
1

Static Detection of Event-based Races in Android Apps

YONGJIAN HU, University of California, Riverside
IULIAN NEAMTIU, New Jersey Institute of Technology

Event-based races are the main source of concurrency errors in Android apps. All prior approaches to detecting event-based
races have been dynamic. Due to their dynamic nature, these approaches su�er from coverage and false negative issues.
We introduce a static approach and tool, named SIERRA, for detecting Android event-based races centered around a new
concept of “concurrency action” (that rei�es threads, events/messages, system and user actions) and statically-derived order
(happens-before relation) between actions. Establishing action order is complicated in Android, and event-based systems in
general, because of externally-orchestrated control �ow, use of callbacks, asynchronous tasks, and ad-hoc synchronization.
We introduce several novel approaches that enable us to infer order relations statically: auto-generated code models which
impose order among lifecycle and GUI events; a novel context abstraction for event-driven programs named action-sensitivity;
and �nally, on-demand path sensitivity via backward symbolic execution to further rule out false positives. We have evaluated
SIERRA on 194 Android apps. Of these, we chose 20 apps for manual analysis and comparison with the state-of-the-art
dynamic race detector. Experimental results show that SIERRA is e�ective and e�cient, typically taking 960 seconds to
analyze an app and revealing 43 potential races. Compared with the dynamic race detector, SIERRA discovered an average
29.5 true races with 3.5 false positives, where the dynamic detector only discovered 4 races (hence missing 25.5 races per
app) – this demonstrates the advantage of a sound static approach. We believe that our approach opens the way for precise
analysis and static event race detection in other event-driven systems beyond Android.

ACM Reference format:
Yongjian Hu and Iulian Neamtiu. 2016. Static Detection of Event-based Races in Android Apps. 1, 1, Article 1 (January 2016),
18 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Android is the dominant so�ware platform for smartphones and tablets [1]. Ever since the platform’s inception,
however, Android has been plagued by concurrency errors, with concurrency being one of the top-5 most common
bug causes every year starting in 2008 [27].

Android apps use a concurrent event-driven model and generally revolve around a GUI. To keep the GUI
responsive, only the main (UI) thread has access to GUI objects. Other, non-main threads, are used for long-
running computation or I/O tasks, e.g., �le download; when the task is �nished, it sends a message to the
main thread to perform a GUI update. Event handlers (callbacks) are wri�en by the developers while a system
component named Android Framework (AF) orchestrates control �ow by invoking these event handlers in
response to GUI actions or hardware noti�cations. �is event-based model can lead to concurrency errors because
the order in which events are posted is nondeterministic, e.g., an app with two asynchronous tasks T1 and T2
where the developer assumes that T1 always executes �rst, and T2 relies on some initialization performed by

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the full citation on the �rst
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permi�ed. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior speci�c permission and/or a fee. Request permissions from
permissions@acm.org.
© 2016 ACM. XXXX-XXXX/2016/1-ART1 $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:2 • Yongjian Hu and Iulian Neamtiu

T1. However, if T2 executes �rst, the result can be a crash or error due to uninitialized data—this is called an
event-based race.

Such errors are pervasive and pernicious: a study of 18,000 �xed bugs in the Android platform and apps has
revealed that 66% of the high-severity bugs are due to concurrency [28]. Android concurrency research has
shown that the majority of Android race bugs are event-driven races [7, 16, 18]; per Maiya et al. [18], in Android
apps, event-driven races are 4–7 times more frequent than data races.

Hence there is a strong impetus for constructing tools that help �nd event-driven races in Android apps. To
�nd such races, several dynamic detectors have been proposed, e.g., DroidRacer [18], CAFA [16], and EventRacer
Android [7]. However, dynamic detectors have two main issues. First, due to their dynamic approach, they are
prone to false negatives, i.e., miss actual bugs (in our experiments, EventRacer missed 25.5 out of 29.5 true races
on average). Second, their e�ectiveness hinges on high-quality inputs that can ensure good coverage [6], as well
as e�cient ways to explore schedules.

To address these issues, we propose a static approach to event race detection. Android’s concurrency model
makes static event-based race detection challenging – it is di�cult to establish happens-before relations – for
several reasons. First, unlike traditional (desktop/server) Java applications, Android apps do not have a main

method but rather rely on callbacks being invoked by the AF. Second, apps consist of activities (separate screens)
that can be navigated back and forth [6]; further, each activity comprises GUI objects which can be accessed in
relatively unconstrained order [23]. �ird, asynchronous/long-running operations (e.g., network and I/O) are
run in separate threads and their results posted back via messages, in nondeterministic order. Fourth, ad-hoc
synchronization eludes standard control- and data-�ow analyses.

To overcome these challenges, we introduce several novel approaches. First, we reify Android concurrency
primitives and their processing as context-sensitive actions (event processors) that can model threads, messages,
lifecycle activities and GUI events. Second, we use static analysis re�nements to signi�cantly improve precision,
e.g., automatically-constructed harnesses to kickstart the static analysis, and a novel action-sensitive context
abstraction for pointer analysis (Section 3). �ird, we introduce Happens-before rules which order actions, from
a harness-based model for lifecycle and GUI events to inter- and intra-procedural domination; the result is a
Static Happens-before Graph (Section 4). Fourth, for those actions and memory accesses that have not been
orderable yet, we use symbolic analysis, i.e., goal-directed (refutation-based) symbolic execution, to see if indeed
independent path conditions allow events to execute in any order (Section 5).

We have implemented our approach in a tool named SIERRA (StatIc Event-based Race detectoR for Android).
Given an app, SIERRA analyzes the bytecode (hence the app source code is not required, and apps can be readily
analyzed in the APK format there are distributed in) and produces a ranked list of potential races.

