
Graph partitioning into isolated, high conductance clusters:

theory, computation and applications to preconditioning

Ioannis Koutis, Gary L. Miller
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213 USA

ioannis.koutis,glmiller@cs.cmu.edu

April 11, 2008

Abstract
We consider the problem of decomposing a weighted graph with n vertices into a collection

P of vertex disjoint clusters such that, for all clusters C ∈ P , the graph induced by the vertices
in C and the edges leaving C, has conductance bounded below by φ. We show that for planar
graphs we can compute a decomposition P such that |P | < n/ρ, where ρ is a constant, in O(log n)
parallel time with O(n) work. Slightly worse guarantees can be obtained in nearly linear time for
graphs that have fixed size minors or bounded genus. We show how these decompositions can be
used in the first known linear work parallel construction of provably good preconditioners for the
important class of fixed degree graph Laplacians. On a more theoretical note, we present spectral
inequalities that give upper bounds on the Euclidean distance of eigenvectors of the normalized
Laplacian from the space of vectors which consists of the cluster-wise constant vectors scaled by
the square roots of the total incident weights of the vertices.

1 Introduction

Partitioning weighted graphs into disjoint and dissimilar clusters of similar vertices is arguably one
of the most important algorithmic problems with applications ranging from web clustering and text
retrieval, to computer aided diagnosis and computational biology. Several flavors of clustering, with
respect to disparate optimization targets, have been studied in the literature (e.g. [14, 5, 22, 23, 8]).
Naturally, in applications, one is interested in obtaining good clusterings with as few clusters as
possible, i.e. with a large reduction factor ρ, defined as the number of vertices in the given graph
over the number of clusters.

A particularly appealing and in practice useful way of characterizing clustering was motivated and
analyzed in [16]. It is based on expansion-like properties of the graph; the quality of a clustering
is characterized by the minimum conductance φ over the clusters and the ratio γ of the weight
going between clusters over the total weight of the edges in the graph. An interesting property of
this bicriteria measure, that we will subsequently call (φ, γavg) decomposition, is its connection to
the well studied sparsest cut problem. As shown in [16], assuming a two-way algorithm returns
a cut of sparsity at most σφν when there is cut of sparsity φ, its recursive application returns -
up to a logarithmic factor- a ((φ/σ)1/ν , [(σγ)ν]avg) decomposition when the graph has a (φ, γavg)
decomposition. The complexity of the recursive algorithm analyzed in [16] is at least a logarithmic
factor slower than the two-way algorithm, but it can be considerably slower because in general the
two-way algorithm is not expected to return balanced cuts.

1

A stronger type of clusterings, that we will subsequently call (φ, γ) decompositions, is implicit in
the laminar decompositions constructed in the context of low congestion oblivious routing [25, 3, 13].
In a (φ, γ) decomposition all clusters have minimum conductance φ, but now the for every vertex
v the total weight incident to v that stays within v’s cluster is at least a fraction γ of the total
weight incident to v. The algorithms of [3, 13] both use as their basic subroutine a two-way separator
algorithm, but in a far more sophisticated and expensive way than the simple recursion analyzed in
[16], making the complexity at least quadratic. In particular, the algorithm of [3] gives a hierarchy
of graphs G = G1, .., GO(logn) and partitions Pi, such that Gi+1 is the contraction of the vertices of
Gi with respect to the clusters in Pi. Each Pi is a (1/(σ3 log2 n), 1/(σ log n))-decomposition for Gi,
where σ is the approximation factor provided by the two-way algorithm. The vertex reduction factor
is constant in average, but there are no guarantees for the reduction factor between subsequent levels
of the decomposition.

While theoretical approaches seem to suggest a top-down approach to the construction of (φ, γ)
decompositions, in real-world applications and implementations, the most successful two-way parti-
tion software follows bottom-up approaches; they are based on multilevel iterative contractions of the
graph which are done using local heuristics [17, 24]. The situation is similar in related applications
like the computation of low-fill orderings for the solution of linear systems; while the best theoretical
bounds come from top-down algorithms like nested dissection [10, 19, 11], the state-of-the art direct
linear system solvers use variations of the local and greedy minimum degree heuristic (e.g. [7]) which
in general do not have theoretical guarantees even for planar graphs [2].

The bottom-up approach has recently found its way into algorithms with strict theoretical guaran-
tees for the solution of linear systems involving graph Laplacians. The O(n) work, parallel algorithm
of [18] for planar Laplacians, is based on the computation of good multi-way vertex separators. The
importance of (φ, γavg) decompositions for dense unweighted graphs was observed by Spielman and
Teng in their work in graph sparsification [28], again in the context of the solution of linear systems.
Their partitioning algorithm works in a local fashion, targeting subgraphs of high conductance, and
is the basic building block of their nearly liner time sparsification algorithm, in yet another example
of a bottom-up approach. As noted in [28], it is open whether good (φ, γavg) decompositions can be
computed in nearly linear time for general dense graphs.

1.1 Our contributions

In this paper we introduce and consider the closely related [φ, ρ] decompositions, where we require
that each of the -at most n/ρ- clusters satisfies the following property: the graph induced by the
vertices of each cluster and the edges leaving the cluster, has conductance bounded below by φ. In
Section 2 we show that constant degree graphs and planar graphs have a [Θ(1),Θ(1)] decomposition.
The decomposition can be computed in O(log n) time with linear work. We also show that graphs
with no Ks minor or s2 genus have an [Θ(1/(s2 log s log3 n)),Θ(1)] decomposition. The decomposition
can be computed in O(n log2 n) time. The main idea of our approach is the reduction to the same
problem in a sparser, tree-like, spanning subgraph of the given graph.

