ON THE NUMBER OF SUBSEQUENCES WITH GIVEN SUM
OF SEQUENCES IN FINITE ABELIAN p-GROUPS

WEIDONG GAO AND ALFRED GEROLDINGER

ABSTRACT. Let G be an additive finite abelian p-group. For a given (long) sequence S in G and some
element g € G, we investigate the number of subsequences of S which have sum g. This refines some
classical results of J.E. Olson and recent results of I. Koutis.

1. INTRODUCTION AND MAIN RESULT

Let G be an additively written finite abelian group. The enumeration of subsequences of a given (long)
sequence in G, which have some prescribed properties, is a classical topic in combinatorial number theory
going back to P. Erdés, J.E. Olson et al. In the meantime there is a huge variety of results achieved by
many authors (see [2, 4, 10, 5, 6, 3, 15, 1, 9, 13, 14, 8] and the literature cited there, for an overview of
the various types of results).

In this note we concentrate on finite abelian p-groups. In order to state our main result, we need some
notations (for details see Section 2). Suppose that G =C,,, ®...® C,,, where 1 <ny | ... |n, and set
d*(G) = >>;_;(n; —1). For a sequence S in G, an element g € G and some k € No, let Ng(S) ( NS (S),
N (S) resp. N’;(S) ) denote the number of subsequences T' of S having sum ¢ (and even length, odd
length resp. length k).

Theorem 1.1. Let G be a finite abelian p-group, g € G, k € Ny and S € F(G) a sequence of length
|S| > kexp(G) +d*(G).

L. NS (S) =N, (S) mod pF+t,

2. If p=2, then N,(S) =0 mod 2~

3. Ifj €[0,exp(G)—1] and m* = k—1+ [Hd*(G)], then the numbers NZneXp(GHj(S) for allm > m*

exp(G)
are modulo mod p* uniquely determined by NI (S), NSO gy N xR @F gy

For k = 0, the first statement was proved by J.E. Olson [12, Theorem 1]. For elementary p-groups,
slightly weaker results were recently obtained by I. Koutis (see [11, Theorems 7, 8, 9 and 10]), who used
representation theory. We work with group algebras which have turned out to be a powerful tool in this
area. However, up to now mainly group algebras over finite fields or over the field of complex numbers
were used. We work over the group algebra Z[G], and this is the reason why in the above theorem we
obtain congruences not only modulo p but also modulo higher powers of p. As a further consequence of
our main proposition on group algebras, we get the following result on representation numbers of sumsets.

For subsets A;,...,A; C G and some element g € G, let

ra,,..a(9) = ‘ {(al,...,al)EAlx...xAl|g:a1+...—|—al}‘

denote the number of representations of g as a sum of elements of Ay,..., A;. These numbers play a
crucial role in the investigation of sumsets e.g., a theorem of Kneser-Kemperman states that for A, B C G
and g € A+ B we have |A+ B| > |A| 4+ |B| —ra,s(9).
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Theorem 1.2. Let G be a finite abelian p-group, g € G, k,l € N and Aq,..., A; subsets of G such that
|A1]=...=|A)| =0 mod p. Ifl > kexp(G) +d*(G), thenra, ... a,(g9) =0 mod p**+i.

2. PRELIMINARIES

Let N denote the set of integers and let Ng = NU{0}. For a,b € Z we set [a,b] ={z € Z | a < z < b}.
All abelian groups will be written additively, and for n € N let C,, denote a cyclic group with n elements.
If A and B are sets, then A C B means that A is contained in B but may be equal to B.

Let G be a finite abelian group. By the Fundamental Theorem on Finite Abelian Groups, there exist
uniquely determined integers ni,...,n, € N such that G = C,,, & ... ® C,,, where either r =n; =1 or
1 <ny|...|n. Then n, = exp(G) is the ezponent of G, and we set d*(G) = >'_,(n; —1). Gisa
p-group, if exp(G) is a power of p, and it is an elementary p-group, if exp(G) = p for some prime p € N.
An s-tuple (eq,...,es) of elements of G is called a basis of G, if G = (e1) @ ... D (es). For every g € G,
ord(g) € N denotes the order of g.

