ON THE NUMBER OF SUBSEQUENCES WITH GIVEN SUM OF SEQUENCES IN FINITE ABELIAN p-GROUPS

WEIDONG GAO AND ALFRED GEROLDINGER

Abstract

Let G be an additive finite abelian p-group. For a given (long) sequence S in G and some element $g \in G$, we investigate the number of subsequences of S which have sum g. This refines some classical results of J.E. Olson and recent results of I. Koutis.

1. Introduction and main result

Let G be an additively written finite abelian group. The enumeration of subsequences of a given (long) sequence in G, which have some prescribed properties, is a classical topic in combinatorial number theory going back to P. Erdős, J.E. Olson et al. In the meantime there is a huge variety of results achieved by many authors (see $[2,4,10,5,6,3,15,1,9,13,14,8]$ and the literature cited there, for an overview of the various types of results).

In this note we concentrate on finite abelian p-groups. In order to state our main result, we need some notations (for details see Section 2). Suppose that $G=C_{n_{1}} \oplus \ldots \oplus C_{n_{r}}$, where $1<n_{1}|\ldots| n_{r}$ and set $\mathrm{d}^{*}(G)=\sum_{i=1}^{r}\left(n_{i}-1\right)$. For a sequence S in G, an element $g \in G$ and some $k \in \mathbb{N}_{0}$, let $\mathrm{N}_{g}(S)\left(\mathrm{N}_{g}^{+}(S)\right.$, $\mathrm{N}_{g}^{-}(S)$ resp. $\mathrm{N}_{g}^{k}(S)$) denote the number of subsequences T of S having sum g (and even length, odd length resp. length k).

Theorem 1.1. Let G be a finite abelian p-group, $g \in G, k \in \mathbb{N}_{0}$ and $S \in \mathcal{F}(G)$ a sequence of length $|S|>k \exp (G)+\mathrm{d}^{*}(G)$.

1. $\mathrm{N}_{g}^{+}(S) \equiv \mathrm{N}_{g}^{-}(S) \bmod p^{k+1}$.
2. If $p=2$, then $\mathrm{N}_{g}(S) \equiv 0 \bmod 2^{k+1}$.
3. If $j \in[0, \exp (G)-1]$ and $m^{*}=k-1+\left\lceil\frac{1+\mathrm{d}^{*}(G)}{\exp (G)}\right\rceil$, then the numbers $\mathrm{N}_{g}^{m \exp (G)+j}(S)$ for all $m>m^{*}$ are modulo mod p^{k} uniquely determined by $\mathrm{N}_{g}^{j}(S), \mathrm{N}_{g}^{\exp (G)+j}(S), \ldots, \mathrm{N}_{g}^{m^{*} \exp (G)+j}(S)$.
For $k=0$, the first statement was proved by J.E. Olson [12, Theorem 1]. For elementary p-groups, slightly weaker results were recently obtained by I. Koutis (see [11, Theorems 7, 8, 9 and 10]), who used representation theory. We work with group algebras which have turned out to be a powerful tool in this area. However, up to now mainly group algebras over finite fields or over the field of complex numbers were used. We work over the group algebra $\mathbb{Z}[G]$, and this is the reason why in the above theorem we obtain congruences not only modulo p but also modulo higher powers of p. As a further consequence of our main proposition on group algebras, we get the following result on representation numbers of sumsets.

For subsets $A_{1}, \ldots, A_{l} \subset G$ and some element $g \in G$, let

$$
\mathrm{r}_{A_{1}, \ldots, A_{l}}(g)=\left|\left\{\left(a_{1}, \ldots, a_{l}\right) \in A_{1} \times \ldots \times A_{l} \mid g=a_{1}+\ldots+a_{l}\right\}\right|
$$

denote the number of representations of g as a sum of elements of A_{1}, \ldots, A_{l}. These numbers play a crucial role in the investigation of sumsets e.g., a theorem of Kneser-Kemperman states that for $A, B \subset G$ and $g \in A+B$ we have $|A+B| \geq|A|+|B|-\mathrm{r}_{A, B}(g)$.

Theorem 1.2. Let G be a finite abelian p-group, $g \in G, k, l \in \mathbb{N}$ and A_{1}, \ldots, A_{l} subsets of G such that $\left|A_{1}\right| \equiv \ldots \equiv\left|A_{l}\right| \equiv 0 \bmod p$. If $l>k \exp (G)+\mathrm{d}^{*}(G)$, then $\mathrm{r}_{A_{1}, \ldots, A_{l}}(g) \equiv 0 \bmod p^{k+1}$.