Our approach to the problem borrows ideas from combinatorial preconditioning, the area that
-motivated by problem of simplifying linear systems- studies the approximation of graphs by other
simpler graphs with respect to the condition number metric. While our approach draws techniques
from the construction of subgraph preconditioners, our motivation is -to a large extent- the fast
construction of preconditioners that use extra vertices, the so-called Steiner preconditioners. Steiner
tree preconditioners were introduced in [12]. In [20] it was shown how the laminar decomposition of [3]
can be used for the construction of provably good Steiner trees. In Section 3 we present new material

2

that extends the results of [20] from Steiner trees to more general Steiner graphs. We also show that
[φ, ρ] decompositions can be used to construct provably good Steiner preconditioners. In Section 3.1
we discuss how in the particular case of constant degree graphs our ideas have a strikingly simple
and embarrassingly parallel implementation with a very small hidden constant. For fixed degree
graphs, this gives the first known linear work parallel construction of combinatorial preconditioners
with a constant condition number. The recursive computation of [φ, ρ] decompositions leads to
a laminar decomposition and a corresponding hierarchy of Steiner preconditioners. We report on
preliminary experimental results on graphs with very large weight variations, derived from 3D medical
scans; our results show that besides their faster construction, the Steiner preconditioners produce
in practice much better condition numbers comparing to subgraph preconditioners, as predicted by
prior theoretical results [21, 20].

Perhaps not surprisingly, the local partitioning algorithm of [28] as well as other heuristic vari-
ants [30, 1], exploit the connection of (φ, γ) decompositions with random walks. A particle doing a
random walk tends to get ’trapped’ in clusters of high conductance when the vertices of the cluster
are connected to the exterior with relatively light edges; then the probability distribution P tv after
a small number t of steps of the random walk starting at a given vertex v is expected to provide
information about the cluster where v belongs. While this ’local’ intuition can be captured mathe-
matically, obtaining a multi-way decomposition by computing independently several such probability
distributions as done in [28], is a quite complicated task when the running time must be nearly linear.
In contrast, computing arbitrary distribution mixtures of the form

∑
v∈V wvP

t
v is straightforward and

can be done in time linear in t and the number of edges in the graph. This leads to a natural ’global’
question: how these distribution mixtures look in terms of the clusters of a (φ, γ) decomposition? We
study the closely related eigenvectors of the normalized Laplacian. In Section 4 we present spectral
inequalities that give upper bounds on the Euclidean distance of these eigenvectors from the space
of vectors which consists of the cluster-wise constant vectors scaled by the square roots of the total
incident weights of the vertices. We anticipate that this characterization may find applications in the
practical computation of (φ, γ) decompositions for general graphs.

2 Planar decompositions

Let G = (V,E,w) be a weighted graph. The Laplacian of G is the matrix AG defined by Aij = −wij
and Aii =

∑
j 6=iAij . If G1 = (V,E,w1), G2 = (V,E,w2) and G = (V,E,w1 + w2), we have

AG = AG1 + AG2 . We will often identify graphs with their Laplacians using this natural one-to-one
correspondence. The total incident weight

∑
u∈N(v)w(u, v) of vertex v is denoted by vol(v). For any

V ′ ⊆ V we let vol(V ′) =
∑

v∈V ′ vol(v), and out(V ′) =
∑

v∈V ′,u 6∈V ′ w(u, v). We also let

cap(U, V) =
∑

u∈U,v∈V
w(u, v)

denote the total weight connecting the nodes of the disjoint sets U, V . The sparsity of an edge cut
into V ′ and V − V ′ is defined as the ratio

cap(V, V − V ′)
min(vol(V ′), vol(V − V ′))

.

The conductance of the graph is the minimum sparsity value over all possible cuts. Let P be a
partition of the vertices of a graph G = (V,E,w) into disjoint sets Vi, i = 1, . . . ,m and let Gi denote
the graph induced by the vertices in Vi. We call n/m the vertex reduction factor of P and we denote

3

it by ρ. We call P a (φ, γ) decomposition if the conductance of each Gi is bounded below by φ and
for each vertex v ∈ Vi, cap(v, Vi − v)/vol(v) ≥ γ.

In this paper we consider a variant of (φ, γ) decompositions. For each Gi in the partition, we
introduce a vertex on each edge leaving Gi. If Wi is the set of newly introduced vertices for Gi, we
say that P is [φ, ρ]-decomposition if the closure graph Goi induced by the vertices in Vi ∪Wi has
conductance bounded below by φ and the vertex reduction factor of P is at least ρ. By definition,
Goi is Gi with additional degree one vertices hanging off of it. Therefore, any edge cut in Gi induces
a sparser cut in Goi , and thus the conductance of Gi must be lower bounded by φ. Also note that if
Gi contains two vertices v1, v2 such that cap(vj , Vi − vj)/vol(vj) ≤ φ for j = 1, 2, the conductance of
Goi is less than φ; this can be seen by considering the edge cut consisting of the edges incident to v1
in Gi when vol(v2) ≥ vol(v1), and vice-versa. Hence there can be no more than one vertex violating
the γ constraint, if γ < φ. So a [φ, ρ]-decomposition is ”almost” a (φ, φ) decomposition. It turns out
that the parallel computation of [φ, ρ] decompositions is not trivial even for trees, for which we will
need some machinery from parallel tree contraction algorithms [26].

Theorem 2.1. Trees have a [1/2, 6/5]-decomposition that can be computed with linear work in
O(log n) parallel time.

