo higher powers of p. As a further consequence of
our main proposition on group algebras, we get the following result on representation numbers of sumsets.

For subsets A1, . . . , Al ⊂ G and some element g ∈ G, let

rA1,...,Al
(g) =

∣∣∣ {
(a1, . . . , al) ∈ A1 × . . .×Al | g = a1 + . . . + al

} ∣∣∣
denote the number of representations of g as a sum of elements of A1, . . . , Al. These numbers play a
crucial role in the investigation of sumsets e.g., a theorem of Kneser-Kemperman states that for A,B ⊂ G
and g ∈ A + B we have |A + B| ≥ |A|+ |B| − rA,B(g).

1



2 WEIDONG GAO AND ALFRED GEROLDINGER

Theorem 1.2. Let G be a finite abelian p-group, g ∈ G, k, l ∈ N and A1, . . . , Al subsets of G such that
|A1| ≡ . . . ≡ |Al| ≡ 0 mod p. If l > k exp(G) + d∗(G), then rA1,...,Al

(g) ≡ 0 mod pk+1.

2. Preliminaries

Let N denote the set of integers and let N0 = N∪ {0}. For a, b ∈ Z we set [a, b] = {x ∈ Z | a ≤ x ≤ b}.
All abelian groups will be written additively, and for n ∈ N let Cn denote a cyclic group with n elements.
If A and B are sets, then A ⊂ B means that A is contained in B but may be equal to B.

Let G be a finite abelian group. By the Fundamental Theorem on Finite Abelian Groups, there exist
uniquely determined integers n1, . . . , nr ∈ N such that G ∼= Cn1 ⊕ . . . ⊕ Cnr

where either r = n1 = 1 or
1 < n1 | . . . | nr. Then nr = exp(G) is the exponent of G, and we set d∗(G) =

∑r
i=1(ni − 1). G is a

p-group, if exp(G) is a power of p, and it is an elementary p-group, if exp(G) = p for some prime p ∈ N.
An s-tuple (e1, . . . , es) of elements of G is called a basis of G, if G = 〈e1〉 ⊕ . . .⊕ 〈es〉. For every g ∈ G,
ord(g) ∈ N denotes the order of g.

Let F(G) denote the free abelian monoid with basis G and let S ∈ F(G). Then S is called a sequence
in G, and it will be written in the form

S =
l∏

i=1

gi = g1 · . . . · gl =
∏
g∈G

gvg(S) where all vg(S) ∈ N0 .

A sequence T ∈ F(G) is called a subsequence of S, if vg(T ) ≤ vg(S) for every g ∈ G. The unit element
1 ∈ F(G) is called the empty sequence. We denote by

• |S| = l =
∑

g∈G vg(S) ∈ N0 the length of S,

• σ(S) =
∑l

i=1 gi =
∑

g∈G vg(S)g ∈ G the sum of S, and by
• Σ(S) = {

∑
i∈I gi | ∅ 6= I ⊂ [1, l]} ⊂ G the set of sums of non-empty subsequences of S.

For g ∈ G and k ∈ N0,
Nk

g(S) =
∣∣∣{I ⊂ [1, l]

∣∣∣ ∑
i∈I

gi = g and |I| = k
}∣∣∣

denotes the number of subsequences T of S having sum σ(T ) = g and length |T | = k (counted with the
multiplicity of their appearance in S). Then

Ng(S) =
∑
k≥0

Nk
g(S), and N+

g (S) =
∑
k≥0

N2k
g (S) resp. N−g (S) =

∑
k≥0

N2k+1
g (S)

denote the number of subsequences T of S having sum σ(T ) = g and even (resp. odd) length.

Let R be a commutative ring (by a ring, we always mean a ring with unit element). The group algebra
R[G] of the group G over the ring R is a free R-module with basis {Xg | g ∈ G} (built with a symbol
X), where multiplication is defined by(∑

g∈G

agX
g
)(∑

g∈G

bgX
g
)

=
∑
g∈G

(∑
h∈G

ahbg−h

)
Xg .

We view R as a subset of R[G] by means of a = aX0 for all a ∈ R. The augmentation map

ε : R[G] → R, defined by ε
(∑

g∈G

agX
g
)

=
∑
g∈G

ag

is an epimorphism of R-algebras. Its kernel Ker(ε) = IG is called the augmentation ideal, and {1−Xg |
0 6= g ∈ G} is an R-basis of IG.
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3. Proof of the Main Results

Lemma 3.1. Let G be a finite abelian p-group, R a commutative ring and k ∈ N0.