2. Preliminaries

Let \mathbb{N} denote the set of integers and let $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. For $a, b \in \mathbb{Z}$ we set $[a, b]=\{x \in \mathbb{Z} \mid a \leq x \leq b\}$. All abelian groups will be written additively, and for $n \in \mathbb{N}$ let C_{n} denote a cyclic group with n elements. If A and B are sets, then $A \subset B$ means that A is contained in B but may be equal to B.

Let G be a finite abelian group. By the Fundamental Theorem on Finite Abelian Groups, there exist uniquely determined integers $n_{1}, \ldots, n_{r} \in \mathbb{N}$ such that $G \cong C_{n_{1}} \oplus \ldots \oplus C_{n_{r}}$ where either $r=n_{1}=1$ or $1<n_{1}|\ldots| n_{r}$. Then $n_{r}=\exp (G)$ is the exponent of G, and we set $\mathrm{d}^{*}(G)=\sum_{i=1}^{r}\left(n_{i}-1\right)$. G is a p-group, if $\exp (G)$ is a power of p, and it is an elementary p-group, if $\exp (G)=p$ for some prime $p \in \mathbb{N}$. An s-tuple $\left(e_{1}, \ldots, e_{s}\right)$ of elements of G is called a basis of G, if $G=\left\langle e_{1}\right\rangle \oplus \ldots \oplus\left\langle e_{s}\right\rangle$. For every $g \in G$, $\operatorname{ord}(g) \in \mathbb{N}$ denotes the order of g.

Let $\mathcal{F}(G)$ denote the free abelian monoid with basis G and let $S \in \mathcal{F}(G)$. Then S is called a sequence in G, and it will be written in the form

$$
S=\prod_{i=1}^{l} g_{i}=g_{1} \cdot \ldots \cdot g_{l}=\prod_{g \in G} g^{\mathrm{v}_{g}(S)} \quad \text { where all } \quad \mathrm{v}_{g}(S) \in \mathbb{N}_{0}
$$

A sequence $T \in \mathcal{F}(G)$ is called a subsequence of S, if $\mathrm{v}_{g}(T) \leq \mathrm{v}_{g}(S)$ for every $g \in G$. The unit element $1 \in \mathcal{F}(G)$ is called the empty sequence. We denote by

- $|S|=l=\sum_{g \in G} \vee_{g}(S) \in \mathbb{N}_{0}$ the length of S,
- $\sigma(S)=\sum_{i=1}^{l} g_{i}=\sum_{g \in G} \vee_{g}(S) g \in G$ the sum of S, and by
- $\Sigma(S)=\left\{\sum_{i \in I} g_{i} \mid \emptyset \neq I \subset[1, l]\right\} \subset G$ the set of sums of non-empty subsequences of S.

For $g \in G$ and $k \in \mathbb{N}_{0}$,

$$
\mathrm{N}_{g}^{k}(S)=\mid\left\{I \subset[1, l] \mid \sum_{i \in I} g_{i}=g \text { and }|I|=k\right\} \mid
$$

denotes the number of subsequences T of S having sum $\sigma(T)=g$ and length $|T|=k$ (counted with the multiplicity of their appearance in S). Then

$$
\mathrm{N}_{g}(S)=\sum_{k \geq 0} \mathrm{~N}_{g}^{k}(S), \quad \text { and } \quad \mathrm{N}_{g}^{+}(S)=\sum_{k \geq 0} \mathrm{~N}_{g}^{2 k}(S) \quad \text { resp. } \quad \mathrm{N}_{g}^{-}(S)=\sum_{k \geq 0} \mathrm{~N}_{g}^{2 k+1}(S)
$$

denote the number of subsequences T of S having sum $\sigma(T)=g$ and even (resp. odd) length.
Let R be a commutative ring (by a ring, we always mean a ring with unit element). The group algebra $R[G]$ of the group G over the ring R is a free R-module with basis $\left\{X^{g} \mid g \in G\right\}$ (built with a symbol X), where multiplication is defined by

$$
\left(\sum_{g \in G} a_{g} X^{g}\right)\left(\sum_{g \in G} b_{g} X^{g}\right)=\sum_{g \in G}\left(\sum_{h \in G} a_{h} b_{g-h}\right) X^{g}
$$

We view R as a subset of $R[G]$ by means of $a=a X^{0}$ for all $a \in R$. The augmentation map

$$
\varepsilon: R[G] \rightarrow R, \quad \text { defined by } \quad \varepsilon\left(\sum_{g \in G} a_{g} X^{g}\right)=\sum_{g \in G} a_{g}
$$

is an epimorphism of R-algebras. Its kernel $\operatorname{Ker}(\varepsilon)=I_{G}$ is called the augmentation ideal, and $\left\{1-X^{g} \mid\right.$ $0 \neq g \in G\}$ is an R-basis of I_{G}.