Proof. If the tree contains 2 or 3 vertices the decomposition consists of only one cluster. The
basic step of the algorithm is to compute an appropriate vertex separator of T , the so-called 3-critical
vertices [26]. Given a root for the tree, a vertex v with children wi, is defined to be 3-critical if (i) it
is not a leaf, and (ii) for all i, we have d|descendants(v)|/3e > d|descendants(wi)|/3e. The 3-critical
vertices can be seen as the shared vertex boundaries of edge-disjoint connected subtrees consisting
otherwise of non-critical vertices. We call these subtrees 3-bridges. The computation of the 3-critical
vertices can be done with linear work in O(log n) parallel time using the parallel tree contraction
algorithms [26].

We now describe the computation of the decomposition P . We form one cluster per critical vertex,
each containing initially only the critical vertex. Assuming that T has n vertices, the number of 3-
critical vertices is at most 2n/3. Although we will allow critical vertices to be singletons in P , we will
not allow non-critical vertices to be singletons. This implies that after the contraction of the clusters
the tree will have at most 2n/3 + n/6 vertices, which gives the reduction factor. By their definition
and properties, the 3-critical vertices decompose the edges of T into 3-bridges of two types. External
3-bridges contain only one critical vertex and internal 3-bridges contain two critical vertices.

3

v

1 2

Figure 1: External 3-bridge with possible attachments.

Each external 3-bridge is formed by the critical vertex v which is the shared root of a number of
trees Ti. The 4 possible cases of Ti are depicted in Figure 1, where the black vertex is the critical
vertex. In cases 2,4 we form clusters with the non-critical vertices and we add them to P . The closure
of these clusters has conductance 1. In case 1, we form a cluster of two vertices by cutting edge e1 if

4

w(e1) ≤ w(e2). Otherwise, we form a cluster containing all three non-critical vertices. The closures
of these clusters have conductance at least 1/2. We finally add to the cluster of v its attached leaves
(case 2), and the non-clustered non-critical vertices possibly left from case 1.

v2

Case1

e1

e2

e3

v1

Case2

v

Case3

Figure 2: The possible internal 3-bridges.

An internal 3-bridge that is attached through two critical vertices contains at most 2 non-critical
vertices. In Figure 2 we give the three possible 3-bridges of this type. In case 2, we form a cluster for
the two non-critical vertices, the conductance of its closure is obviously 1. In case 3, we assign the
non-critical vertex v to the cluster of the adjacent critical node which has the heaviest connection
to v. Finally for case 1 we have the following subcases: (i) if w(e2) ≤ w(e1) and w(e2) ≤ w(e3), we
assign v1, v2 to the clusters of their adjacent critical vertices, otherwise (ii) we form a cluster with
v1, v2 and we add it to P . The closure of the cluster has conductance at least 1/2.

We are left with the clusters of the critical vertices which we add to P . By the construction in the
previous step, the closure of each cluster has the critical vertex v as a root shared by a number of
edges and a number paths of the form (v, u1, u2), where w(v, u1) ≥ w(u1, u2). It is then easy to see
that the conductance of the closure is at least 1/2. Finally note that after the computation of the
3-critical nodes the clustering can be done in O(1) parallel time. �

We are now ready to give our results for planar graphs.

Theorem 2.2. Planar graphs have a [φ, ρ]-decomposition such that φρ is constant. The decompo-
sition can be constructed with linear work in O(log n) parallel time.

Proof. Let A = (V,E,w) be any planar graph. In [18], relying on the computation of a multi-
way vertex separator for A, we showed that for any large enough constant k, there is a subgraph B
of A with n − 1 + cn log3 k/k edges, for some fixed constant c. Furthermore for all vectors x, we
have xTAx < kxTBx. It is well known that a process of greedily removing degree one vertices and
then replacing each path of degree two vertices by an edge, results in a graph that contains at most
4cn log3 k/k vertices (see for example [18]). Let W ⊂ V denote the set of these vertices.

The vertices in V −W either (i) lie on paths between vertices wi, wj ∈ W , or (ii) they belong to
trees that are attached to the rest of B through a vertex w ∈ W or through a vertex v ∈ V −W of
the first kind. This is illustrated in Figure 3.

wj
......

v

...... TiTv

......
wi

w

T1

Ti

Figure 3: The organization of B-vertices that are greedily removed.

5

In the following we describe an algorithm to construct P , a [φ, ρ]-decomposition of B, with φ > 1/4
and ρ constant. We first construct an edge cut C. Consider a path p between wi, wj ∈ W including
wi and wj . Let e be an arbitrary edge of smallest weight among the edges of p. We include e in C. By
doing this for every path p of this form, we decompose V into vertex disjoint trees each containing a
unique vertex w ∈W .

We will decompose each tree Tw independently. We describe the process for a given Tw. The
removal of w disconnects Tw into a set of single vertices R = {r1, . . . , ri} and a number of non-trivial
trees Ti with roots ti. We form the cluster w∪R and we add it to P . The closure graph of w∪R is a

w
Ti

T1

t1

ti

r1

r2 ri

.....

...

Figure 4: Computing a tree decomposition.

star, so its conductance is 1. Now let T ′i = Ti + (ti, w) and compute Pi, the [1/2, 6/5]-decomposition
of each T ′i . Each Pi includes exactly one cluster containing w. We remove w from its cluster in Pi
and we add the cluster to P , along with the rest of the clusters in Pi. By construction, all clusters
that are added to P are vertex disjoint. Note that w is a leaf in each T ′i , so removing it from it
cluster in P ′i does not disconnect the cluster. Hence all clusters added to P are connected. If the
cluster of w in some Pi contains only two vertices, then T ′i must have at least 4 vertices, and Pi has
at least 2 non-singleton clusters. This shows that the clustering gives a constant reduction factor in
the number of vertices of Ti. In the worst case the vertices of W remain as singletons in P , but since
|W | is a constant fraction of n, the vertex reduction factor of P is constant.