Section 6 presents the experimental results. We evaluated SIERRA on 194 apps, of which 20 were chosen for
further manual analysis. Experiments show that SIERRA is e�ective, discovering about 1,223 happens-before
edges and 68 racy pairs per app. Refutation reduces these substantially, to just 43 race reports per app. SIERRA
is e�cient: it typically takes 960 seconds to analyze an app, which is acceptable for a static analysis. For the
20 manually-analyzed apps, we ran EventRacer Android [7], the most advanced dynamic race detector to date.
We found that SIERRA reports 38 potential races on average, of which 29.5 are true races, whereas EventRacer
Android reports 4 races, missing 25.5 true races. Moreover, SIERRA can also �lter out some false positives reported
by EventRacer.

In summary, our main contributions are:

(1) A de�nition of actions as Android concurrency units.
(2) An approach for de�ning static happens-before relationships in Android apps.
(3) A suite of re�nements and precision enablers, based on static and symbolic analysis, that substantially

increase the precision of ordering.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Static Detection of Event-based Races in Android Apps • 1:3

1 class NewsActivity extends Activity
2 implements onClickListener {
3 RecycleView rv ;
4 NewsAdapter adapter;
5

6 void onCreate() {
7 rv = (RecycleView) findViewById

(…) ;
8 adapter = new NewsAdapter(…);
9 rvNews.setAdapter(adapter) ;
10 }

11

12 void onClick(View v) {
13 new LoaderTask(adapter).execute () ;
14 }

15 }

16 class LoaderTask extends AsyncTask {
17 final NewsAdapter adapter;
18 LoaderTask(NewsAdapter adapter) {
19 this . adapter = adapter ;
20 }

21

22 void doInBackground() {
23 News[] newslist = download();
24 adapter .add(newslist) ;
25 }

26

27 void onPostExecute(News news) {
28 adapter .notifyDataSetChanged();
29 }

30 }

ad
ap

te
r.a

dd
(n

ew
sl

is
t)

Main
Thread

Background
Thread

onClick

adapter.notifyDataS
etChanged()

scroll

onPostExecute

LoaderTask.execute()

getViewForPosition()
validateForPosition()

Fig. 1. Intra-component race.

(4) A tool, SIERRA, which implements our approach and works on o�-the-shelf Android apps without
requiring app source code.

(5) An evaluation of SIERRA on 194 Android apps.

2 BACKGROUND AND MOTIVATION
We provide a brief background of the Android platform and the app construction model, then motivate our
approach with two concrete examples of races.

2.1 Android Background
Android platform. �e Android so�ware stack consists of apps running on top of the AF, which orchestrates

app control �ow and mediates intra-app and inter-app communication, as well as the communication between
apps and hardware. Apps are typically wri�en in Java (though certain parts can be wri�en in C or C++ for
e�ciency) and compiled into either Dalvik bytecode that executes on top a Dalvik virtual machine (Android
version < 5.0) or directly to native code (Android version ≥ 5.0). �e Dalvik VM or native code run on top of an
Android-speci�c Linux kernel.

Android app construction. An app consists of components; there are four kinds of components: (1) Services,
used for background operations, (2) Content Providers, which manage access to data, (3) Activities, i.e., user
visible screens, and (4) Broadcast receivers, used for system or application events [4].

Activities are the most popular components—apps usually consist of a suite of Activities. �e app transitions
among activities in response to user input, e.g., in the Amazon app, the “Home” screen is named MainActivity;
when the user clicks on the “Search” box, the app transitions to a SearchActivity ; upon selecting from the list
of result items, the app transitions to the SearchListActivity . Within one activity, various GUI objects are placed
in a View hierarchy. Activities follow a state machine, where the states have associated callbacks that can be
�lled out by the programmer, e.g., upon activity creation, the onCreate() method is called, upon destruction the
onDestroy() callback is invoked, while in-between the activity can cycle between visible and invisible states that
have associated onStop()/onRestart () callbacks. GUI objects, e.g., menus, bu�ons, have callbacks as well. �e AF
automatically invokes callbacks in response to user input (e.g., click ‘Back’) or hardware events.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:4 • Yongjian Hu and Iulian Neamtiu

While components are strongly isolated — e.g., the only way for one Activity to share information with another
activity is through message passing (called Intents) — inter-component races are possible (Section 2.3).

�reads. Android has three kinds of threads: looper, background, and binder. Looper threads have an associated
Looper object that implements message processing: the thread blocks waiting for messages and when a message
comes, it is processed atomically; the importance of this looper atomicity guarantee will become clear later on
(Section 4.3 §6). Each Android app has a “main” thread, also known as the UI thread, responsible for updating the
GUI (GUI objects are only accessible to this thread); the main thread is a looper thread. Background threads are
akin to traditional threads, created via fork () . Binder threads are used in thread pools to process inter-process
communication. Apps typically perform actual work in background threads, which notify the main thread when
a GUI update is needed, by posting a message to the main thread’s processing queue.

