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Moving target defenses alter the environment in response to adver-
sarial action and perceived threats. Such defenses are a specific
example of a broader class of system management techniques called
system agility. In its fullest generality, agility is any reasoned modi-
fication to a system or environment in response to a functional, per-
formance, or security need. This paper details a recently launched
10-year Cyber-Security Collaborative Research Alliance effort fo-
cused in-part on the development of a new science of system agility,
of which moving target defenses are a central theme. In this context,
the consortium seeks to address the questions of when, what, and
how to employ changes to improve the security of an environment,
as well as consider how to measure and weigh the effectiveness
of different approaches to agility. We discuss several fundamental
challenges in developing and using MTD maneuvers, and outline
several broad classes of mechanisms that can be used to implement
them. We conclude by detailing specific MTD mechanisms used to
adaptively quarantine vulnerable code in Android applications, and
consider ways of comparing cost and payout of its use.

Category and Subject Descriptors

D.4.6 [OPERATING SYSTEMS ]: Security and Protection

General Terms Agility; Moving Target Defenses

1. INTRODUCTION
Moving target defenses (MTDs) are a specific example of a larger
security and management technique called agility. Agility is a
reasoned modification to a system or environment in response to
a functional, performance, or security need. Agility can be as
simple as changing a small configuration parameter or as complex as
reconfiguring the topology of a network. Indeed, agility is common
in many contexts, e.g., cloud systems often allocate resources and
services on demand as needs dictate. Here, agility services seek to
realize new computational structures in which environments alter
their structure and function in response to users and system needs.

Illustrating one important application of system agility, mov-
ing target defenses change the environment to ensure survivability,
mitigate or deceive adversaries, or increase detection capabilities.
MTD has been identified as one of four strategic thrusts for cyber

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MTD’14, November 3, 2014, Scottsdale, Arizona, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2955-5/14/11 ...$15.00.

http://dx.doi.org/10.1145/2663474.2663476 .

security [10]. More concretely, MTDs are maneuvers executed
by a human or autonomous defender in an attempt to increase the
security of an environment. The basic MTD tenet is that randomiza-
tion renders the perceived attack surface stochastic, it increases the
spatio-temporal diversity of the attack surface and thus the cost to
the adversary and the time it takes to learn network configurations
and exploit vulnerabilities1. Absent from the current literature is
a systems approach that takes a holistic view of adaptation across
multiple layers, multiple time scales and across the network.

This paper introduces a new effort to develop techniques and
strategies for securing networked systems via agility maneuvers.
This endeavor seeks to develop a science that addresses the questions
of when, what, and how to employ changes to improve the security
of an environment while maintaining the availability, functionality,
and performance of its elements.

The remainder of this paper considers a science of system agility
using MTD as the central motivating example. We begin in the
next section by considering the challenges to be considered when
developing a generalized framework for system agility. In particular,
we (a) explore the need and practice of hiding MTD behavior while
sustaining system function, (b) consider hidden dependencies and
impacts of MTD maneuvers on other systems, and (c) highlight the
tradeoffs of MTD in terms of performance, function, and security.
We also discuss how to develop models used to characterize MTD
strategies based on game theory.

Next, we introduce generalized classes of mechanisms for agility
that can be applied to a broad range of environments. We introduce
three agility abstractions that can be applied to a great many do-
mains. Wrappers are classes of agility mechanisms that intercept and
rewrite inputs to security-sensitive interfaces, e.g., system calls, net-
work traffic, and application-specific APIs. System capabilities are
generalized system features/interfaces that can be enabled, altered
or disabled at run-time, e.g., enabling scripting within a browser,
or permitting remote procedures calls. Distributors are services
that allocate, place, re-locate, and disable services in response to
evolving needs and other environmental factors. The broad behavior
of these facilities is presented and challenges considered.