It remains to show that the closure of the clusters in P have conductance at least 1/4. The
clusters that are not incident to an edge in C satisfy the constraint by construction. However we have
boundary clusters each of which contains exactly one vertex which is incident to some edge in C.

e1

w w1v

......Tv

e

Figure 5: The boundary cluster

Assume that a cluster U ∈ P contains a vertex v which is a adjacent to e ∈ C, and let TU be the
tree induced by U . Recall that e is the lightest edge on a path between w and some w1 ∈ W . This
scenario is depicted in Figure 5. Let T ′U denote the closure of TU restricted in the tree Tw on which
we applied the [1/2, 6/5]-decomposition. By construction the conductance of T ′U is at least 1/2. We
also have T oU = T ′U + e. Note that T ′U contains e1. Hence the volume of v in T oU is at most two times
its volume in T ′U . Hence adding e in T ′U can decrease its conductance by at most a factor of 2.

We finally claim that P is a [1/(4k), ρ]-decomposition for A. Let A[Vi], B[Vi] be the graphs induced
by the cluster Vi ∈ P in A and B respectively. Let ev be the vector which has a single non-zero entry
corresponding to the vertex v. We have eTv Aev = volA(v), and similarly for B. We also know that

6

eTv Aev ≤ keTv Aev. It follows that the volume of v in A is at most k times its volume in B. Comparing
to B[Vi]o, the closure A[Vi]o contains additional edges and some additional vertices that are leaves.
Since the total capacity of an edge cut in A[Vi]o can only increase with respect to the same cut in
B[Vi]o, the conductance can only decrease by a factor of k. The conductance of B[Vi]o is at least 1/4,
hence the conductance of A[Vi]o is at least 1/(4k).

The graph B can be constructed with linear work in O(log n) time as shown in [18]. The edges
cut between vertices in W can also be found in O(log n) time and total linear work. The same holds
for the tree decompositions. �

Theorem 2.3. Graphs with no Ks minor or s2 genus have a [Θ(1/(log3 ns2 log s)), O(1)] decompo-
sition which can be computed in O(n log2 n) time.

Proof. In the proof of Theorem 2.2 we used a subgraph preconditioner with a condition number
k and a constant fraction of non-tree edges. The condition number provided us with the bound on
the conductance φ > 1/(4k), while the number of non-tree edges led to the bound on the reduction
factor ρ. Theorem 3.1 of [27], in combination with the low stretch trees of [9], shows that graphs
with no Ks minor or s2 genus have a subgraph preconditioner with a constant fraction of non-tree
edges and condition number O(log3 ns2 log s). This preconditioner can be constructed in O(n log2 n)
time. The rest of the proof remains identical to the proof of Theorem 2.2. �

3 Steiner preconditioners

This Section requires some well known definitions and facts from the support theory for precondi-
tioning. We refer the reader to the Appendix, and for a more complete picture to [4]. Given a graph
A with n vertices, a Steiner support graph S for A is a graph with n vertices corresponding to the
vertices of A and m extra or Steiner vertices. Gremban and Miller showed that Steiner graphs can
be used as preconditioners [12]. The analysis of their quality can be reduced to the analysis of the
support of the pair (A,B) where B is the Schur complement with respect to the Steiner vertices of
S.

Gremban used the fact that σ(A,S) = σ(A,B) (proposition 6.1 in [4]) to give easy bounds on
σ(A,B). In the other direction, bounding the support σ(B,A) is a difficult task because not only
B is dense, but in general it doesn’t have a closed analytic expression. Generally, until the paper of
Maggs et. al [20] it was not known whether there is a good Steiner tree preconditioner. However,
their analysis concerns only Steiner trees. In this Section we present a way for analyzing the support
for more general Steiner graphs. To keep our discussion contained and more oriented towards its
applications, we focus our attention to the following definition of Steiner graphs, with respect to
multi-way clusterings.

Definition 3.1. [Quotient and Steiner graph] Let P be an edge cut, i.e. a partitioning of
the vertices of the graph A into disjoint sets Vi, i = 1, . . . ,m. Let Ti be a tree with: (i) leaves
corresponding to the vertices in Vi, (ii) root ri, and (iii) for each u ∈ Vi, w(ri, u) is the total incident
weight of u in A. We define the quotient graph Q on the set of the roots of the trees Ti, by letting
w(ri, rj) = cap(Vi, Vj). We define the Steiner graph with respect to P , as SP = Q+

∑m
i=1 Ti.

The main result of this Section is a Theorem that characterizes the support σ(SP , A) with respect
to the parameters φ, γ of the decomposition P . Before we get there we need to show some Lemmas.
Our results are based on the following characterization of σ(B,A), shown in [20].

7

Lemma 3.2. If S is a Steiner graph for A and BS is Schur complement with respect to the
elimination of the Steiner vertices of S, we have

σ(BS , A) = max
x

min
y

((
x
y

)T
S

(
x
y

))
/xTAx

where y ∈ Rm, and x is orthogonal to the constant vector.

Lemma 3.3. [Steiner support transitivity] Let S′, S be Steiner graphs for A, with the same
number of vertices. Also, let BS′ , BS be the Schur complements with respect to the elimination of
the Steiner vertices of S′, S. We have σ(BS , A) ≤ σ(S, S′)σ(BS′ , A).

Proof. Lemma 3.2 implies that for all vectors x ∈ Rn there is a vector yx ∈ Rm such that

(x|yx)TS′(x|yx) ≤ σ(BS′ , A)(xTAx).

By the definition of σ(S, S′) this implies that for all vectors x, we have

(x|yx)TS(x|yx) ≤ σ(S, S′)σ(BS′ , A)(xTAx).

