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Abstract—Smartphones are now targets of malicious viruses.
Furthermore, the increasing “connectedness” of smartphones has
resulted in new delivery vectors for malicious viruses, including
proximity-, social- and other technology-based methods. In fact,
Cabir and CommWarrior are two viruses—observed in the wild—
that spread, at least in part, using proximity-based techniques
(line-of-sight bluetooth radio). In this paper, we propose and
evaluate SI1I2S, a competition model that describes the spread
of two mutually exclusive viruses across heterogeneous compos-
ite networks, one static (social connections) and one dynamic
(mobility pattern). To approximate dynamic network behavior,
we use classic mobility models from ad hoc networking, e.g.,
Random Waypoint, Random Walk and Levy Flight. We analyze
our model using techniques from dynamic systems and find that
the first eigenvalue of the system matrices λS1,λS2 of the two
networks (static and dynamic networks) appropriately captures
the competitive interplay between two viruses and effectively
predicts the competition’s “winner”, which provides a feasible
way to defend against smartphone viruses.

Keywords—Epidemics, Competition, Social Networks, Mobile
Networks

I. INTRODUCTION

Smartphones are a widely popular and growing space of
computing technology, and are becoming an integral part of our
daily life. In Q2 2012, over 153.9 million smartphones were
sold worldwide [11]. Smartphones provide an ultra-portable
interface to the Internet, and aid in their daily tasks with
the wealth of device functionalities such as GPS, cameras,
NFC(Near Field Communication) and accelerometers. As a
direct result of their increasing popularity, functionality, and
user reliance, smartphones are becoming common malware tar-
gets [4], [5], [12]. Smartphone “connectivity” forms a complex
network of interaction, consisting of “layers” that represent
various distinct social, technological and opportunistic contact
networks. Each layer provides a unique, potential spreading
vector for malware and other malicious viruses. Fortunately,
emerging techniques from the field of Network Science provide
a solid analytic framework to study such interconnections
among varying, yet intertwined, network layers spanning the
physical, information and social realms [6].

In this paper, we propose and evaluate the SI1I2S com-
petition model to study the competition between two, mutu-
ally exclusive viruses actively spreading across heterogeneous
composite networks. In our model, each layer corresponds
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Fig. 1. Example of Heterogeneous Composite Network and State Transition
Diagram.

to a different connectivity structure existing between a sin-
gle set of nodes. Figure 1(a) illustrates a layered network.
User social interaction forms a static network (top layer),
whereas smartphones—carried by the users as they go about
their daily activity—form a dynamic network (bottom layer).
Notice that, previous work only studied the homogeneous
composite network, namely, two layers are static [9]. In brief,
our base propagation model SI1I2S—inspired by the popular
compartmental models found in mathematical epidemiology—
allows us to assert the mutual exclusivity condition between
the competing viruses. In our model, each node transitions
between states as indicated in Figure 1(b).

Using this framework, we seek to answer the following:
What are the parameters and conditions that determine the
winner in heterogeneous composite networks? Extending the
work of [7]–[10], our analytic model shows the first eigenvalue
of the system matrix corresponding to a layer (λS) effectively
determines the competition winner.

II. MODEL AND PROBLEM DEFINITION

Our model consists of two primary components: propaga-
tion and competition. We detail them below, and for conve-



Symbol Definition Symbol Definition
V1, V2 Virus #1, #2 A1, A2 Adjacency matrices
δ1, δ2 Viral Persistence of V1, V2 β1, β2 Viral Strength of V1, V2

S Susceptible state I1, I2 Infected state for V1, V2

S1, S2 System Matrix for A1, A2, λS1
, λS2

Largest eigenvalue of S1, S2

where S = (1 − δ)I + βA in absolute value.
TABLE I. TERMINOLOGY

nience, provide terminology in Table I.

Propagation. We base our propagation model on the popular
“flu-like” SIS compartmental model borrowed from mathemat-
ical epidemiology. Our model, SI1I2S, is composed of three
distinct states: Susceptible (S), Infected with Virus #1 (I1), and
Infected with Virus #2 (I2). A system agent (node) is in one of
these states, with transitions as described in Fig. 1(b), where
β, δ represent the viral strength and persistence, respectively.