We conclude by illustrating many of the challenges and mecha-
nisms highlighted throughout in a single example. This example—a
mechanism for detecting and altering Android application behavior—
presents one point in the spectrum of moving target defenses. Here,
the application environment changes its interface by sealing off code
with security vulnerabilities. This discussion explores the structure
of such a service, as well as considers the ways in which the cost
and payouts can be measured and compared.

1Examples of randomization are discussed in [7,8], a series of papers
resulting from an Army Research Lab organized workshop on MTD.
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1.1 Collaborative Research Alliance
The agility work described throughout is being pursued within

the Cyber Security Research Alliance (Cyber-Security CRA). The
Cyber-Security CRA is a consortium of academic, industry, and
government research laboratories charged with understanding and
modeling the risks, human behaviors and motivations, and attacks
within the context of Army cyber-operations. Led by Penn State
University, the Cyber-Security CRA consists of over 40 researchers
from the Army Research Laboratory, Carnegie Mellon University,
Indiana University, the University of California Riverside, and the
University of California Davis. The goal of the Cyber-Security
CRA is to develop a science of cyber-decision making that enables
actors in military environments to: (i) detect and characterize the
risks and attacks present in the environment; (ii) understand and
predict the motivations and actions of users, defenders, and attackers;
(iii) alter the environment to achieve operation success. Practically
speaking, we will enable defenders to answer, “Given a security and
environmental state, what cyber-maneuvers best mitigate attacker
actions and enable operation success?” Note that this is not a discrete
and momentary analysis, but one that is continuous and adaptive
within evolving state awareness.

The Cyber-Security CRA is broadly split into three research
areas: detection, risk, and agility. The science of detection explores
approaches that determine the current state of the environment,
including identification of threats and on-going attacks. The science
of risk is concerned with understanding and quantifying risk and its
impact on the system. The science of agility–the focus of this paper–
involves understanding how to respond to attacks, what maneuvers
are available, and when those maneuvers should be executed to
improve the security of the system. A related question is: How
quickly should we adapt? Faster adaptation gives the adversary
less time on target to learn our defense mechanisms; on the other
hand, it also provides us less time-on-target to learn about our
adversariesĂŹ capabilities and thus assess risk or predict threats. A
principled approach to this involves multiple disciplines: networks,
cyber, control, detection and estimation theory.

2. AGILITY CHALLENGES
There are many ways to formulate and execute a MTD response to
an environmental threat. In practice, the choice of MTD (or set of
MTDs) to employ depends on a myriad of factors including the envi-
ronmental state, resources at risk, threat model, and broader policy
goals of the defender. For instance, maintaining the availability of
a networked service in an Internet-facing DMZ requires different
MTD maneuvers than protecting a backend database’s integrity.

As a consequence, moving target defenses often involve complex
tradeoffs. These tradeoffs have impacts on performance, availability
and security, and introduce design and deployment challenges. In
the CRA, we have identified three key challenges.

Concealing the strategy from the adversary. The details of a
maneuver must be known to friendly parties (where needed) and
unknown to adversaries. For instance, when the defender migrates a
service to hide its location from attackers legitimate users still need
be able to access the service. Such maneuvers add overhead and
complexity to the system.

Sustaining security across layers. MTD must consider impacts
at multiple layers of the system. For example, reconfiguration in
the network layer may unintentionally expose vulnerabilities in
the software layer, e.g., expose open services. Axiomatically, the
environment should always be more secure after a maneuver. As
such, cross-layer MTD must be carefully designed to limit the scope

of any maneuver to include only the elements that are necessary to
achieve the security goals.

Managing cost. MTDs often induce additional costs on the systems
and users they defend. Maneuvers will typically introduce these
overheads both during their execution and afterward. One has to
take care to make sure that these costs are reasonable and do not
unduly impact system operations.

The next three subsections consider each of these challenges in
detail and posit ways of addressing them. Section 2.4 proposes a
general model based on game theory that provides a platform for
reasoning about MTD strategies.