Then, Lemma 3.2 implies directly the bound on σ(BS , A). �

In the following, to simplify our notation, whenever it is understood that S is a Steiner graph of
A, we will denote σ(BS , A) by σ(S,A).

Lemma 3.4. [Star complement support] Let A be a graph with n vertices of volumes a1 ≤
. . . ≤ an and S be the star graph with n edges corresponding to the vertices of A. Assume that for
all i ≤ n − 1, the weight ci of the ith edge of S satisfies ci ≤ γ−1ai. Then if (i) cn ≤ γ−1an or (ii)
an ≥

∑
k≤n−1 ak we have σ(S,A) ≤ 2/(γφ2

A), where φA is the conductance of A.

Proof. By definition we have σ(S,A) = σ(B,A) where B is the Schur complement with respect
to the elimination of the root of S. The edge weights for B are given by bi,j = cicj/

∑
k ck. For the

volume bi of the vertex i in B, we have bi = ci(
∑

j 6=i ck)/
∑
ck ≤ ci. If we fix ci for i ≤ n − 1, bn is

clearly increasing in cn and (letting cn go to infinity) we see that

bn ≤
∑

k≤n−1

ck ≤ γ−1
∑

k≤n−1

ak ≤ γ−1an.

Therefore in both cases (i) and (ii) we have bi ≤ (γ)−1ai for all ai. So, if DG denotes the diagonal of
the Laplacian G, we have xTDBx ≤ γ−1xTDAx for all vectors x. Now, we have

σ(B,A) = max
x

xTBx

xTAx
= max

x

xTDAx

xTAx

xTBx

xTDBx

xTDBx

xTDAx

≤ γ−1λmax(D−1
B B)λ−1

min(D−1
A A)

The last inequality uses standard facts about (generalized) eigenvalues. We have λmin(D−1
A A) ≥ φ2

A/2
by the Cheeger inequality [6]. We also have λmax(D−1

B B) ≤ 2 by Gershgorin’s theorem ([29]) and the
observation that the row sums of D−1

A A are less than 2. This completes the proof. �

Finally, we are ready for our main result.

8

Theorem 3.5. If P is a (φ, γ) decomposition of A then σ(SP , A) ≤ 3(1 + 2/(γφ2)). If P is a [φ, ρ]
decomposition of A then σ(SP , A) ≤ 3(1 + 2/φ3).

Proof. We first observe that

σ(SP , A) = σ(SP +A,A)− 1.

By construction, there is a one-to-one correspondence of the vertices in A and the leaves of SP . Let
e be an edge connecting vertices of the two clusters Vi and Vj in A. There is a unique path p(e) of
length 3, connecting ri, rj and using e in SP + A. The capacities along p(e) are at least w(e). Thus
we can route w(e) units of the edge (ri, rj) through this path, with congestion 1. By doing this for
all edges connecting Vi and Vj we get an embedding of SP +A into SP +A−Q; the embedding has
dilation 3, and congestion 1. Using a standard support theory argument (whose proof is based on
the splitting Lemma 5.4), this proves that

σ(SP +A,SP +A−Q) ≤ 3.

Observe that SP +A−Q is a forest of trees. Using the definition of support and the splitting Lemma
we get,

σ(SP +A−Q,A) = 1 + σ(SP −Q,A) ≤ 1 + max
i
σ(Ti, Ai).

Now if P is a (φ, γ) decomposition σ(Ti, Ai) ≤ 2/(γφ)2, by Lemma 3.4. We have seen in Section
2 that a [φ, ρ] decomposition is a (φ, φ) decomposition, with at most one vertex u ∈ Vi for which
cap(u, Vi − u) ≤ φvol(u). Note that since we have cap(u, Vi − vi) ≥ φmin{vol(u), vol(V − u)}, we
must have

vol(u) ≥ vol(V − u) =
∑

w∈{V−u}

vol(w).

Hence σ(Ti, Ai) ≤ 2/φ3, by the second case in Lemma 3.4. Finally, using Lemma 3.3, we have

σ(SP , A) ≤ σ(SP +A,A)
≤ σ(SP +A,SP +A−Q)σ(SP +A−Q,A).

Combining the above inequalities finishes the proof. �

3.1 Preconditioning for fixed degree graphs

The ideas from Sections 2 and 3 have a very simple and fully parallel implementation in the case
of fixed degree graphs. The decomposition is computed by performing the following simple steps:
[1] From the given graph A, form the graph Â by independently perturbing each edge by a random
constant in (1, 2). [2] For each vertex v keep in A the heaviest incident edge of v in Â, to form a
subgraph B of A, which is a forest of trees. [3] Independently split each tree in B into clusters of
size at most k for some constant k.

To see why step [1] generates a forest B, consider the graph B̂ consisting of the edges of B with
their weighting in Â. The graph B̂ is unimodal, i.e. for each path (v1, v2, . . . , vk) there is no edge
(vi, vi+1) which is lighter than its two adjacent edges. This happens because (vi, vi+1) is the heavier
incident edge of either vi or vi+1. From this it also follows that B̂ and thus B are forests of trees.
We claim that if the maximum degree in the graph is d, this simple process generates a [2d2k, 2]
decomposition. To see this, observe that the conductance of the closure of each cluster in B̂ is at

9

least 1/(dk) by the unimodality property. This implies that the conductance of the closure of every
class in A is at most 1/(2d2k). The reduction factor is at least 2 because every vertex is assigned
to a cluster. By Theorem 3.5 the decomposition can be used to construct a preconditioner with a
constant condition number and at most n/2 Steiner vertices.

3.2 Effectiveness and practicality

A complete study of the new Steiner preconditioners is out of the scope of this paper. However, we
would like to make some remarks on their effectiveness and practicality, based on our experiments
with regular meshes and graphs generated from 3D optical coherence tomography (OCT) scans that
exhibiting large edge weight variations both at a global and a local scale (due to noise).