2.2 Intra-component Race
Figure 1 shows an actual, harmful, event-based race in the Android platform (AOSP)1 – more precisely, an intra-
component race, as it happens within one activity. �e NewsActivity, shown on the le�, has a RecycleView to display
the news items. RecycleView is an advanced widget, designed to display large data sets that can be scrolled very
e�ciently by maintaining a limited number of views. In NewsActivity’s onCreate method, the RecycleView is initialized
and the corresponding adapter is set (lines 7–9). �e activity registers an onClickListener that creates a LoaderTask

(a subclass of AsyncTask) to update the news list; this is shown in the center of the �gure. �e time-consuming
download operation is in the doInBackground method which runs in a separate thread. �is practice is strongly
suggested in Android to make the app more responsive. When the AsyncTask is done, it posts an onPostExecute

callback to the main thread and noti�es the adapter to refresh the RecycleView with the latest data.
�e race manifests when the user scrolls the view before downloading has �nished — a runtime exception

will then crash the app. �is exception occurs only in the speci�c event schedule (as shown in Figure 1 on the
right) where the onScroll callback is executed before onPostExecute on the main thread, and the adapter’s internal
data is just updated in the background thread. �e root cause of the bug is that when the user scrolls down, the
RecycleView will decide which view to show according to the last-scrolled position. If the view position does not
match the previously-cached result because the adapter has not had a chance to execute notifyDataSetChanged to
update the cache, the exception is thrown. �e �x for this bug is to invoke notifyDataSetChanged right a�er the
adapter’s add method, or move the add method to the onPostExecute callback in AsyncTask. Note that this race bug is
very hard to reproduce using dynamic analysis as it manifests only in speci�c schedules.

2.3 Inter-component Race
�e previous example has shown a harmful race within one Android component (Activity). In Figure 2, we
show an inter-component “Activity vs Broadcast Receiver” race that occurs across Android components. In the
onCreate callback of the MainActivity, a DataBase object is created and a Broadcast Receiver is registered. Accordingly,
the receiver is unregistered and the DataBase object is freed in the onDestroy callback where the activity is no
longer usable. �e program opens the database in the onStart method when the activity is becoming visible to
the user, and closes it in onStop when it is no longer visible — the rationale is, the app should consume fewer
resources when the activity is pushed into the background. �e Broadcast Receiver is designed to be invoked from
the background service when new data is available and communicate with the foreground activity to update the
data.

�e event-based race occurs if the broadcast message is delivered at the time when the activity is pushed
into the background. Since the database is closed in the onStop callback, an update operation at this time in the
onReceive callback would cause exceptions. �ere are multiple solutions to �x this event race bug. For example,

1h�ps://code.google.com/p/android/issues/detail?id=77846

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

https://code.google.com/p/android/issues/detail?id=77846

Static Detection of Event-based Races in Android Apps • 1:5

1 class MainActivity {
2 DataBase mDB;
3 BroadcastReceiver recv = new

BroadcastReceiver() {
4 void onReceive(Context ctx ,

Intent i) {
5 Bundle b = i . getExtras () ;
6 mDB.update(b);
7 }

8 }

9

10 void onCreate (…) {
11 mDB = new DataBase();
12 registerReceiver (recv , …) ;
13 }

14 void onStart () {
15 mDB.open();
16 }

17

18 void onStop() {
19 mDB.close() ;
20 }

21

22 void onDestroy() {
23 unregisterReceiver (

recv) ;
24 mDB = null;
25 }

26 }

Fig. 2. Inter-component race.

App	

App	
harness	

Harness	
Generator	DroidEL	

Ac4on	Sensi4ve	
Context	Selector	

Call	graph	
builder	

Pointer	
Analysis	

Sta4c	HB	
Graph	

Race	
Reports	

Race	<rw1,rw1’>	

Race	<rw2,rw2’>	

.	.	.		

Path/Context	
Sensi4vity	
Refuta4on	Race	

Priori4za4on	WALA	 THRESHER	

Fig. 3. Overview of SIERRA.

registering and unregistering the broadcast receiver during onStart and onStop, or adding a �ag to indicate the
status of the activity and checking it before database updates. Again, this race requires a speci�c event ordering
and is likely to be missed by dynamic analysis if that speci�c schedule order is not exercised.

3 APPROACH
In this section, we �rst describe SIERRA’s architecture (Section 3.1) and harness generation (Section 3.2). Section 3.3
describes action sensitivity, a novel approach that enables precise static analysis for event-driven programs.

3.1 Architecture
Figure 3 shows the architecture of SIERRA. First, we leverage DroidEL [10], a static AF modeling tool, to handle
view in�ation and re�ection. �e AF relies on re�ection to load the APK. For example, the GUI layouts, wri�en
in XML, are accessed via the findViewById(int id) API to access the speci�c view. However, static analysis cannot
resolve such objects created via re�ection. DroidEL can resolve these objects and creates bindings between layout
structure and view objects. �e models generated by DroidEL are then integrated into our harness generator
(described later) that will drive the analysis.

Second, we leverage WALA [17] to perform whole-program (application and framework) analysis. WALA
is a mature, industrial-level program analysis tool for object-oriented languages like Java. It provides versatile
features for program analysis such as pointer analysis, call graph generation and control/data �ow analysis.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:6 • Yongjian Hu and Iulian Neamtiu

Action Creation (SHBG node) Happens-before introduction (SHBG edge)
�read

Asynchronous thread new AsyncTask Thread. start ()

Background thread new Thread AsyncTask.execute ()

Runnable new <…> implements Runnable Executor . execute ()

Message Message.obtain() sendMessage∗(Message msg)/post ∗(Runnable r)
Execution: Runnable.run()

Lifecycle event onCreate(), onDestroy() According to the activity lifecycle, e.g.,
onStart () , onStop(), onRestart () onCreate→ <created,onStart>

onPause(), onResume() onStop→ <stopped,onStart>

GUI event onClick ∗() According to the GUI model, e.g., onClick1→ onClick2

System event BroadcastReceiver .onReceive() registerReceiver

onServiceConnected bindService

onServiceDisconnected startService

Table 1. Actions and HB introduction.

Selecting the appropriate context in pointer analysis is key to achieving scalability and precision. Prior research
has shown that a mix of object sensitivity and call-site sensitivity is an e�ective abstraction for object-oriented
languages. However, in event-driven systems like Android, neither object sensitivity nor call-site sensitivity is
precise enough due to over-approximation (merging) when the context length exceeds the threshold k. SIERRA
introduces a novel abstraction called action sensitivity which adds action as part of the context abstraction, and
combines object sensitivity and call-site sensitivity within an action (Section 3.3).