2.1 Concealing the MTD Strategy
The effectiveness of many MTD strategies is based on their ability

to conceal their activities and details from the adversary. Thus, any
approach must be (a) unpredictable in its use, (b) varying widely
enough to prevent the adversary from successfully guessing its
activities, and (c) transparent to the adversary in its execution.

The other side of the equation is ensuring the resources of the
environment remain known and available to the users. Securely
communicating defensive maneuvers to legitimate parties is essen-
tial to any MTD framework. Ideally, an adversary should not be
able to eavesdrop or spoof information about defense maneuvers.
More realistically, the threat model must assume that an adversary
can compromise some percentage of nodes in the network. The
challenge is to find ways to limit the information that is exposed to
each node in the network, allowing us to limit the impact of a com-
promise to a localized area. If the reconfiguration rules/strategies
are leaked to an adversary, the adversary will not only regain the
upper hand, but will potentially have a new advantage.

In some cases, a trusted public key infrastructure (PKI) can help
secure network communication from eavesdropping; however, such
schemes do not provide adequate protection against insider threats.
Consequently, the MTD framework needs mechanisms to limit the
information that is exposed to each node. For example, a controller
that performs network reconfigurations might only provide each
node with a sub-set of the reconfigurations; further, instead of using a
shared group key to announce reconfigurations, the controller could
use host specific keys. Under this scheme, if a node is compromised
the adversary is privy only to the information that is exposed to that
node. Similarly, operating system reconfigurations are local to the
host. That is, they rarely need to be exposed to other entities in the
network. Inexorably, localization strategies introduce complexity
into the operation that needs to be balanced with the other costs.

A trusted certification authority (CA) may not always be available,
e.g., in the case of mobile wireless networks. Randomized key
predistribution schemes [4,13] are useful, but insufficient; current
techniques do not provide a rich set of options for reconfiguration
(e.g., k connectivity between nodes). One has to also make sure that
any information that is exchanged for maneuver purposes are not
leaked to a third party node on the open wireless medium.

2.2 Sustaining Security Across Layers
MTD mechanisms should observe the Hippocratic Oath: “first

do not harm”. Practically speaking, this means don’t make the
security posture of the environment worse. However, the complex
interactions induced by MTD systems between systems and layers
can inadvertently produce exactly this result.

Networked systems typically exhibit a large set of dependencies
between the layers, spanning from the application all the way down
to the physical layer. These dependencies will have to be accounted
for and leveraged while designing a MTD framework. One can
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envision the interactions between the attacker and defender as a
game; however, constructing games at a single layer can potentially
result in an insecure system. More generally, we seek to develop
policies or agility mechanisms that maximize the payoff against all
adversarial behaviors, or at least broad classes of behaviors.

To illustrate, consider a wireless multi-hop network where a
service is to be protected. The goal of the attacker is to locate
the service, and disrupt its availability (e.g., by launching a DoS
attack). The defender seeks to place the service at a location such
that it can be reached by the other nodes in the network with least
cost (e.g., the total distance to these nodes is minimized); however,
knowing this strategy makes it easy for the attacker to target the
service. In the simplest case, one could formulate the problem as
a game wherein the defender tries to maximize a payoff function;
maximizing the payoff would entail minimizing the distance to the
other nodes from the service while at the same time, maximizing
the distance from the adversary. The attacker tries to minimize the
same payoff. One could come up with optimal mixed strategies for
the attacker and defender in this case.

However, this representation of the service availability problem
ignores the cross layer dependencies that arise during the migration
process. For instance, in order to move the service from one node to
another, the nodes will need to exchange information, e.g., establish
TCP handshakes. In the process, even if the payload is encrypted, it
is possible that the attacker is able to intercept exposed headers. This
header information may allow the adversary to locate the service.
Further, even if the headers were somehow concealed, the traffic
access patterns may give the location away.