Remark 1. All prior constructions of combinatorial preconditioners for constant degree graphs
are based on the computation of a spanning tree of the graph (a maximum weight spanning tree [15],
or a low stretch spanning tree [9]), and its subsequent enrichment with other edges from the graph.
There is no known way to parallelize the construction.

In comparison, as described in Section 3.1, our clustering algorithm is essentially independent from
the structure of the graph and can be implemented with three passes of the matrix representing the
graph. Each column of the matrix can be processed independently from the rest of the columns,
hence the clustering can be found completely in parallel. If R is the n×m 0-1 matrix describing the
vertex-cluster memberships, the quotient graph (which is the ’main’ part of the Steiner preconditioner
as described in Definition 3.1) can be expressed algebraically as Q = RTAR. Thus, it can be easily
computed via parallel sparse matrix multiplication.

We compared a prototype sequential implementation of our construction in MATLAB, against
the Boost Graph Library code for computing only the maximum weight spanning tree, without the
subsequent addition of edges. On a 3D weighted regular grid with 106 vertices our code is at least 4
times faster. Naturally, a greater speed-up is expected when the edge enrichment phase and the use
of parallelism come into the picture.

Remark 2. The Steiner preconditioner SP consists of n leaves and the quotient Q which has m
Steiner vertices. Preconditioning with SP involves the solution of a linear system in SP . Gaussian
elimination of the leaf variables in SP can be done completely independently, lending itself to a
very straightforward implementation, which algebraically amounts to computing weighted cluster-
wise sums. In contrast, the greedy Gaussian elimination of degree one and two nodes in subgraph
preconditioners is a sequence of dependent eliminations. Although a certain amount of parallelization
in their computation is possible, a parallel implementation is quite more complicated.

Remark 3. In instances of planar and 3D graphs that appear in applications, the recursive appli-
cation of our simple contraction process tends to yield super-clusters that induce ”round” subgraphs
in the original graph. Such subgraphs are known to have Steiner trees with asymptotically better
(with respect to their size) condition numbers relative to subgraph preconditioners [20, 21].

To verify the theoretical predictions, we solved a weighted 3D grid using a Steiner preconditioner
and a subgraph preconditioner. The special structure of the 3D grid allowed us to bypass the
monolithic spanning tree construction of [28, 9] and build the subgraph preconditioner using the more
effective miniaturization ideas from [18]. In order to make the preconditioners directly comparable in
terms of their condition number, we designed them so that they achieve roughly the same reduction
factor (around 4) in the size of the graph/system. In Figure 6 we plot the evolution of the norm of
the residual error ||ri||2 = ||Axi− b||2, which reflects the effectiveness of the preconditioners. Clearly,
the convergence is several times faster with the Steiner preconditioner.

10

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration number

N
or

m
 o

f r
es

id
ua

l

Steiner preconditioner
Subgraph preconditioner

Figure 6: Steiner vs subgraph preconditioners

4 A spectral portrait of (φ, γ) decompositions

Let A be a Laplacian and D be the diagonal of A. The matrix P = I − AD−1 is the probability
transition matrix; the probability that a random walk starting at vertex i is at vertex j after t steps
of the walk is the jth entry of the vector P tei, where ei(i) = 1, and ei(j 6= i) = 0. The computation
of the probability distribution P tei can take up to linear time even for very small t. On the other
hand any mixture of the distributions of different random walks

∑
iwi(P

tei) = P t
∑

i aiwi, can be
computed by t matrix vector multiplications with P and the vector w =

∑
i aiwi. This can be done

in time linear in t and the number of edges in the graph.
If the eigenvalues of P are −1 < µ1 ≤ µ2 ≤ . . . ≤ µn ≤ 1, the eigenvalues of P t are µt1, µ

t
2, . . . , µ

t
n.

Thus, a small number t = O(log n), essentially wipes out the constant eigenvalues of P , so that
P tw is ”mostly” a linear combination of the eigenvectors corresponding to eigenvalues of P that are
asymptotically close to 1. A slightly unpleasant fact about the eigenvectors of P is that they are not
orthogonal, because P is not symmetric. Because of this we will work with the normalized Laplacian
Â = D−1/2AD−1/2. It is not hard to see that if xi is an eigenvector of Â with eigenvalue λi then
D−1/2x is an eigenvector P with eigenvalue µi = 1− λi.

Let P be a (φ, γ) decomposition of A, and SP be the corresponding Steiner graph constructed in
Section 3. Let B be the Schur complement of SP and B̂ = D−1/2BD−1/2. We base our approach
on the intuition that when the condition number κ(A,B) = κ(Â, B̂) is small , the eigenvectors of A
are expected to be good approximations of the eigenvectors of B̂. In other words, a low frequency
eigenvector of Â is expected to be near orthogonal to a high frequency eigenvector of B̂. This intuition
is quantified in Theorem 5.6. The second key observation is that the ’low’ frequency subspace of B̂
has a very simple form: it consists of cluster-wise constant vectors scaled by D1/2. Using the notation
introduced so far, the exact details are given in the following Theorem.

Theorem 4.1. Let R be an n ×m matrix where R(i, j) = 1 if vertex i belongs to cluster j and
R(i, j) = 0 otherwise. Let y be any vector in Null(RTD1/2), and x be any unit vector which is a
linear combination of vectors of Â corresponding to eigenvalues smaller than λi. We have

(xT y)2 ≤ 3λi(1 + 2(γφ2)−1)).

11

Hence there is a unit vector z ∈ Range(D1/2R) such that

(xT z)2 ≥ 1− 3λi(1 + 2(γφ2)−1).