Di�erent action execution orders on the looper thread lead to a non-deterministic schedule; an event-based
race can manifest if two actions access the same memory, and at least one access is a write. However, naively
considering that each pair of memory actions is a potential race will produce an overwhelming number of false
positives. SIERRA de�nes a set of static happens-before rules between actions to rule out infeasible racy action
pairs, e.g., onCreate always happens-before onDestroy (only actions that do not have strict happens-before relation
could be involved in races). �is stage, described in Section 4.3, yields a Static Happens-before Graph (SHBG).

Next, SIERRA generates candidate races by intersecting the points-to sets between actions that are not ordered
by happens-before. However, these pairs (named racy pairs) are not necessarily races since in asynchronous
programming ad-hoc synchronizations are widespread. So, in the next step, we a�empt to refute (rule out) false
positives by a path-sensitive, backward symbolic execution; for this we extended the �resher tool [8] to verify
path feasibility between two actions (Section 5).
Race prioritization. Finally, to help developers �x likely-harmful races, SIERRA prioritizes race reports using

several heuristics: 1) races in application code have higher priority than those in framework code; 2) framework
races directly invoked from app code have higher priority than those invoked from the library; 3) races involved
in pointer reference reads/writes are more likely to be dangerous as they can result in NullPointerException .

3.2 Harness Creation
We now describe SIERRA’s automatic harness creation approach. As SIERRA performs whole-program analysis,
we need to �nd the app’s entrypoints. While in traditional Java programs we would start at main(), Android apps
have no main. Rather, in Android, app control �ow is orchestrated by the AF, which invokes lifecycle callbacks,
such as onCreate when the app is created, or onDestroy when the app is destroyed. Besides these lifecycle callbacks,

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Static Detection of Event-based Races in Android Apps • 1:7

1 class Harness {
2 public static void main() {
3 NewsActivity a = new NewsActivity();
4 a.onCreate() ;
5 a. onStart () ;
6 a.onResume();
7 while (∗) {
8 switch(∗) {
9 case 1: a . invokeOnClick() ; break;
10 case 2: a . invokeOnScroll () ; break;
11 ……
12 }

13 }

14 a.onPause() ;
15 a.onStop() ;
16 a.onDestroy() ;
17 } }

Fig. 4. Harness example.

an app can implement view event handlers (e.g., onClick and onScroll) that can be registered either statically in the
layout XML or dynamically in code. Figure 4 illustrates a harness generated for the example in Figure 1.

First, we create a Harness activity with a main method which serves as the entrypoint. Second, we instantiate the
NewsActivity and invoke its Activity lifecycle callbacks (lines 4–6 and 14–16). �ird, starting from these lifecycle
callbacks, a call graph is built by WALA to compute the reachable methods. Within the reachable methods,
the analysis might discover new callbacks. For example, an onClickListener may be created and registered via
setOnClickListener . At this time, the harness generator creates synthetic invocation sites (lines 9–11) and builds
the call graph again. �is process iterates until a �x-point is reached, i.e., no new callbacks found. Finally, the
callbacks registered in XML �les are added to the harness since they are unique. We borrow FlowDroid [5]’s
prede�ned callback list to �nd callbacks.

3.3 Action Sensitivity
Context sensitivity plays a key role for scalability and precision in static analysis. Two main kinds of context
sensitivity have been proposed for object-oriented languages: object-sensitivity (k-obj) [19] and call-site-sensitivity
(k-cfa) [24].

Prior research [20, 25] has shown that object-sensitivity increases precision; however, we have found that it is
still not precise enough for our Android se�ing. K-obj sensitivity merges the last k object allocation sites, thus
precision is lost for contexts longer than k . �e same loss occurs for k-cfa sensitivity which merges the last k call
sites. Incorrect aliasing may occur when two di�erent actions call a method foo () which contains j call sites to
method bar () and allocates an object. If j > k , both k-obj and k-cfa fail to distinguish that the objects are allocated
in two di�erent actions and incorrectly consider them as aliased because their last k allocation sites (or k call
sites, respectively) are the same. While precision could be improved by increasing the value of k , this greatly
decreases performance, as analysis complexity is exponential in k .

Based on the insight that objects should be associated with their corresponding actions, SIERRA introduces a
new context abstraction named action-sensitivity which greatly improves precision. When building the call graph
for an action, we add the action’s id as part of its context, and leverage hybrid-context-sensitivity which consists
of object-sensitivity and call-site-sensitivity. More speci�cally, the hybrid-context-sensitivity uses k-obj for normal

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:8 • Yongjian Hu and Iulian Neamtiu

dispatch calls and k-cfa for static invocations within one action. Each object’s abstract context has the action id
where this object is allocated in. In the previous foo () example, the objects created by foo () have di�erent action
ids in their contexts, and are not aliased (con�ated) anymore. Note that, although within one action the objects
may still lose precision due to last k merges, across actions objects are still separate. Since SIERRA focuses on
analyzing objects accessed by di�erent actions, we �nd that action-sensitivity is particular useful for our race
detection. While action-sensitivity is e�ective at distinguishing abstract objects, a class of objects named “views”
need to be handled specially, as explained next.

In�ated view context. Apps can de�ne views using layout XML �les, and then in�ate the views at runtime.
Android provides the findViewById(int id) API to access the in�ated view, given the constant view id; findViewById
can be invoked in di�erent actions, but the object is aliased when using the same id. SIERRA uses a special context
named In�atedViewContext that contains view ids and their type. During APK parsing, for each view de�ned in
the layout, SIERRA saves its view id into a map. When findViewById(id) is called, SIERRA uses this constant id to
retrieve the view object from the map; two in�ated view objects are considered aliased when they have the same
ids.