3. Proof of the Main Results

Lemma 3.1. Let G be a finite abelian p-group, R a commutative ring and $k \in \mathbb{N}_{0}$.

1. If $g \in G$, then

$$
\left(1-X^{g}\right)^{k \operatorname{ord}(g)} \in p^{k} R[G]
$$

2. If $\left(e_{1}, \ldots, e_{r}\right)$ is a basis of G and $m_{1}, \ldots, m_{r} \in \mathbb{N}_{0}$ with $m_{1}+\ldots+m_{r}>k \exp (G)+\mathrm{d}^{*}(G)$, then

$$
\prod_{i=1}^{r}\left(1-X^{e_{i}}\right)^{m_{i}} \in p^{k+1} R[G]
$$

Proof. 1. Let $g \in G, m \in \mathbb{N}_{0}$ and $\operatorname{ord}(g)=p^{m}$. If $m=0$, then $g=0, X^{0}=1$ and $1-X^{g}=0 \in p^{k} R[G]$. Suppose that $m \in \mathbb{N}$. Since the binomial coefficient $\binom{p^{m}}{i}$ is divisible by p for every $i \in\left[1, p^{m}-1\right]$, we obtain that

$$
\left(1-X^{g}\right)^{p^{m}}=\sum_{i=0}^{p^{m}}\binom{p^{m}}{i}(-1)^{i} X^{i g}=1+(-1)^{p^{m}} X^{0}+\sum_{i=1}^{p^{m}-1}\binom{p^{m}}{i}(-1)^{i} X^{i g} \in p R[G]
$$

whence

$$
\left(1-X^{g}\right)^{k p^{m}} \in p^{k} R[G] .
$$

2. Let $\left(e_{1}, \ldots, e_{r}\right)$ be a basis of G with $\operatorname{ord}\left(e_{i}\right)=n_{i}$ for every $i \in[1, r]$ and suppose that $n_{1} \leq \ldots \leq n_{r}$. Furthermore, let $m_{1}, \ldots, m_{r} \in \mathbb{N}_{0}$ such that $m_{1}+\ldots+m_{r}>k \exp (G)+\mathrm{d}^{*}(G)$. For every $i \in[1, r]$ we set $m_{i}=k_{i} n_{i}+t_{i}$ with $t_{i} \in\left[0, n_{i}-1\right]$. Then we infer that

$$
\sum_{i=1}^{r}\left(k_{i} n_{i}+t_{i}\right)>k \exp (G)+\mathrm{d}^{*}(G)=k n_{r}+\sum_{i=1}^{r}\left(n_{i}-1\right)
$$

whence

$$
\sum_{i=1}^{r} k_{i} n_{r} \geq \sum_{i=1}^{r} k_{i} n_{i} \geq k n_{r}+1 \quad \text { and } \quad \sum_{i=1}^{r} k_{i} \geq k+1
$$

By 1., we have $\left(1-X^{e_{i}}\right)^{m_{i}}=\left(1-X^{e_{i}}\right)^{k_{i} n_{i}+t_{i}} \in p^{k_{i}} R[G]$ and thus

$$
\prod_{i=1}^{r}\left(1-X^{e_{i}}\right)^{m_{i}} \in p^{k_{1}+\ldots+k_{r}} R[G] \subset p^{k+1} R[G]
$$

We continue with two propositions which may be of independent interest.

Proposition 3.2. Let G be a finite abelian p-group, R a commutative ring, $I_{G} \subset R[G]$ the augmentation ideal and $k, l \in \mathbb{N}_{0}$ such that $l>k \exp (G)+\mathrm{d}^{*}(G)$. Then

$$
\left(I_{G}+p R[G]\right)^{l} \subset p^{k+1} R[G] .
$$

In particular, if $g_{1}, \ldots, g_{l} \in G$, then

$$
\prod_{i=1}^{l}\left(1-X^{g_{i}}\right) \in p^{k+1} R[G]
$$

Proof. We proceed in two steps. First we settle the indicated special case.