Proof. It can be verified that the quotient graph Q in SP can be written algebraically as
Q = RTAR. Let V = DR and DQ = RTDR. The support graph SP then has the following form

SP =
(

D −V
−V T Q+DQ

)
.

Besides its algorithmic definition 5.5, it is well known that the Schur complement B of SP with
respect to the Steiner vertices, can be expressed algebraically as

B = D − V (Q+DQ)−1V T .

Let
B̂ = D−1/2BD−1/2 = I −D1/2R(Q+DQ)−1RTD1/2.

It is easy to see that the subspace Null(RTD1/2) is an eigenspace of B̂ with eigenvalue 1. If the
decomposition P is a (φ, γ) decomposition, we know by Theorem 3.5 that λ(B,A) ≤ 3(1+2(γφ2)−1).
It is easy to see that λ(B̂, Â) = λ(B,A). Let x be a linear combination of eigenvectors of Â with
eigenvalues smaller than λi, and y ∈ Null(RTD1/2). Then, by applying Theorem 5.6 to (B̂, Â) gives

(xT y)2 ≤ λmax(B̂, Â)λi ≤ 3λi(1 + 2(γφ2)−1).

Note now that if y is the projection of x into Null(RTD1/2) and z is its projection into R(D1/2R),
we have x = y + z, with yT z = 0. From this, we get ‖z‖2 = (xT z)2 and ‖y‖2 = (xT y)2. Since
‖z‖2 + ‖y‖2 = 1 the second claim follows. �

12

5 Appendix

Definition 5.1. [Support and condition numbers]
The support σ(A,B) of two Laplacians (A,B) is defined as

σ(A,B) = min{t ∈ R : xT (τB −A)x ≥ 0, for all x and all τ ≥ t}.

The condition number is defined as

κ(A,B) = σmax(A,B)σmax(B,A).

Definition 5.2. [Generalized eigenvalues]
The set of generalized eigenvalues Λ(A,B) of a pair of Laplacians is defined by

Λ(A,B) = {λ : there is real vector x such that Ax = λBx}.

Lemma 5.3. [Rayleigh quotient characterization of support] If A,B have the same size, we
have

λmax(A,B) = σ(A,B) = max
xT j 6=0

(xTAx)/(xTBx),

where j denotes the constant vector.

The following well known Lemma is central to the development of support graph theory [4].

Lemma 5.4. [The splitting Lemma]
If A =

∑
iAi and B =

∑
iBi we have

σ(A,B) ≤ max
i
σ(Ai, Bi).

Definition 5.5. [Schur complement]
Let T be a weighted star with n+ 1 vertices and edge weights d1, . . . , dn. The Schur complement

S(T, v) of T with respect to its root v, is the graph defined by the weights Sij(T, v) = didj/D where
D =

∑
i di. Let A be any graph, A[V − v] be the graph induced in A by the vertices in V − v, and

Tv be the star graph consisting of the edges incident to v in A. The Schur complement S(A, v) of A
with respect to vertex v is the graph A[V − v] + S(Tv, v). Let W ⊂ V and v be any vertex in W .
The Schur complement with S(A,W) is recursively defined as

S(A,W) = S(S(A, v),W − v) = S(S(A,W − v), v).

Let A,B be positive definite matrices. We let λ1 ≤ . . . ≤ λn denote the eigenvalues of A and
µ1 ≤ . . . ≤ µn denote the eigenvalues of B. Let κmax and κmin denote λmax(A,B) and λmin(A,B).
We therefore have λmax(B,A) = 1/κmin and λmin(B,A) = 1/κmax.

Theorem 5.6. Let X ,Y be invariant subspaces of A and B respectively. Let the columns of X and
Y be the normalized eigenvectors that span X and Y respectively. We have AX = XΛX , BY = YMY ,
where ΛX ,MY are diagonal matrices containing the corresponding eigenvalues. Let y ∈ Y and
x ∈ X be unit vectors. Suppose mint (ΛX)t,t = λi, maxt (MY)t,t = µj , and mint (MY)t,t = µi,
maxt (ΛX)t,t = λj . Then, we have

(xT y)2 ≤ min{κmax
µj
λi
,

1
κmin

λj
µi
}.

13

Proof. Let y be an arbitrary unit vector in Y, with y = u + v, where u ∈ X and v ∈ X⊥, with
‖u‖22 + ‖v‖22 = 1. By using the A-orthogonality of u, v, and positive definiteness, we have

yTAy = uTAu+ vTAv ≥ uTAu ≥ ‖u‖2 λi.

By definition, we have yTBy ≤ µj , and by the min-max characterization of the generalized eigenval-
ues, we have

κmax ≥
yTAy

yTBy
≥ ‖u‖

2 λi
µj

. (1)

Now let x′ denote u/‖u‖2. It is easy to see that

x′ = arg max
x∈X

xT y

and that ‖u‖22 = (x′T y)2. Combining this with equation 1 proves the first inequality. The second
inequality follows from the first by interchanging the roles of A and B and noting that λmax(B,A) =
1/λmin(A,B). �

6 Acknowledgments

This work was partially supported by the National Science Foundation under grant number CCF-
0635257.

14

References

[1] Arik Azran and Zoubin Ghahramani. A new approach to data driven clustering. In ICML ’06:
Proceedings of the 23rd international conference on Machine learning, pages 57–64, New York,
NY, USA, 2006. ACM Press.

[2] Piotr Berman and Georg Schnitger. On the performance of the minimum degree ordering for
gaussian elimination. SIAM J. Matrix Anal. Appl., 11(1):83–88, 1990.