4 HAPPENS-BEFORE RELATIONSHIP
Prior event-driven race detectors for Android have de�ned dynamic happens-before rules [7, 16, 18]. �ose
de�nitions do not easily translate here, as our approach is static and uses symbolic path condition information,
hence we de�ne our own static happens-before (HB) rules. HB orders actions, described shortly, and the order
relations are captured in a Static Happens-Before Graph (SHBG).

4.1 Definitions
We �rst de�ne the concepts and notations used in our approach. We use A, B, A1, etc. as action names. �e
happens-before relation, denoted A ≺ B, indicates that we can statically prove that action A is completed before
action B starts.
Races. We de�ne races as unordered memory accesses, at least one of which is a write. Our points-to sets

map variables x to memory locations ρ, i.e., π (x) = ρ. Memory accesses α are 〈x ,τ ,A〉 bundles, indicating that
variable x is accessed using access type τ (read or write) in action A.

Racy pairs. We de�ne racy pairs as follows: accesses α1 and α2 form a racy pair if they come from di�erent
actions A1 and A2, operate on at least one shared location (i.e., their points-to sets’ intersection is non-empty,
π (α1.x) ∩ π (α1.x) , ∅) and at least one of the accesses α1.τ or α2.τ is a write.

Race-�nding strategy. Our approach proceeds by constructing an HB graph, then �nding all candidate racy
pairs, and �nally using symbolic analysis to refute those racy pairs that are actually ordered.

4.2 Actions: SHBG Nodes
Actions are the building blocks of our approach. An action represents context-sensitive event handling. Table 1
shows how HB nodes and edges are identi�ed, so they can be added to the SHBG. When the analysis reaches an
action creation (column 2) it creates the appropriate HB node, as described next.

�ere are four classes of actions. �reads can be created as asynchronous tasks, background threads, or
runnables. Messages: in Android, messages are sent using either the send∗ or post∗ API; in either case, the message
has an associated Runnable which will execute in the recipient thread. Lifecycle events: Android activities are
controlled by the Android Framework and have a well-de�ned lifecycle, described as activity states, which form
HB nodes, while activity state transitions form HB edges (Section 4.3 §2). GUI events: our harness is a GUI model
where GUI callbacks are HB nodes, while the GUI callback order introduces HB edges (Section 4.3 §3).

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Static Detection of Event-based Races in Android Apps • 1:9

onCreate()

Created

Started

Resumed

Paused

Stopped

onStart() “1”

onResume() “1” onResume() “2” onPause()

onStop() onStart() “2”

onRestart()

onDestroy()

[onPause] onStop ≺ [onRestart] onStart “2”

[onCreate] onStart “1” ≺ [onPause] onStop

[onResume] onPause ≺
[onPause] onResume “2”

[onStart] onResume “1” ≺
[onResume] onPause

Fig. 5. HB edges among Activity lifecycle callbacks (dashed red arrows) induced by CFG dominance in our harness model.
Black edges represent control flow.

4.3 HB Rules: SHBG Edges
We now de�ne the HB rules, i.e., rules for adding edges between actions in the SHBG.

1. Action invocation rule: when an action is invoked, the sender action happens before the recipient. For
example, as is standard in race detection, we add an HB edge between the action in which a thread is created
and the new action (that thread’s body). Similarly, we add an HB edge from the message sender’s action to the
message’s Runnable.
2. Android component lifecycle rule: in Android, activities follow a lifecycle described as a state machine

where state transitions invoke callbacks [3]. �e Android Framework will invoke these callbacks in prede�ned
order, e.g., upon activity creation, onCreate is invoked �rst, then onStart, then onResume.2 Our key insight is to use
(pre) dominator information to distinguish between di�erent instances of callbacks that appear in cycles so we
can order them.

We illustrate this rule in Figure 5 on the actual Android activity lifecycle. According to the lifecycle rules,
onCreate is the �rst method to be invoked a�er an Activity has been created, while onDestroy is the last method to
be invoked before the Activity is disposed of. However, in the call graph, all these callbacks are disconnected.
�e harness, described in Section 3.2, mirrors the Activity lifecycle and invokes the callbacks in the required
order. In the harness, as onCreate dominates any other node, we know that any shared memory access in onCreate

will precede accesses in subsequent actions, e.g., onStart, hence we can add an HB edge onCreate→ onStart.
We now show how we deal with cycles. As seen in Figure 5, onResume/onPause and onStart/onStop form cycles. At

�rst sight, these callbacks do not appear orderable by HB. For example, since onResume is invoked a�er either
Started or Resumed states, onResume appears not to be orderable with onPause — onPause can come either before or
a�er onResume.

Our insight is that we can distinguish between the two onResume’s if we take into account dominator information.
For simplicity let us name onResume 1 ' ' the callback pre-dominated by onStart and onResume 2 ' ' the callback pre-
dominated by onPause. Now it can be easily seen that
2While this lifecycle state machine has been unchanged since Android’s inception, it would be trivial to change our model to accommodate
potential future changes in the state machine, should they occur in subsequent Android versions.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:10 • Yongjian Hu and Iulian Neamtiu

onResume()

onPause()

*

join

onClick1()

onClick2()

onClick3()

while()

onClick2 ≺
onClick3

Fig. 6. HB edges (dashed red arrows) induced by CFG dominance in our GUI model, e.g., onResume→ onClick1, or
onClick2→ onClick3. Black edges represent control flow.

onResume 1 ' ' ≺ onPause,
and

onPause ≺ onResume 2' ' ,
hence the previously-unorderable callbacks can actually be ordered. Similarly, we have:

onStart 1 ' ' ≺ onStop

onStop ≺ onStart 2 ' ' .
3. GUI layout/object order: similar to the Android lifecycle, the GUI layout captured by the harness

(Section 3.2) is used as a basis for HB. We illustrate this rule in Figure 6 on a simpli�ed GUI layout, where an app
cycles and nondeterministically chooses between onClick1 () or onClick2 (); onClick3 () . Since onResume pre-dominates
onClick1 we have:

onResume ≺ onClick1

onResume ≺ onClick2

onClick2 ≺ onClick3.
4. Intra-procedural domination. Assume that a method M in activity A has two outgoing calls e1 and e2

that post actions A1 and A2, respectively. If e1 dominates e2 then A1 ≺ A2; this is intuitive because e1 will always
be invoked before e2 and by the time e2 executes (and gets a chance to post A2), A1 has already been posted, so
A2 can only be posted a�er A1.