Consequently, agility must employ a combination of different
techniques across multiple layers. At the network layer, one can
envision using multi-path routing (e.g., [3]) to dynamically vary the
path of information in order to minimize the likelihood of packet
interception. Multi-path routing can be extended in several ways
to provide stronger notions of anonymity [2,12] to make it more
difficult for an attacker to determine the source, destination, and
event existence of control messages that guide reconfiguration. At
the physical layer, features such as MIMO or power control can help
limit the range of transmissions, making it more challenging for an
adversary to eavesdrop. Figure 1 illustrates a simple scenario. In
this scenario, the wireless network is made of several nodes. Two
messages are being sent in multiple parts using multi-path routing.
If we consider an eavesdropper trying to intercept these communi-
cations, the limited range of transmissions and the configuration of
routes used by message parts will only allow him to fully intercept
and understand one of the two messages.

However, these strategies impact network performance; use of
longer (and possibly less reliable) routes could lead to higher load
and delays. Similarly, topology control via either reducing power,
or by using MIMO for creating null spaces would reduce both
reliability of transmissions and cause paths to become longer. One
can inject fake traffic to obfuscate the access patterns to the service
under discussion but again this would result in an exacerbation of
congestion within the network.

While the above discussion considered a wireless scenario, simi-
lar cases can be constructed for wired networks. Software defined
networking (SDN) platforms combined with network function vir-
tualization allow for the reconfiguration of network topology on
the fly. Using these techniques, one could envision separating the
identity of a node from its routing attribute (IP address)—though
this would require dynamic reconfigurations of the controllers as
well as routing tables at different nodes. Again, to hide the location
of services one may consider the injection of fake traffic, the de-
ployment of honeypots, or both. Some of the issues that arise in the

wireless setting (e.g., eavesdropping on the open medium) do not
exist here, but the scale of operations would make dynamic changes
much more complex.

If we need only consider the connection of services to the network,
cloud computing provides a natural platform for implementing agile
services, as it creates a layer of indirection between clients (benign
and malicious) and services and enables transparent migration of
services. For example, different clients can be provided with dif-
ferent IP addresses and ports for the same service, enabling the
agility framework to determine how to manage migration and repli-
cation for agility purposes. Thus, we can decide on a per-service
basis whether to grant clients access to the “real” service (i.e., vs.
a temporary front-end), whether and when to migrate the service,
remedial actions to take on the service (e.g., to restore the service to
a known-safe state), and how to divide clients among replicas of the
service, and how to choose coordination among the replicas.

2.3 Managing Cost
Underlying our previous discussion is the inherent cost associated

with any agility maneuver. These costs are reflected as either a
loss in performance (either during the reconfiguration or in the final
configuration), or as the need for additional assets. As a very simple
example, if we consider service migration as a plausible option
towards ensuring high availability, we must account for several costs.
First, the migration strategy (where to migrate) and the migration
trigger must be distributed to all affected parties. Second, during
the migration, network capacity is used to move the process. Third,
during migration, there may be interruptions in service—interrupts
may or may not be acceptable depending on the situation.

Alternatively, we can use replication (instead of migration) to
ensure availability. However, the more replicas, the higher the
likelihood that an adversary will be able to correctly identify one and,
depending on the threat, this may not be acceptable. Additionally,
each replica incurs costs in terms of computing and storage as well
as the complexity of disseminating the location of the replicas to
trusted parties. In some scenarios, a combination of migration
and replication might be most successful, but even then, the right
combination is hard to determine.

Even for internal reconfigurations, wherein the changes stay
within the host, there are still overheads in terms of service avail-
ability. We discuss software agility further in the next section.

The costs of agility need to be managed. In other words, agility
should not cause the system to be overwhelmed. One option is
to the scope of the agility maneuver to reduce costs at fine time
scales but only undertake larger scale changes at coarse time scales.
Host level reconfigurations (e.g., ASLR to randomize the memory
layout, software agility etc.) could drastically reduce the likelihood
of certain types of threats. It would then become only necessary to
determine what additional knobs will need to be tuned in order to
cope with other threats.