[3] Marcin Bienkowski, Miroslaw Korzeniowski, and Harald Räcke. A practical algorithm for con-
structing oblivious routing schemes. In Proceedings of the Fifteenth Annual ACM Symposium
on Parallel Algorithms, pages 24–33, 2003.

[4] Erik G. Boman and Bruce Hendrickson. Support theory for preconditioning. SIAM J. Matrix
Anal. Appl., 25(3):694–717, 2003.

[5] Moses Charikar and Sudipto Guha. Improved combinatorial algorithms for the facility location
and k-median problems. In FOCS, pages 378–388, 1999.

[6] F.R.K. Chung. Spectral Graph Theory, volume 92 of Regional Conference Series in Mathematics.
American Mathematical Society, 1997.

[7] Timothy A. Davis, John R. Gilbert, Stefan I. Larimore, and Esmond G. Ng. A column approx-
imate minimum degree ordering algorithm. ACM Trans. Math. Softw., 30(3):353–376, 2004.

[8] Petros Drineas, Alan M. Frieze, Ravi Kannan, Santosh Vempala, and V. Vinay. Clustering large
graphs via the singular value decomposition. Machine Learning, 56(1-3):9–33, 2004.

[9] Michael Elkin, Yuval Emek, Daniel A. Spielman, and Shang-Hua Teng. Lower-stretch spanning
trees. In Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pages
494–503, 2005.

[10] Alan George. Nested dissection of a regular finite element mesh. SIAM Journal on Numerical
Analysis, 10:345–363, 1973.

[11] John R. Gilbert and Robert E. Tarjan. The analysis of a nested dissection algorithm. Numerische
Mathematik, 50(4):377–404, 1987.

[12] Keith Gremban. Combinatorial Preconditioners for Sparse, Symmetric, Diagonally Dominant
Linear Systems. PhD thesis, Carnegie Mellon University, Pittsburgh, October 1996. CMU CS
Tech Report CMU-CS-96-123.

[13] Chris Harrelson, Kirsten Hildrum, and Satish Rao. A polynomial-time tree decomposition to
minimize congestion. In Proceedings of the Fifteenth Annual ACM Symposium on Parallel Al-
gorithms, pages 34–43, 2003.

[14] D.S. Hochbaum and D.B. Shmoys. A best possible approximation algorithm for the k-center
problem. Math. Oper Re., 10:180–184, 1985.

[15] Anil Joshi. Topics in Optimization and Sparse Linear Systems. PhD thesis, University of Illinois
at Urbana Champaing, 1997.

15

[16] Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings: Good, bad and spectral. J.
ACM, 51(3):497–515, 2004.

[17] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput., 20(1):359–392, 1998.

[18] Ioannis Koutis and Gary L. Miller. A linear work, O(n1/6) time, parallel algorithm for solving
planar Laplacians. In Proc. 18th ACM-SIAM Symposium on Discrete Algorithms (SODA 2007),
2007.

[19] R.J. Lipton, D. Rose, and R.E. Tarjan. Generalized nested dissection. SIAM Journal of Numer-
ical Analysis, 16:346–358, 1979.

[20] Bruce M. Maggs, Gary L. Miller, Ojas Parekh, R. Ravi, and Shan Leung Maverick Woo. Finding
effective support-tree preconditioners. In Proceedings of the 17th Annual ACM Symposium on
Parallel Algorithms, pages 176–185, 2005.

[21] Gary L. Miller and Peter C. Richter. Lower bounds for graph embeddings and combinatorial
preconditioners. In Proceedings of the sixteenth Annual ACM Symposium on Parallel Algorithms,
pages 112–119, 2004.

[22] Rafail Ostrovsky and Yuval Rabani. Polynomial time approximation schemes for geometric
k-clustering. In FOCS, pages 349–358, 2000.

[23] Christos H. Papadimitriou, Prabhakar Raghavan, Hisao Tamaki, and Santosh Vempala. Latent
semantic indexing: A probabilistic analysis. J. Comput. Syst. Sci., 61(2):217–235, 2000.

[24] François Pellegrini. A parallelisable multi-level banded diffusion scheme for computing balanced
partitions with smooth boundaries. In Euro-Par 2007, Parallel Processing, 13th International
Euro-Par Conference, Rennes, France, August 28-31, 2007, Proceedings, pages 195–204, 2007.

[25] Harald Räcke. Minimizing congestion in general networks. In Proceedings of the 43rd Symposium
on Foundations of Computer Science, pages 43–52. IEEE, 2002.

[26] Margaret Reid-Miller, Gary L. Miller, and Francesmary Modugno. List ranking and parallel tree
contraction. In John Reif, editor, Synthesis of Parallel Algorithms, chapter 3, pages 115–194.
Morgan Kaufmann, 1993.

[27] Daniel A. Spielman and Shang-Hua Teng. Solving Sparse, Symmetric, Diagonally-Dominant
Linear Systems in Time 0(m1.31). In FOCS ’03: Proceedings of the 44th Annual IEEE Symposium
on Foundations of Computer Science, page 416. IEEE Computer Society, 2003.

[28] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partition-
ing, graph sparsification, and solving linear systems. In Proceedings of the 36th Annual ACM
Symposium on Theory of Computing, pages 81–90, June 2004.

[29] G.W. Stewart and Ji-Guang Sun. Matrix Perturbation Theory. Academic Press, Boston, 1990.

[30] Naftali Tishby and Noam Slonim. Data clustering by markovian relaxation and the information
bottleneck method. In NIPS, pages 640–646, 2000.

16

	Introduction
	Our contributions

	Planar decompositions
	Steiner preconditioners
	Preconditioning for fixed degree graphs
	Effectiveness and practicality

	A spectral portrait of (,) decompositions
	Appendix
	Acknowledgments