1. If g ∈ G, then
(1−Xg)kord(g) ∈ pkR[G] .

2. If (e1, . . . , er) is a basis of G and m1, . . . ,mr ∈ N0 with m1 + . . . + mr > k exp(G) + d∗(G), then
r∏

i=1

(1−Xei)mi ∈ pk+1R[G] .

Proof. 1. Let g ∈ G, m ∈ N0 and ord(g) = pm. If m = 0, then g = 0, X0 = 1 and 1−Xg = 0 ∈ pkR[G].
Suppose that m ∈ N. Since the binomial coefficient

(
pm

i

)
is divisible by p for every i ∈ [1, pm − 1], we

obtain that

(1−Xg)pm

=
pm∑
i=0

(
pm

i

)
(−1)iXig = 1 + (−1)pm

X0 +
pm−1∑
i=1

(
pm

i

)
(−1)iXig ∈ pR[G]

whence
(1−Xg)kpm

∈ pkR[G] .

2. Let (e1, . . . , er) be a basis of G with ord(ei) = ni for every i ∈ [1, r] and suppose that n1 ≤ . . . ≤ nr.
Furthermore, let m1, . . . ,mr ∈ N0 such that m1 + . . . + mr > k exp(G) + d∗(G). For every i ∈ [1, r] we
set mi = kini + ti with ti ∈ [0, ni − 1]. Then we infer that

r∑
i=1

(kini + ti) > k exp(G) + d∗(G) = knr +
r∑

i=1

(ni − 1)

whence
r∑

i=1

kinr ≥
r∑

i=1

kini ≥ knr + 1 and
r∑

i=1

ki ≥ k + 1 .

By 1., we have (1−Xei)mi = (1−Xei)kini+ti ∈ pkiR[G] and thus
r∏

i=1

(1−Xei)mi ∈ pk1+...+krR[G] ⊂ pk+1R[G] .

�

We continue with two propositions which may be of independent interest.

Proposition 3.2. Let G be a finite abelian p-group, R a commutative ring, IG ⊂ R[G] the augmentation
ideal and k, l ∈ N0 such that l > k exp(G) + d∗(G). Then(

IG + pR[G]
)l

⊂ pk+1R[G] .

In particular, if g1, . . . , gl ∈ G, then

l∏
i=1

(1−Xgi) ∈ pk+1R[G] .
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Proof. We proceed in two steps. First we settle the indicated special case.
1. For every i ∈ [1, l] let gi ∈ G and fi = 1−Xgi . We assert that f1 · . . . · fl ∈ pk+1R[G].
Let (e1, . . . , er) be a basis of G with ord(ei) = ni for every i ∈ [1, r]. For every i ∈ [1, l] we set

gi =
∑r

ν=1 li,νeν where li,ν ∈ [0, nν − 1] for every ν ∈ [1, r]. Then for every i ∈ [1, l] we have

1−Xgi = 1−X
∑r

ν=1 li,νeν = 1−
r∏

ν=1

(
1− (1−Xeν )

)li,ν =
r∑

ν=1

(1−Xeν )fi,ν

with fi,1, . . . , fi,r ∈ R[G]. Therefore we obtain that

l∏
i=1

(1−Xgi) =
l∏

i=1

r∑
ν=1

(1−Xeν )fi,ν =
∑

m∈[0,l]r

m1+...+mr=l

fm(1−Xe1)m1 · . . . · (1−Xer )mr

where all fm ∈ R[G] and m = (m1, . . . ,mr). Since m1 + . . . + mr = l > k exp(G) + d∗(G), the assertion
follows from Lemma 3.1.2.

2. Let s ∈ [0, k] and recall that {1−Xg | g ∈ G\{0}} is an R-basis of IG. Then l−s > (k−s) exp(G)+
d∗(G) whence 1. implies that

(IG)l−s ⊂ pk+1−sR[G] .

Therefore we obtain that (
IG + pR[G]

)l ⊂
l∑

s=0

(IG)l−s(pR[G])s ⊂ pk+1R[G] .

�

Proposition 3.3. Let G be an elementary 2-group and S ∈ F(G). Then

N0(S) = Ng(S) for every g ∈ Σ(S) .

Proof. Let S = g1 · . . . · gl ∈ F(G), g ∈ Σ(S) \ {0},

{I1, . . . , It} =
{

I ⊂ [1, l] |
∑
i∈I

gi = 0
}

and {J1, . . . , Js} =
{

J ⊂ [1, l] |
∑
j∈J

gj = g
}

.