The environment and applications should also determine the level
of agility that is needed. In other words, given certain applications
and settings, one could reduce the costs in providing agility. For
example, in our earlier work, we consider selective encryption of
video flows in order to provide protection against eavesdroppers [11].
Encrypting large video files for transfer over wireless settings could
incur high energy costs and induce additional processing delays.
If instead, one were to only encrypt parts of the video file, it may
suffice in terms of obfuscating its content from an eavesdropper.
One may also dynamically tune the level of encryption based on the
importance of the content, the error rates on the network (which may
help in protecting against an eavesdropper) and the energy/delay
budget for the application.
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Figure 1: Multipath routing, coupled with power management, can prevent an adversary from intercepting all of the communication between two peers. Let’s first

consider the message sent from node A to node E. It is divided into three parts and each of them is sent to node E using a different path. If the eavesdropper is

trying to intercept communications between A and E, he can only intercept the third part of the message while it is routed to and from node C. He is not able to

understand the message. However, let’s now consider the message sent from node G to node A. The first part is routed to node A through node C and the

second through node H. Because the eavesdropper is in transmission range of both node C and node H, he will be able to intercept both parts of the message

and therefore understand the message.

2.4 Modeling MTD Games
MTD mechanisms must be based on a fundamental understanding

developed via modeling attacker and defender interactions. As
alluded to earlier, game theoretic models can inform interactions
between the attacker and the defender. This can in turn help in
providing valuable insights that will drive the design of algorithms
for dynamically changing configurations.

Tunable hierarchical games. To cope with multi-scale, multi-
objective adversarial behavior, one could consider what we call
tunable hierarchical games. The basis for such games is as fol-
lows. The output of a game at one level will determine the level or
risk associated with a game at a different level. Again, consider a
network-level game, where the objective is to thwart DoS attacks
(e.g., see prior work in [5,6], where backpressure is used to reduce
the threat of DoS attacks in wireless multi-hop networks). In such
scenarios, the solution (which comes at the expense of other perfor-
mance penalties), is known to reduce the potency of TCP SYN flood
attacks. Once a node is brought down via DoS, an adversary could
effectively masquerade as that node to launch other potent (e.g.,
insider) attacks on other nodes. But once DoS attack likelihoods are
reduced, the other attacks are likely to decrease as well.

Thus, at this point we could reduce the frequency with which a
service is migrated from one node to another, i.e., the likelihood of
potent attacks on the service is now decreased. Ultimately, this could
influence the level of obfuscation needed at the link level (e.g., using
friendly jamming). Naturally, the output of one game (e.g., using
backpressure to determine the optimal rate at which TCP SYNs
should be received at a given server node) influences the parameters
of another game (e.g., service migration decision). We call these
tunable hierarchical games. As with the previously proposed game
models, the hierarchical games can be progressively refined based on
knowledge gained regarding the attacker—assuming the adversary
is omniscient or can learn at least as well as we can.

Imposing known signatures on legitimate functions. Instead of
allowing all possible changes to network/system configurations,
one could impose signatures to shape functions within the MTD
framework. For example, access to certain resources (e.g., memory
locations, paths) could be limited to certain times. Some nodes may
be precluded from communicating or accepting new connections
at some times. Certain OSes may be disabled at some times, while
others are switched on. These patterns if unknown to the adversary,
can help not only regain the first mover advantage, but also provide
a quick way of detecting (failed) attack attempts. The challenge here
is to determine signatures that are easy to implement and manage,
and yet, hard for an adversary to guess. We expect that the these
models could yield insights on the development of such signatures.

3. AGILITY MECHANISMS
Current systems are poorly equipped to prevent and withstand

attacks, because defense decisions (if any) are hardcoded into system
design and implementation. As a result, agility maneuvers are
necessarily reactive and changing system behavior (e.g., writing and
applying a security patch) takes time—time when the target services
are vulnerable or unavailable. A more complete approach would
include proactive maneuvers, such as MTD, to dynamically change
the attack surface and reduce the time window for an adversary [8].