Let F(G) denote the free abelian monoid with basis G and let S € F(G). Then S is called a sequence
in G, and it will be written in the form

!
S:Hgizgl-..ugl:Hg"g(S) where all vg(S) € Np.
i=1 geqG

A sequence T' € F(G) is called a subsequence of S, if vy(T') < v4(S) for every g € G. The unit element
1 € F(G) is called the empty sequence. We denote by

o [S|=1=3,ccVy(S) € Ny the length of S,

o 0(5) = 22:1 9i =D 4eqVg(S)g € G the sum of S, and by

o X(S)={>"icr9i | 0#1 C L]} CG the set of sums of non-empty subsequences of 5.
For g € G and k € Ny,

NK(S) = HIC 1,1 ] S gi=gand|I| =k }‘
el

denotes the number of subsequences T' of S having sum ¢(7") = g and length |T'| = k (counted with the
multiplicity of their appearance in S). Then

k>0 k>0 =
denote the number of subsequences T' of S having sum ¢(T') = g and even (resp. odd) length.

Let R be a commutative ring (by a ring, we always mean a ring with unit element). The group algebra
R[G] of the group G over the ring R is a free R-module with basis {X¢ | ¢ € G} (built with a symbol
X), where multiplication is defined by

(D aox?) (D0 X7) = D2 (D anby-n) X7
geG g€G geG heG
We view R as a subset of R[G] by means of a = aX? for all a € R. The augmentation map
e: R[G] = R, defined by E(Z ang) = Zag
9eG g€eG

is an epimorphism of R-algebras. Its kernel Ker(¢) = I is called the augmentation ideal, and {1 — X9 |
0 # g € G} is an R-basis of I¢.
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3. PROOF OF THE MAIN RESULTS

Lemma 3.1. Let G be a finite abelian p-group, R a commutative ring and k € Ny.

1. If g € G, then
(1 — x9)kerd@) ¢ pk R[]

2. If (e1,...,e.) is a basis of G and mq,...,m, € Ny with my + ...+ m, > kexp(G) + d*(G), then
[Ja—xe)m e p**'RIG].
i=1
Proof. 1. Let g € G, m € Ny and ord(g) = p™. If m =0, then g =0, X°=1and 1 — X9 =0 € p*R[G].
Suppose that m € N. Since the binomial coefficient (p;n) is divisible by p for every i € [1,p™ — 1], we
obtain that

(1—Xg)”m=§(p;n>(—1)iXig:1+ —1)" X0+pil< ) )'X* € pRI[G]

=0
whence
(1—X9)*" ¢ p*R[G].

2. Let (e1,...,e,) be a basis of G with ord(e;) = n; for every i € [1,r] and suppose that n; < ... < n,.
Furthermore, let my,...,m, € Ny such that m; + ... +m, > kexp(G) + d*(G). For every i € [1,7] we
set m; = k;n; + t; with ¢; € [0,n; — 1]. Then we infer that

T

Z(kini +t;) > kexp(G) +d*(G) = kn, + Zr:(nZ -

i=1
whence

Zk‘m, > kai > kn,+1 and Zk’ >k+1.

i=1 i=1 i=1

By 1., we have (1 — X¢)™i = (1 — X¢)kinitti ¢ pki R[G] and thus

<

— X)) e pMtthRIG) € pMTIR[G) .

z:l

We continue with two propositions which may be of independent interest.

Proposition 3.2. Let G be a finite abelian p-group, R a commutative ring, I C R[G] the augmentation
ideal and k,l € Ny such that | > kexp(G) + d*(G). Then

(IG —i—pR[G])l c pHIRIG).

In particular, if g1,...,q1 € G, then
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Proof. We proceed in two steps. First we settle the indicated special case.

1. Forevery i€ [1,]]let g; € G and f; = 1 — X9. We assert that fi -...- f; € p"T1R[G].

Let (e1,...,e,) be a basis of G with ord(e;) = n; for every ¢ € [1,7]. For every i € [1,] we set
gi = _y live, where l;, € [0,n, — 1] for every v € [1,r]. Then for every i € [1,1] we have

T T

1- X9 =1- XZimbiver =1 - [ - @ - x)" =3 (1 - X*) fi
v=1 v=1

with fi1,..., fir € R|G]. Therefore we obtain that
1

I r
M0 =T3S0 X = 5 full Xy xo

i=1 i=1v=1 mel0,l]"
mi+...+m,.=l

where all f,,, € R[G] and m = (mq,...,m,). Since my +...+m, =1 > kexp(G) + d*(G), the assertion
follows from Lemma 3.1.2.
2. Let s € [0, k] and recall that {1—X9 | g € G\{0}} is an R-basis of I¢. Thenl—s > (k—s)exp(G)+

d*(G) whence 1. implies that

(IG)l—s C pk+1—sR[G] )
Therefore we obtain that

1
l —S S
(Ie +pRIG]) € D (Ia)*(RIG)* < P RIG].

s=0

Proposition 3.3. Let G be an elementary 2-group and S € F(G). Then
No(S) = Ng(5) for every g € X(9).