Viral persistence describes the probability an node recovers
from an infected state to the susceptible state, captured in
an inverse manner, i.e., the higher δ, the less time a node
remains infected. Viral strength is the probability that, when in
contact with an infected node, an susceptible node is attacked
by that infected neighbor. The attack only represents the
potential for an infected node to propagate a virus to the
susceptible node. Often, a susceptible node is attacked by
multiple infected neighbors in a given timestep, possibly with
different infections. To ultimately determine which infection
is propagated to the susceptible node, we use the following
algorithm. Let C1 (C2) be the number of neighbors that attack
node i with virus #1 (#2) during a timestep ∆t. Then, we have
three possible scenarios for the susceptible node:

1) if C1 = 0 and C2 = 0, i remains in the susceptible
state.

2) i transitions to I1 with probability C1

C1+C2
.

3) i transitions to I2 with probability 1 − C1

C1+C2
.

Competition. Conceptually, we assume that the spreading
viruses are mutually exclusive. That is, a node may never be
infected by both viruses at the same time. This assumption is
enforced in our model, as transitioning to an infected state only
occurs when a node is in the susceptible state (see Figure 1(b)).
The mutual exclusivity constraint is the basis of competition
in our system.

We further assume that distinct viruses will have different
attack vectors, corresponding to different layers of networked
interaction across a set of nodes N . An attack vector cor-
responding to the static layer forms a connectivity matrix
A1 that describes the possible edges a virus may traverse
as it propagates through the population. Our dynamic layer
is a set of connectivity matrices corresponding to the static
connectivity at that moment in time. Each connectivity matrix
is simply a layer in our connectivity model.

In our competition model, we assume that A1 is a static
contact matrix over the duration of our evaluation. In contrast,
we assume A2 is a dynamic contact matrix. To approximate
dynamic graph behavior, we use the classic mobility models
Random Waypoint, Random Walk and Levy Flight. To conserve
space, we refer our reader to [2] and [3] for descriptions of
these models.

Finally, we define the “winner” of the competition as the

virus that successfully captures the largest fraction of nodes at
steady state [7], [8].

Problem Definition. Given the propagation model described
above, we now state the problem we address in this paper.

Given: (1) A static matrix A1; (2) A mobility model (random
walk, levy flight or random waypoint mobility models); and
(3) the propagation parameters of the competing viruses model
(β1, δ1, β2, δ2).

Find: the parameters and conditions that determine the winner.

Ultimately, we believe this model is a reasonable starting
point to analyze competition between viruses, and leave the
analysis of other models as future work.

III. EIGENVALUE ANALYSIS

In this section, we briefly introduce the system matrix S
and detail that why the first eigenvalue of the system matrix
λS is the key parameter in determining the winner of our
competition.

As in [6], we define the system matrix as S = (1 − δ)I +
βA. One such matrix exists for each virus, but for convenience,
here we drop the subscripts denoting individual virus and speak
generally. As defined, the system matrix of a virus –and its
primary eigenvalue– are a function of the topology and the
virus propagation parameters. In more detail, given S formed
from adjacency matrix A and the standard definition of an
eigenvalue, we find:

λS~x = ((1 − δ)I + βA)~x

λS = 1 − δ + βλA (1)

In conclusion, we could see that the system eigenvalue in-
creases with the viral strength, β and the adjacency eigenvalue.
Naturally, it decreases as the viral persistence, δ, increases.

IV. SIMULATION AND RESULTS

Simulation Methodology. We conduct a discrete-time sim-
ulation to evaluate the disease spread across our system. Each
experimental run is composed of 100 trials, and the averaged
results are reported below. For each run, we generate a power-
law static graph across all the run’s trials [1]. At the beginning
of a trial, each virus initially infects a disjoint set of nodes,
Ini1 and Ini2, populated randomly from the complete set of
nodes, where Ini1 = 5 and Ini2 = 1. A trial completes upon
reaching a relatively stable state, at which point, we determine
the number of infected nodes for each virus.

Simulation Results. Figures 2,3, and 4 correspond to the
case where the static graph has the higher connectivity as
indicated by its eigenvalue λ2. In these experiments, for each
static graph, λ2 is between 3.873–4.552, whereas the dynamic
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Fig. 2. Random Walk Mobility Model
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Fig. 3. Random Waypoint Mobility Model

graphs have a λ1 between 1.100–1.112. As illustrated in Equa-
tion 1, assuming propagation parameters are equal, the disease
operating on the graph with the highest λ corresponding to the
system matrix is a stronger spreader, and will ultimately win
the competition. Clearly, our experimental results support this
assertion, as the static graph for each competitive scenario wins
the competitions, regardless of mobility model.