Let I, J, J ′ ⊂ [1, l] be subsets and let I4J = (I \ J) ∪ (J \ I) denote the symmetric difference. Since
(P([1, l]),4), that is the family of subsets of [1, l] with the symmetric difference as the law of composition,
is an elementary 2-group, I4J = I4J ′ implies that J = J ′. Since G is an elementary 2-group, we infer
that ∑

i∈J14Iν

gi = g for all ν ∈ [1, t]

and ∑
j∈J14Jµ

gj = 0 for all µ ∈ [1, s] .

This implies that

N0(S) = t = |{J14Iν | ν ∈ [1, t]}| ≤ Ng(S) = s = |{J14Jµ | µ ∈ [1, s]}| ≤ N0(S) .

�
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Proof of Theorem 1.1. Suppose that S = g1 · . . . · gl ∈ F(G).
1. By Proposition 3.2 (with R = Z) we obtain that

l∏
i=1

(1−Xgi) =
∑
g∈G

(
N+

g (S)− N−g (S)
)
Xg ∈ pk+1Z[G]

whence the assertion follows.
2. If p = 2, then again by Proposition 3.2 we get∑

g∈G

Ng(S)Xg =
l∏

i=1

(1 + Xgi)

=
l∏

i=1

(
−(1−Xgi) + 2

)
∈

(
IG + 2R[G])l ∈ 2k+1Z[G] .

3. Let C be a cyclic group of order exp(G) and suppose that C = 〈e〉 ⊂ G ⊕ C such that every
h ∈ G⊕ C has a unique representation h = g + je where g ∈ G and j ∈ [0, exp(G)− 1]. By [7, Theorem
7.1], the polynomial ring in the indeterminate T over the group ring Z[G ⊕ C] is (isomorphic to) the
group ring of G⊕ C over the polynomial ring Z[T ], so

Z[G⊕ C][T ] = Z[T ][G⊕ C] .

We consider the element

(∗)
l∏

i=1

(
1 + XgiT −XeT

)
=

∑
h∈G⊕C

phXh ∈ Z[T ][G⊕ C]

where all ph ∈ Z[T ], and start with the following assertion:

Assertion : For every h ∈ G⊕ C and every m > k exp(G) + d∗(G), the coefficient of Tm in ph is
divisible by pk.

Proof of the Assertion : We have
l∏

i=1

(
1 + XgiT −XeT

)
=

l∏
i=1

(
1 + (Xgi − 1)T − (Xe − 1)T

)
=

l∑
m=0

bmTm

where every bm ∈ Z[G⊕ C] is a sum of elements of the form

c(Xgi1 − 1) · . . . · (Xgiu − 1)(Xe − 1)m−u with c ∈ Z .

If m > k exp(G)+d∗(G) = 1+(k−1) exp(G⊕C)+d∗(G⊕C), then Proposition 3.2 implies that elements
of this form lie in pkZ[G ⊕ C]. Therefore, for every m > k exp(G) + d∗(G), we have bm ∈ pkZ[G ⊕ C]
whence the assertion follows.

Let now g ∈ G, j ∈ [0, exp(G)− 1], w = d 1+d∗(G)
exp(G) e and m ≥ k + w. Then

m exp(G) + j ≥ (k + w) exp(G) ≥ k exp(G) + d∗(G) + 1

whence the coefficient of Tm exp(G)+j in pg is divisible by pk. On the other hand, (∗) shows that this
coefficient is equal to

m∑
i=0

N(m−i) exp(G)+j
g (S)(−1)i exp(G)

(
l −

(
(m− i) exp(G) + j

)
i exp(G)

)
Therefore we finally obtain that

m∑
i=0

N(m−i) exp(G)+j
g (S)(−1)i exp(G)

(
l −

(
(m− i) exp(G) + j

)
i exp(G)

)
≡ 0 mod pk .
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Since the coefficient of N
m exp(G)+j
g (S) in this congruence equals 1, the assertion follows by induction on

m (starting with m = m∗ + 1 = k + w).
�

Proof of Theorem 1.2. Let k, l ∈ N with l > k exp(G) + d∗(G) and A1, . . . , Al subsets of G such that
|A1| ≡ . . . ≡ |Al| ≡ 0 mod p. For every i ∈ [1, l] we set fi =

∑
g∈Ai

Xg ∈ Z[G], and whence ε(fi) ∈ pR.
Thus Proposition 3.2 implies that

f = f1 · . . . · fl ∈ pk+1Z[G] .
If we set f =

∑
g∈G cgX

g, then clearly cg equals the representation number rA1,...,Al
(g) whence the

assertion follows. �
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