5. Inter-procedural, intra-action domination. �is is similar to rule 4, but the di�erence is that e1 and e2
can be in two separate methods M1 and M2 of the same activity A. Note that e1 cannot straight-up dominate e2
because e2 might be invoked from a context that does not involve e1. We leverage WALA’s interprocedural CFG
(ICFG) to address this issue as follows: we remove e1 from the ICFG and check whether e2 is still reachable; if it is
not reachable, then de facto e1 dominates e2 and we add A1 ≺ A2. If, on the other hand, e2 is still reachable when
e1 is absent, we do not add any HB edges.

6. Inter-action transitivity: If A1 ≺ A2, A1 posts an action A3, and A2 posts an action A4, then A3 ≺ A4.
Figure 7 illustrates this. On top (Figure 7 (a)) we show the order relation. On the bo�om we show the two possible
execution schedules for this order. A1 executes �rst, and during its execution, it posts A3. Importantly, by the
time A1 �nishes, A3 is already posted. We have two cases: Figure 7(b) when A3 executes before A2 does, hence

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Static Detection of Event-based Races in Android Apps • 1:11

A1

A2

A3

A4

A1

A2

A3

A4

Lo
op

er

ex
ec

ut
io

n

A1

A3

A2

A4

po
st

po
st

Lo
op

er

ex
ec

ut
io

n

po
st

H
B

H

B

H
B

po
st

(a)

(b) (c)

A3≺A4
A3≺A4

Fig. 7. Adding intra-action transitive HB edges: (a) is the action order, while (b) and (c) are possible schedules.

A3 ≺ A4 because A4 has not even been posted when A2 �nishes; and Figure 7(c) when A2 executes �rst, but
because A3 has already been posted when A2 starts executing, A4 can only be posted a�er A3 hence A3 ≺ A4. We
can infer these orderings thanks to the looper atomicity guarantee.
7. Transitivity: HB is transitive, i.e.,

A1 ≺ A2 ∧A2 ≺ A3 =⇒ A1 ≺ A3
We repeatedly invoke transitive closure together with rule 6, as rule 6 can discover new HB edges in ways

other than control- or data- �ow (which rules 1–5 are limited to).
Note that a�er applying these HB rules we still have an under-approximation of all HB relations, which

preserves soundness at the expense of having potential false positives. We now describe how we further introduce
ordering to re�ne our HB relations hence reduces false positives.

4.4 Accesses and Races
Handlers and threads. A thread can register a Looper object to receive asynchronous messages. Each Looper

object is associated with one thread and each thread can register at most one Looper. In Handler’s constructor, a
Looper object must be speci�ed so that the messages sent via this Handler will be delivered to the corresponding
thread. Two actions are considered to be potentially racy, i� the corresponding Handler objects refer to the same
Looper. SIERRA pre-processes all the creation sites of Loopers and Handlers to learn which thread is associated with
the Handler by traversing the call graph from the entry of each thread and performing an in-thread reachability
analysis.

Ruling out ordered accesses. Racy pairs (e.g., accesses αA and αB in actions A and B, respectively) form the
starting point for detecting races—these accesses are candidate races unless we can refute that assumption, i.e.,
prove that αA and αB are ordered (we do so via symbolic execution, described next).

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:12 • Yongjian Hu and Iulian Neamtiu

1 Timer.Runnable runner = {
2 void run() { // action A
3 if (mIsRunning) {
4 mAccumTime=… // αA
5 if (∗) {
6 …
7 postDelayed(runner ,…) ;
8 }

9 else
10 mIsRunning=false; }
11 }}

12 void stop () { // action B
13 if (mIsRunning) {
14 mIsRunning = false ;
15 mAccumTime=… // αB
16 }

17 }

Fig. 8. Refutation helps eliminate this false positive in the OpenSudoku app.

5 SYMBOLIC EXECUTION-BASED REFUTATION
A candidate race, e.g., accesses αA and αB in two unordered actions A and B, is not necessarily a true positive
since accesses could be protected by ad-hoc synchronization [22]; such synchronization idioms are prevalent in
event-based systems to protect the event handler from executing unsafe paths.

Example. We show how SIERRA refutes a candidate race in the OpenSudoku app (Figure 8). �e run method on
the le� is from a Runnable object that is posted from the onResume callback. �e stop method on the right is invoked
from the onPause callback to stop the Runnable object.

�ese two actions do not have an HB edge and they both write to a shared �eld mAccumTime (lines 4 and 15).
SIERRA starts by considering both orderings possible. Let us assume that action B occurs before action A. SIERRA
performs backward symbolic analysis starting from αA (line 4 in action A). When the analysis reaches the if
conditional on line 3, it adds a path constraint {mIsRunning = true}, i.e., a precondition to reach αA. �e backward
analysis continues until reaching the boundary of the run method and proceeds (assuming there are no con�icting
constraints). �en SIERRA traces the path back to the exit block of the stop method in action B, and continues
backward. When the path reaches line 12, SIERRA chooses to enter the block guarded by line 13 because the
guard condition is consistent with the path constraint {mIsRunning = true}. Finally, a con�icting constraint is found
when the path reaches line 14 which performs a strong update to mIsRunning. �is strong update means the path
constraint a�er this statement must be mIsRunning = false, which con�icts with our current path constraints. A�er
searching all the possible paths, SIERRA cannot �nd a feasible way to witness the backward path from αA to αB ,
thus the candidate race is refuted.