1. For every $i \in[1, l]$ let $g_{i} \in G$ and $f_{i}=1-X^{g_{i}}$. We assert that $f_{1} \cdot \ldots \cdot f_{l} \in p^{k+1} R[G]$.

Let $\left(e_{1}, \ldots, e_{r}\right)$ be a basis of G with $\operatorname{ord}\left(e_{i}\right)=n_{i}$ for every $i \in[1, r]$. For every $i \in[1, l]$ we set $g_{i}=\sum_{\nu=1}^{r} l_{i, \nu} e_{\nu}$ where $l_{i, \nu} \in\left[0, n_{\nu}-1\right]$ for every $\nu \in[1, r]$. Then for every $i \in[1, l]$ we have

$$
1-X^{g_{i}}=1-X^{\sum_{\nu=1}^{r} l_{i, \nu} e_{\nu}}=1-\prod_{\nu=1}^{r}\left(1-\left(1-X^{e_{\nu}}\right)\right)^{l_{i, \nu}}=\sum_{\nu=1}^{r}\left(1-X^{e_{\nu}}\right) f_{i, \nu}
$$

with $f_{i, 1}, \ldots, f_{i, r} \in R[G]$. Therefore we obtain that

$$
\prod_{i=1}^{l}\left(1-X^{g_{i}}\right)=\prod_{i=1}^{l} \sum_{\nu=1}^{r}\left(1-X^{e_{\nu}}\right) f_{i, \nu}=\sum_{\substack{\boldsymbol{m} \in[0, l]^{r} \\ m_{1}+\ldots+m_{r}=l}} f_{\boldsymbol{m}}\left(1-X^{e_{1}}\right)^{m_{1}} \cdot \ldots \cdot\left(1-X^{e_{r}}\right)^{m_{r}}
$$

where all $f_{\boldsymbol{m}} \in R[G]$ and $\boldsymbol{m}=\left(m_{1}, \ldots, m_{r}\right)$. Since $m_{1}+\ldots+m_{r}=l>k \exp (G)+\mathrm{d}^{*}(G)$, the assertion follows from Lemma 3.1.2.
2. Let $s \in[0, k]$ and recall that $\left\{1-X^{g} \mid g \in G \backslash\{0\}\right\}$ is an R-basis of I_{G}. Then $l-s>(k-s) \exp (G)+$ $\mathrm{d}^{*}(G)$ whence 1 . implies that

$$
\left(I_{G}\right)^{l-s} \subset p^{k+1-s} R[G]
$$

Therefore we obtain that

$$
\left(I_{G}+p R[G]\right)^{l} \subset \sum_{s=0}^{l}\left(I_{G}\right)^{l-s}(p R[G])^{s} \subset p^{k+1} R[G]
$$

Proposition 3.3. Let G be an elementary 2-group and $S \in \mathcal{F}(G)$. Then

$$
\mathrm{N}_{0}(S)=\mathrm{N}_{g}(S) \quad \text { for every } \quad g \in \Sigma(S)
$$

Proof. Let $S=g_{1} \cdot \ldots \cdot g_{l} \in \mathcal{F}(G), \quad g \in \Sigma(S) \backslash\{0\}$,

$$
\left\{I_{1}, \ldots, I_{t}\right\}=\left\{I \subset[1, l] \mid \sum_{i \in I} g_{i}=0\right\} \quad \text { and } \quad\left\{J_{1}, \ldots, J_{s}\right\}=\left\{J \subset[1, l] \mid \sum_{j \in J} g_{j}=g\right\}
$$

Let $I, J, J^{\prime} \subset[1, l]$ be subsets and let $I \triangle J=(I \backslash J) \cup(J \backslash I)$ denote the symmetric difference. Since $(\mathcal{P}([1, l]), \triangle)$, that is the family of subsets of $[1, l]$ with the symmetric difference as the law of composition, is an elementary 2-group, $I \triangle J=I \triangle J^{\prime}$ implies that $J=J^{\prime}$. Since G is an elementary 2-group, we infer that

$$
\sum_{i \in J_{1} \triangle I_{\nu}} g_{i}=g \quad \text { for all } \quad \nu \in[1, t]
$$

and

$$
\sum_{j \in J_{1} \triangle J_{\mu}} g_{j}=0 \quad \text { for all } \quad \mu \in[1, s] .
$$