Adding MTD support requires developers to design and imple-
ment agility mechanisms to support both reactive and proactive
maneuvers; broadly, they must satisfy the following requirements.

First, agility mechanisms should be flexible, allowing for a range
of program changes. Such flexibility is challenging to obtain. While
changing function bodies is often straightforward, changing data and
function types is difficult and error-prone. Second, the mechanisms
must preserve application invariants and security policies, both
during and after maneuvers. Third, these mechanisms have to come
at a reasonable cost. In general, support for maneuvers tends to
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impose memory, performance, and energy overheads. The value of
a maneuver, and thus of the mechanisms that enable it, is a function
of the effectiveness of the maneuver and the execution cost.

We propose several concrete mechanisms for agility: system wrap-

pers which allow system design, implementation, and interaction
with the environment to be modified at runtime; capabilities, a novel
way of structuring system functionality which allows functional
components to be turned on or off as needed; distributors, which
allow services to be flexibly moved, split, and consolidated, so as to
decouple task completion from where the service is executed.

3.1 Wrappers
Wrappers form a flexible reconfiguration layer that “wraps” enti-

ties such as software or services to enable agility maneuvers. We
consider three general types of wrappers: communication, detection,
and rewriting wrappers.

Communication wrappers intercept and rewrite the communica-
tion between an entity and its environment. For example, exception
handlers can be intercepted and rewritten to allow fault recovery and
self-healing. Another example would be a firewall-style wrapper
that rewrites program input, e.g., SQL or HTML input sanitization
to prevent SQL-injection or cross-site scripting attacks.

Detection wrappers permit placing (and removing) detection
points, in accordance with requests from detection tasks. For exam-
ple, system call arguments and return values can be intercepted to
detect malicious processes. Another example is adding a monitor
for application/system logs to detect anomalies.

Rewriting wrappers support nearly arbitrary software reconfig-
uration — changing programs statically or dynamically for MTD
purposes. For example, switching encryption algorithms on-the-fly
to offer improved confidentiality, or adding an integrity layer to
servers. For example, adding integrity to Memcached to secure the
communication with its peers; or applying patches to seal off buggy
components in smartphone apps to preserve availability; or changing
binaries to ensure binary variance as protection against attacks. In
the same category, we can foresee changing the software’s runtime
environment to support MTD. For example, changing from unen-
crypted in-memory data structures to encrypted ones (followed by
wiping the unencrypted storage) to preclude loss of confidentiality
in the face to an attack.

The science of wrappers. Materializing our vision for wrappers
will require several fundamental advances: ensuring the integrity
of the wrapping process (wrappers cannot be taken over and sub-
verted); ensuring the semantic integrity of code changes: change
code statically or dynamically while providing certain security and
safety guarantees. Modifying programs, their environments, or their
executions, at runtime without impacting program semantics (or
affecting only irrelevant parts of semantics, orthogonal to security)
is difficult to establish as correct. This will require the development
of a new theory (likely similar to noninterference [14]), that can be
generalized to other security applications, e.g., deceiving adversaries
without confusing legitimate users.

3.2 Capabilities
We propose the concept of capabilities as software units that can

be added or removed, as needed, to address emerging threats or
other environment changes. For example, in Web servers, capabili-
ties include executing scripts or listing directories. On smartphones,
communication (via Wi-Fi or 4G), uploading files to a server, record-
ing video, or point-to-point navigation are potential capabilities.
Depending on system needs, we may need to remove existing capa-
bilities, e.g., remove directory listing in Apache as protection against
an exploit, or remove communication abilities from a smartphone

when the smartphone enters hostile territory. Capabilities vary in
extent and cut across program modules, methods, and functions.