Alternatively, Figure 5 illustrates the case where the eigen-
value of the dynamic layer is larger than the static layer (i.e.,
λ1 > λ2). Again, in this case we clearly observe the layer with
the larger λ corresponding the its system matrix is the winner.

V. CONCLUSION

In this paper, we study the propagation of two mutually
exclusive viruses competing for nodes across distinct static
and dynamic network layers. Our problem is motivated by
the growing concern over the spread of malicious viruses in
smartphones. We extend on earlier work and show that λS is
the essential parameter that effectively determines the winner
of such a competition. Using simulation, we illustrate our result
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Fig. 4. Levy Flight Mobility Model
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Fig. 5. Random Walk Mobility, note λ1 > λ2

using various mobility model and find that the virus that has
a larger λS tends to win the competition. This indicates that
it is feasible to defend against smartphone virus propagation
by disseminating anti-virus signature with a larger λS on
heterogeneous composite networks. In the future, first, we
will theoretically derive the epidemic threshold of competing
viruses propagation on heterogeneous composite networks un-
der the SIS model. Second, we will investigate other epidemic
models(e.g., SIR) and explore how to resolve the parameters in
our models into real smartphone virus propagation parameters.
Finally, we would like to propose effective mitigation strategies
to defend against smartphone malwares.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
feedback. This material is based upon work supported by the
National Science Foundation under Grants No.IIS1017415,
CNS-1064646 and NSF CISE NECO-0832069, and by U.S.
Defense Advanced Research Projects Agency (DARPA) un-
der the Social Media in Strategic Communication (SMISC)



program, Agreement Number W911NF-12-C-0028 and Army
Research Lab (ARL) under the Network Science CTA award
W911NF-09-2-0053. This work is also partially supported
by funds from the VT College of Engineering. The views
and conclusions contained in this document are those of the
authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Army
Research Laboratory, the National Science Foundation, or
the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

REFERENCES

[1] C. Palmer and J. G. Steffan. Generating Network Topologies that Obey
Power Laws. In GLOBECOMM, 2000.

[2] T.Camp, J. Boleng, and V. Davies. A Survey of Mobility Models for Ad
Hoc Network Research. In Wirel. Commun. Mob. Comput, 2002.

[3] I. Rhee, M. Shin, S. Hong, K. Lee, S.J. Kim, and S. Chong. On the
Levy-Walk Nature of Human Mobility. In IEEE/ACM Trans. Net., 2011.

[4] G. Zyba, G. Voelker, M. Liljenstam, A. Mehes, and P. Johansson.
Defending Mobile Phones from Proximity Malware. In IEEE INFOCOM,
2009.

[5] F. Li, Y. Yang, and J. Wu. CPMC: An Efficient Proximity Malware Cop-
ing Scheme in Smartphone-based Mobile Networks. In IEEE INFOCOM,
2010.

[6] A.-L. Barabási. Linked: The New Science of Networks. Perseus Publish-
ing, 2002.

[7] B. A. Prakash, H. Tong, N. Valler, M. Faloutsos, and C. Faloutsos.
Virus propagation on time-varying networks: Theory and immunization
algorithms. In ECML/PKDD, 2010.

[8] N.Valler, B. A. Prakash, H.Tong, M.Faloutsos, C. Faloutsos. Epidemic
Spread in Mobile Ad Hoc Networks: Determining the Tipping Point. In
IFIP NETWORKING 2011.

[9] X.Wei, N. Valler, B. A. Prakash, I. Neamtiu, M. Faloutsos, and C.
Faloutsos. Competing Memes Propagation on Networks: A Case Study
of Composite Networks. In ACM Sigcomm Computer Communication
Review (CCR), October 2012.

[10] X.Wei, N. Valler, B. A. Prakash, I. Neamtiu, M. Faloutsos, and C.
Faloutsos. Competing Memes Propagation on Networks: A Network
Science Perspective. In IEEE Journal on Selected Areas in Communica-
tions(JSAC), 2013.

[11] Strong Demand for Smartphones in Second Quarter Continues to Drive
the Worldwide Mobile Phone Market. www.idc.com

[12] A.P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner. A Survey of
Mobile Malware in the Wild. In ACM SPSM 2011