This implies that

$$
\mathrm{N}_{0}(S)=t=\left|\left\{J_{1} \triangle I_{\nu} \mid \nu \in[1, t]\right\}\right| \leq \mathrm{N}_{g}(S)=s=\left|\left\{J_{1} \triangle J_{\mu} \mid \mu \in[1, s]\right\}\right| \leq \mathrm{N}_{0}(S) .
$$

Proof of Theorem 1.1. Suppose that $S=g_{1} \cdot \ldots \cdot g_{l} \in \mathcal{F}(G)$.

1. By Proposition 3.2 (with $R=\mathbb{Z}$) we obtain that

$$
\prod_{i=1}^{l}\left(1-X^{g_{i}}\right)=\sum_{g \in G}\left(\mathrm{~N}_{g}^{+}(S)-\mathrm{N}_{g}^{-}(S)\right) X^{g} \in p^{k+1} \mathbb{Z}[G]
$$

whence the assertion follows.
2. If $p=2$, then again by Proposition 3.2 we get

$$
\begin{aligned}
\sum_{g \in G} \mathrm{~N}_{g}(S) X^{g} & =\prod_{i=1}^{l}\left(1+X^{g_{i}}\right) \\
& =\prod_{i=1}^{l}\left(-\left(1-X^{g_{i}}\right)+2\right) \in\left(I_{G}+2 R[G]\right)^{l} \in 2^{k+1} \mathbb{Z}[G]
\end{aligned}
$$

3. Let C be a cyclic group of order $\exp (G)$ and suppose that $C=\langle e\rangle \subset G \oplus C$ such that every $h \in G \oplus C$ has a unique representation $h=g+j e$ where $g \in G$ and $j \in[0, \exp (G)-1]$. By [7, Theorem 7.1], the polynomial ring in the indeterminate T over the group ring $\mathbb{Z}[G \oplus C]$ is (isomorphic to) the group ring of $G \oplus C$ over the polynomial ring $\mathbb{Z}[T]$, so

$$
\mathbb{Z}[G \oplus C][T]=\mathbb{Z}[T][G \oplus C]
$$

We consider the element

$$
\begin{equation*}
\prod_{i=1}^{l}\left(1+X^{g_{i}} T-X^{e} T\right)=\sum_{h \in G \oplus C} p_{h} X^{h} \in \mathbb{Z}[T][G \oplus C] \tag{*}
\end{equation*}
$$

where all $p_{h} \in \mathbb{Z}[T]$, and start with the following assertion:
Assertion: For every $h \in G \oplus C$ and every $m>k \exp (G)+\mathrm{d}^{*}(G)$, the coefficient of T^{m} in p_{h} is divisible by p^{k}
Proof of the Assertion: We have

$$
\prod_{i=1}^{l}\left(1+X^{g_{i}} T-X^{e} T\right)=\prod_{i=1}^{l}\left(1+\left(X^{g_{i}}-1\right) T-\left(X^{e}-1\right) T\right)=\sum_{m=0}^{l} b_{m} T^{m}
$$

where every $b_{m} \in \mathbb{Z}[G \oplus C]$ is a sum of elements of the form

$$
c\left(X^{g_{i_{1}}}-1\right) \cdot \ldots \cdot\left(X^{g_{i_{u}}}-1\right)\left(X^{e}-1\right)^{m-u} \quad \text { with } c \in \mathbb{Z} .
$$

If $m>k \exp (G)+\mathrm{d}^{*}(G)=1+(k-1) \exp (G \oplus C)+\mathrm{d}^{*}(G \oplus C)$, then Proposition 3.2 implies that elements of this form lie in $p^{k} \mathbb{Z}[G \oplus C]$. Therefore, for every $m>k \exp (G)+\mathrm{d}^{*}(G)$, we have $b_{m} \in p^{k} \mathbb{Z}[G \oplus C]$ whence the assertion follows.