�e backward analysis framework is based on �resher [8], which we adapted to �t our event-based race
detection scenario. �resher is designed to perform precise heap refutation by traversing all the paths related to
the candidate query back to the program’s entrypoint. SIERRA changes the refutation process to be witnessing a
feasible path between a source and a sink. �e candidate race is a true positive, i� in both orderings of actions A
and B, there does exist a feasible path from αA to αB , and vice versa.

On-demand constant propagation. When the action is Handler.handleMessage(Message m), program behavior depends
on the values of Message’s �elds, e.g., the what �eld is an integer indicating the type of the message. To increase
precision, we introduce constraints to check if any of these �elds are constant integers and used as guard conditions.
SIERRA does on-demand constant propagation from the creation site of the action (i.e., handler . sendMessage) and
checks if any of the message’s �elds are constant. If yes, the constraints are added to the query of the backward
symbolic executor.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Static Detection of Event-based Races in Android Apps • 1:13

App Installs Bytecode
size (KB)

APV 500,000–1,000,000 736
Astrid 100,000–500,000 5,400
Barcode Scanner 100,000,000–500,000,000 808
Beem 50,000–100,000 1,700
ConnectBot 1,000,000–5,000,000 700
FBReader 10,000,000–50,000,000 1,013
K-9 Mail 5,000,000–10,000,000 2,800
KeePassDroid 1,000,000–5,000,000 489
Mileage 500,000–1,000,000 641
MyTracks 500,000–1,000,000 5,300
NPR News 1,000,000–5,000,000 1,500
NotePad 10,000,000–50,000,000 228
OpenManager N/A 77
OpenSudoku 1,000,000–5,000,000 170
SipDroid 1,000,000–5,000,000 539
SuperGenPass 10,000–50,000 137
TippyTipper 100,000–500,000 79
VLC 100,000,000–500,000,000 1,100
VuDroid 100,000–500,000 63
XBMC remote 100,000–500,000 1,100
Table 2. App popularity and size for the 20-app dataset.

Caching. Refutation’s running time varies depending on app complexity. A refutation could be terminated by
the executor if the system runs out of memory or exceeds the maximum number of paths (we set this to 5,000
paths in SIERRA). In either case, SIERRA soundly reports the race, though it might be a false positive. To prevent
redundant computation, SIERRA memoizes (caches) the call graph nodes visited in a refuted query. Later queries
�rst check the cache. If the current node in a path exists in the cache, then the query stops immediately as the
path is infeasible. �is caching mechanism is particularly useful where many race candidates are within the same
call graph node or dominated by that node in a refuted query.

6 EVALUATION
We have evaluated SIERRA in terms of e�ectiveness, i.e., how many potential races it can �nd, and e�ciency, i.e.,
how long it takes to analyze an app.

App datasets. We chose apps from various categories (news apps, video players, email clients, etc.) and of
various sizes. First, we reuse Gator [23]’s benchmark which contains 20 apps as listed in Table 2. We chose this
dataset because all the apps are open-source so that we can manually check SIERRA’s correctness. �e center
column of Table 2 shows app popularity, retrieved from Google Play in August 2017. As we can see, 17 of these
apps have in excess of 100,000 installs; the number of installs was not available for Open Manager as it was
retrieved from the alternative F-Droid market. �e right column of Table 2 shows the bytecode size (.dex) for
each app; this ranges between 63 KB and 5.4 MB. �e experimental results on these 20 apps are discussed in
Sections 6.1– 6.5.

Next, we chose an additional 174 apps with a median size of 1.1MB from F-droid [2] (an online open source
repository for Android) for automatic testing. �ese results are discussed in Section 6.6.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:14 • Yongjian Hu and Iulian Neamtiu

App Harne- Actions HB Ordered Racy Pairs Racy Pairs A�er Manual Inspection EventRacer
sses Edges (%) w/o AS with AS refutation True Races FP App Races

APV 4 84 1,648 47 75 25 10 8 2 3
Astrid 6 147 2,755 26 319 83 54 37 17 -
Barcode Scanner 9 136 2,756 30 64 24 15 11 4 7
Beem 12 169 3,724 26 467 73 13 10 0 0
ConnectBot 11 171 4,829 33 567 96 58 43 15 16
FBReader 27 259 4,710 14 836 285 106 93 13 5
K-9 Mail 29 312 5,725 12 1,347 370 89 72 17 1
KeePassDroid 15 216 4,076 18 266 61 27 16 1 0
Mileage 50 331 8,498 16 496 195 36 33 3 1
MyTracks 8 198 6,826 35 634 174 80 75 5 34
NPR News 13 490 10,673 9 607 132 21 21 0 3
NotePad 9 72 609 24 436 65 31 27 4 9
OpenManager 6 92 1,036 25 532 113 55 51 4 5
OpenSudoku 10 141 1,425 14 426 158 110 83 27 72
SipDroid 11 206 2,386 11 321 94 27 17 10 -
SuperGenPass 2 43 343 38 82 16 6 6 0 3
TippyTipper 5 100 1,864 38 93 21 9 7 2 1
VLC 13 151 2,349 20 202 78 35 32 3 0
VuDroid 3 45 150 15 62 27 10 10 0 5
XBMC 13 330 4,218 8 445 137 63 48 15 17
Median 10.5 160 2,755 22 431 80.5 33 29.5 8.5 4

Table 3. SIERRA e�ectiveness on the 20-app dataset.