The science of capabilities. We plan to construct a theory of ex-
pressing the extent of a capability, as well as wrapper support for
adding or removing capabilities on-the-fly. Defining formally, and
automatically identifying, capabilities, as well as adding and remov-
ing capabilities on-the-fly will require advances in formal program
modeling, analysis, reconfiguration, and security.

3.3 Distributors
Distributors support principled service migration, consolidation,

and redistribution, allowing a single service to be performed on,
or distributed to, multiple systems. For example, splitting a Mem-
cached key-value server into several servers, to reduce processing
delays and improve availability. Conversely, allowing distributed
services to be performed on/distributed to one system; for example,
a server S1 can take over the key-value services from server S2 (that
is under attack) and service both S1 and S2’s clients transparently
to preserve availability.

Deception. Wrappers and distributors are ideal mechanisms for
introducing deception: creating honeypots, fake copies of process-
es/services to observe how the attackers behave [9], and then feeding
the adversaries distorted information to increase the adversary’s cost
and decrease the adversary’s payout. Deception must be introduced
carefully, to avoid confusing legitimate applications (which might
not be aware of its existence).

A principled way of specifying correct, secure operation (e.g.,
via invariants), will have to be developed, as well as actions meant
to bring software back to correct and secure operation by restoring
programs and their execution to states and operations where they
fulfill the invariants (at least partially). Establishing that, during
repair and after repair, the program still abides by certain security
policies is a challenge we plan to address explicitly.

The science of service migration and redistribution. We expect
several challenges and scientific contributions: how to ensure that
service migration (e.g., shipping existing key-value pairs) does not
siphon off data? Or how to ensure that operations at the new server
are semantically equivalent to the operations at the old server?

4. SELF-HEALING SOFTWARE
We now provide an example of MTD as an illustration of using

agility maneuvers to cope with adversity, in this case smartphone
software faults. Smartphone applications are prone to several classes
of faults, including: unhandled exceptions, which will cause the
OS to terminate the application; application crashes, e.g., due to
semantic errors which will again lead to termination; permission
violations, e.g., when the application attempts to access resources it
does not have permission to; and so on. While the OS can restart the
application when a fault occurs, application state can be lost, and the
application will crash again when faulty code is invoked. To address
this problem, in prior work [1] we added failure detection and
recovery to Android applications by detecting faults and “sealing
off” the faulty part of the application to avoid future faults. An
overview of our approach is shown in Figure 2; the reader can
ignore the blue callout boxes for now.

First, we extract an application model via static analysis; the
model consists of high-level application states and their transitions.
Next, to detect faults, we monitor application execution (dynamic
analysis); when a fault is detected, we trace it to the method that
has caused it and map the faulty state onto the model to find a safe
state that precedes it. Then, we use binary rewriting to construct
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Figure 2: Smartphone self-healing: overview and integration with other

components.

a “seal-off” patch that adds fault-handling code around the faulty
method. Finally, the application is restarted and future faults in that
method will be dealt with gracefully: intercepted and followed by a
restart into the safe state, rather than terminated.

In sum, when using our implementation, applications can resume
operation instead of repeatedly crashing, though with limited func-
tionality if the fault is persistent. Our approach does not require
access to application source code or any system (e.g., kernel-level)
modification. We have demonstrated the utility of this approach
on real faults in several widely-used, sizable Android applications:
Facebook Mobile, NPR News, K-9 Mail, SoundCloud, APV PDF

Viewer. Our approach managed to quickly recover from faults:
bytecode rewriting took at most 22 seconds, while resuming the
application in a safe state took at most 9 seconds.

4.1 From Smartphone Self-healing to General
Agility

Self-healing shows how to cope with adversity on a device op-
erating in a sensor-driven platform, unstable environments, with
limited power and communication capabilities. We now discuss how
this preliminary implementation encompasses many of the aspects
needed for agility in general. Returning to Figure 2, note how our
approach naturally lends itself to a broader, more general approach
to agility as a means to implement MTD.