Let now $g \in G, j \in[0, \exp (G)-1], w=\left\lceil\frac{1+\mathrm{d}^{*}(G)}{\exp (G)}\right\rceil$ and $m \geq k+w$. Then

$$
m \exp (G)+j \geq(k+w) \exp (G) \geq k \exp (G)+\mathrm{d}^{*}(G)+1
$$

whence the coefficient of $T^{m \exp (G)+j}$ in p_{g} is divisible by p^{k}. On the other hand, $(*)$ shows that this coefficient is equal to

$$
\sum_{i=0}^{m} \mathrm{~N}_{g}^{(m-i) \exp (G)+j}(S)(-1)^{i \exp (G)}\binom{l-((m-i) \exp (G)+j)}{i \exp (G)}
$$

Therefore we finally obtain that

$$
\sum_{i=0}^{m} \mathrm{~N}_{g}^{(m-i) \exp (G)+j}(S)(-1)^{i \exp (G)}\binom{l-((m-i) \exp (G)+j)}{i \exp (G)} \equiv 0 \quad \bmod p^{k}
$$

Since the coefficient of $\mathrm{N}_{g}^{m \exp (G)+j}(S)$ in this congruence equals 1 , the assertion follows by induction on m (starting with $m=m^{*}+1=k+w$).

Proof of Theorem 1.2. Let $k, l \in \mathbb{N}$ with $l>k \exp (G)+\mathrm{d}^{*}(G)$ and A_{1}, \ldots, A_{l} subsets of G such that $\left|A_{1}\right| \equiv \ldots \equiv\left|A_{l}\right| \equiv 0 \bmod p$. For every $i \in[1, l]$ we set $f_{i}=\sum_{g \in A_{i}} X^{g} \in \mathbb{Z}[G]$, and whence $\varepsilon\left(f_{i}\right) \in p R$. Thus Proposition 3.2 implies that

$$
f=f_{1} \cdot \ldots \cdot f_{l} \in p^{k+1} \mathbb{Z}[G] .
$$

If we set $f=\sum_{g \in G} c_{g} X^{g}$, then clearly c_{g} equals the representation number $\mathrm{r}_{A_{1}, \ldots, A_{l}}(g)$ whence the assertion follows.

Acknowledgement. We would like to thank the referee for a careful reading and for suggesting several improvements of the manuscript.

References

[1] A. Bialostocki, P. Dierker, D. Grynkiewicz, and M. Lotspeich, On some developments of the Erdős-Ginzburg-Ziv Theorem II, Acta Arith. 110 (2003), 173 - 184.
[2] A. Bialostocki and M. Lotspeich, Some developments of the Erdős-Ginzburg-Ziv Theorem, Sets, Graphs and Numbers, vol. 60, Coll. Math. Soc. J. Bolyai, 1992, pp. $97-117$.
[3] B. Bollobás and I. Leader, The number of k-sums modulo k, J. Number Theory 78 (1999), $27-35$.
[4] Z. Füredi and D.J. Kleitman, The minimal number of zero sums, Combinatorics, Paul Erdős is Eighty, J. Bolyai Math. Soc., 1993, pp. $159-172$.
[5] W. Gao, On the number of zero sum subsequences, Discrete Math. 163 (1997), $267-273$.
[6] _, On the number of subsequences with given sum, Discrete Math. 195 (1999), 127 - 138
[7] R. Gilmer, Commutative Semigroup Rings, The Univ. of Chicago Press, 1984.
[8] D.J. Grynkiewicz, On a conjecture of Hamidoune for subsequence sums, Integers.
[9] Y. ould Hamidoune, Subsequence sums, Comb. Probab. Comput. 12 (2003), $413-425$.
[10] M. Kisin, The number of zero sums modulo m in a sequence of length n, Mathematika 41 (1994), $149-163$.
[11] I. Koutis, Dimensionality restrictions on sums over \mathbb{Z}_{p}^{d}, -.
[12] J.E. Olson, A combinatorial problem on finite abelian groups I, J. Number Theory 1 (1969), 8-10.
[13] V. Ponomarenko, Minimal zero sequences of finite cyclic groups, Integers 4 (2004), Paper A24, 6p.
[14] C. Reiher, On Kemnitz' conjecture concerning lattics points in the plane, Ramanujan J., to appear.
[15] W.A. Schmid, On zero-sum subsequences in finite abelian groups, Integers 1 (2001), Paper A01, 8p.
Center for Combinatorics, Nankai University, Tianjin 300071, P.R. China
E-mail address: wdgao_1963@yahoo.com.cn
Institut für Mathematik, Karl-FranzensUniversität, Heinrichstrasse 36, 8010 Graz, Austria
E-mail address: alfred.geroldinger@uni-graz.at