Proof. Let S=g¢1-...- g € F(G), g€ X(5)\ {0},
{Il,...,It}:{IC[l,l]|Zgi:0} and {Jl,...,Js}:{JC[l,l]|Zgj:g}.

i€l JjeJ
Let I,J,J" C [1,1] be subsets and let IAJ = (I'\ J) U (J\ I) denote the symmetric difference. Since
(P([1,1]), A), that is the family of subsets of [1,] with the symmetric difference as the law of composition,

is an elementary 2-group, IAJ = IAJ’ implies that J = J’. Since G is an elementary 2-group, we infer
that

Z gi =g forall vellt
i€ AT,
and
Z g; =0 forall pell,s].
JEIAT,
This implies that

No(S) =t =[{LAL | v e [L} < Ng(S) = s = [{N A, [ e[l s]} <No(5).
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Proof of Theorem 1.1. Suppose that S =g;-... g € F(G).
1. By Proposition 3.2 (with R = Z) we obtain that

l
[T - x7) = 3" (N5 (9) = N, (5)) X7 € p*H'2[c

i=1 geG
whence the assertion follows.
2. If p = 2, then again by Proposition 3.2 we get
l

D> ONg($)x9 =+ x%)

geG i=1
l
= [[(-(1 = X9) +2) € (I¢ + 2R[G))" € 2" Z[G].

3. Let C be a cyclic group of order exp(G) and suppose that C' = (¢) C G @& C such that every
h € G ® C has a unique representation h = g + je where g € G and j € [0,exp(G) — 1]. By [7, Theorem
7.1], the polynomial ring in the indeterminate T over the group ring Z[G ¢ C] is (isomorphic to) the
group ring of G @ C over the polynomial ring Z[T1], so
ZIGo C|[T|=Z[T)G® C].

We consider the element
l

(+) H(1 L XT - X@T) = Y wX" € ZTG o)
i=1 heGoC
where all p;, € Z[T], and start with the following assertion:
Assertion: For every h € G @ C and every m > kexp(G) + d*(G), the coefficient of 7™ in pj, is
divisible by p*.
Proof of the Assertion: We have
1 l

H(1 L XST - XST) - H(1 F(X% - 1T — (X° — 1)T> - zl: b T
m=0

i=1 i=1
where every b,, € Z[G @ C] is a sum of elements of the form
(X9 —1) ... (X9 —1)(X¢ —1)™ % withce Z.

Ifm > kexp(G)+d*(G) =1+ (k—1)exp(GHC)+d*(G®C), then Proposition 3.2 implies that elements
of this form lie in p*Z[G @ C]. Therefore, for every m > kexp(G) + d*(G), we have b,, € p*Z[G @ C]
whence the assertion follows.

Let now g € G, j € [0,exp(G) — 1], w = [1;(;(5;)1 and m > k 4+ w. Then

mexp(G) +Jj > (k+w)exp(G) > kexp(G) +d*(G) + 1

whence the coefficient of T™eP(G)+7 in pgy is divisible by p¥. On the other hand, () shows that this
coefficient is equal to

- (m—1) exp(G)+j _1\texp(G) I - ((m - Z) exp(G) + j)
> n ($)(-1yrewien (7 L = Do) =)

Therefore we finally obtain that

- _ ; ; I = ((m—i)exp(G) + )
(m—1) exp(G)+j _1\texp(G) — k
ZE:O N (9)(-1) < i exp(G) = 0 mod p".
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Since the coeflicient of N;nexP(G)H (S) in this congruence equals 1, the assertion follows by induction on

m (starting with m =m* + 1=k + w).
]

Proof of Theorem 1.2. Let k,l € N with [ > kexp(G) + d*(G) and A4, ..., A; subsets of G such that
|Ai| = ... =|A| =0 mod p. For every i € [1,{] we set f; =3, X9 € Z[G], and whence e(f;) € pR.
Thus Proposition 3.2 implies that

f=H ... fieptzq].
If we set f = deg cgX 9, then clearly ¢, equals the representation number ra, . 4,(g) whence the
assertion follows. |
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