First, our dynamic analysis is based on monitoring application
execution at fixed points, in this case Android’s Dalvik VM log.
These points can naturally be added/deleted as required; for example,
we could also monitor application system calls, application traffic,
system parameters, etc., to detect a potential attack.

Second, our fault detection is based on a binary decision: if the
fault manifests itself, perform self-healing. However, in some cases
the decision to heal will depend on a cost-payoff analysis.

Third, our maneuver was simple and hard-coded: construct a
patch and drive the application to a safe state. Agility allows for
several maneuvers, e.g., no patching, just restart; or wipe the mem-
ory and the application space (in cases when protecting application
secrets is more important than keeping the application functional);
or restart the application and filter its incoming and outgoing traffic,
etc. Deciding which maneuver makes sense at the current time and
system state is another cost-payoff optimization problem.

Next, we examine how self-healing factors into the cost vs. payoff
analysis for agility in a bandwidth- and power-limited environment.

4.2 Agility Cost vs. Payoff
One way to compare the impact of agility maneuvers is to measure

their impact on software capabilities and the reduction/restoration

of some security level. For instance, we can consider the capability
costs of sealing off a function, self-healing a function, and patching
(if a patch exists). Both sealing off and self-healing can affect the
capability and security of an application while patching (if a patch
exists) would essentially restore both to full values. This relationship
could be expressed for some arbitrary capability Cn as:

Cn(sealingoff )≤Cn(self healing)≤Cn(patching)

and the level of security may be adjusted as Sn:

Sn(self healing)≤ Sn(sealingoff )≤ Sn(patching)

Additionally, in constrained networks we can compare the costs
of patching, sealing-off, and healing as a function of the power
utilized to accomplish the agility maneuver. For instance, the three
maneuvers require some computational power to apply; this can rep-
resent the cost value for the maneuver (e.g., p(self heal), p(sealoff )
and the p(applypatch) where p represents power). The patching
maneuver requires an additional cost: the power necessary to trans-
mit the patch to the node. This will be at some cost to the nodes
along the delivery path. This power consumption is a function of
the size of the patch (bytes), the throughput for each individual
link (bytes/second) and the power consumption rates for nodes to
transmit and receive data (usually expressed in watts/hour).

As an example, let us assume all nodes have equal power con-
sumption communication rates and the number of intermediate
nodes between the node possessing a patch and the node requir-
ing the patch is n− 1. Given a patch size of b bytes, throughput
between arbitrary nodes i and j is ti, j and the power to transmit is
ptx and power to receive prx, and the cost to deliver the patch is

Ppatchdelivery = bt0,1 ptx +
(

n−1

∑
i=1

bti, j(ptx + prx)
)

+btn−1,n prx (1)

Overall the cost to patch is represented as:

ppatch = papplypatch + ppatchdelivery

In situations where the network is constrained, the distance from
the patch location to the node is many hops (large n) and/or the
patch size is large. We may find that ppatch >> p(self heal) and
ppatch >> p(sealoff ). This analysis must, of course, be extended
to the simultaneous application of multiple patches which could
conflict in resource usage for patching, as well as resources needed
for the underlying mission. Such an analysis would also allow for
network maneuvers which could include changing the topology,
changing the roles of nodes and the network services they offer, etc.

5. CONCLUSIONS
This paper has considered a new science of environment recon-

figuration called system agility. The promise of such a science is
that it will provide a generalized means of continuously altering
the environment to address evolving needs. Yet, agile systems face
complex challenges in realizing this vision. Systems such as those
employing Moving Target Defenses must evolve in unpredictable
ways that potentially lead to decreased reliability and suboptimal
performance. In the worst case, these systems can introduce new
vulnerabilities and decrease the security of the entire system.

Consisting of academic, industrial, and government partners, the
Cyber-Security Collaborative Research Alliance has launched a 10
year effort to begin to develop this new science. It is through these
efforts that we hope to help transform the networks of today from
the static target-rich environments that exist today to be as defensive
and nimble that they need to be.
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