Experimental setup. We ran our experiments on an 8-core hyper-threaded (hence 16 threads) Intel Xeon E5-
2687W CPU 3.4GHz, with 64GB memory. �e server was running Ubuntu 14.04.1 LTS. We use DroidEL as a
pre-processor to handle re�ection and extract app layout, and automatically create harnesses via our harness
generator. WALA has provided points-to information and call graph construction. �e action-sensitive context
selector is implemented as a WALA plugin. SIERRA modi�es �resher to run goal-directed path-sensitive race
refutation. �resher in turn uses the Z3 SMT solver [12].

6.1 E�ectiveness
We present the results in Table 3. Per Section 3.2, SIERRA creates a harness method for each app activity which
serves as the entrypoint of the static analysis (on average 10.5 harnesses per app). Next, we show the number of
actions, i.e., SHBG nodes. �e number sums all the actions found in each harness—typically about 160 actions
per app. Column 4 shows the total number of HB edges found by SIERRA, and column 5 shows the fraction
of HB edges compared with the total number of edges (e.g., if the app has N actions, and all actions are in a
happens-before relation, the transitively-closed graph would have N ∗(N−1)

2 edges); the higher this percentage,
the less work later stages have to do at refuting potential races, and the lower the chance of false positives. Note
how SIERRA manages to �nd 22% of the theoretically maximum number of edges.

Columns 6 and 7 show the number of racy pairs without and with action-sensitive contexts. �e results
demonstrate the e�ectiveness of action sensitivity, as action-sensitive contexts reduce racy pairs by a factor of 5,
from 431 to 80.5, which then greatly reduce the number of races to be refuted by the backward symbolic executor.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Static Detection of Event-based Races in Android Apps • 1:15

App CG+PA HBG Refutation Total
APV 182 18 83 283
Astrid 325 24 938 1,287
Barcode Scanner 173 29 247 449
Beem 397 36 1,664 2,097
ConnectBot 241 54 2,128 2,423
FBReader 1,058 85 1,687 2,830
K-9 Mail 2,936 113 2,759 5,808
KeePassDroid 136 33 288 457
Mileage 1,927 41 3,361 5,329
MyTracks 2,711 52 2,170 4,933
NPR News 562 46 1,546 2,153
NotePad 148 78 702 928
OpenManager 275 53 715 1,043
OpenSudoku 253 36 612 901
SipDroid 278 71 488 837
SuperGenPass 87 16 419 522
Tippytipper 133 32 285 450
VLC 738 30 793 1,561
VuDroid 67 29 405 501
XBMC 2,438 39 1,038 3,515
Median 1,310 28.5 560.5 1,899

Table 4. SIERRA e�iciency on the 20-app dataset: running time for each stage and total, in seconds.

A�er refutation (column 8) the median number of races is reduced substantially, to just 33, which we believe is
very e�ective for developers. Section 6.4 compares SIERRA’s results with EventRacer’s (last column).

We have manually inspected the races reported by SIERRA and classify them into true races (median = 29.5) and
false positives (median = 8.5) in columns 8 and 9. Section 6.5 contains a detailed analysis of true/false positives.

6.2 E�iciency
Table 4 shows the results of e�ciency experiments. For each app, we show the time, in seconds, it took to run
each analysis stage. �e front-end analysis with WALA typically takes 1,310 seconds per app (CG column). SHBG
construction took 28.5 seconds which is quite e�cient. Unsurprisingly, refutation takes about 560.5 seconds per
app due to symbolic execution. In total, SIERRA takes about 1,899 seconds per app, which is acceptable for a static
analysis.

6.3 Harmful Race Example
�e NPR News app contains a harmful event race that may result in incorrect view states – such a race is hard to
detect dynamically. �e NewsListActivity contains a ListView to show the news list. When new data must be loaded,
the app creates background threads, via ImageLoaderTask, to load a list of news items – each item bundles images
and text from a certain URL. Similar with the example in Section 2.2, the program does not take scroll events
into consideration. If a scroll event occurs before the background ImageLoaderTask posts back data, the ListView will
create another ImageLoaderTask to load the new image. If the new image comes before the old one, the old image
will replace the new one hence displaying the incorrect image to the user. Triggering this race requires a speci�c
event order – this order can easily elude dynamic race detectors. �ere are multiple ways to �x this bug. �e key

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:16 • Yongjian Hu and Iulian Neamtiu

E�ectiveness E�ciency (time in seconds)
App Bytecode Harnesses Actions HB Ordered Racy A�er CG HBG Refutation Total

size (KB) edges (%) pairs refutation
Median 1,114 4.5 67.5 1,223 17.3 68 43.5 139 27 648 960

Table 5. SIERRA e�ectiveness and e�iciency on the 174-app dataset.

is to associate the background ImageLoaderTask with the URL for each news item. If the downloaded image does
not match the item’s URL, then the image should not update the view.

6.4 Comparison with Dynamic Race Detection
We also ran EventRacer Android [7], the most advanced dynamic race detector to date, on our test apps. We show
the dynamic detection results in the last column of Table 3. Out of the 20 apps, we could not run EventRacer
Android on Astrid and SipDroid. We then considered the high priority races that occur in app code. A�er analyzing
the 182 races reported by EventRacer Android in 18 apps, we found that 102 of them are false positives because
they are protected by guard conditions. EventRacer Android uses a concept called “Race coverage” to �lter ad-hoc
sychronization races, but it only reasons about primitive type variables. Most of the 102 false positive races are
protected by pointer checking condition (e.g., var != NULL or var == NULL). SIERRA can successfully �lter out these
false positives because it uses combined path and points-to queries. For such cases, SIERRA has the ability to
provide more accurate results than EventRacer.

�ere were also 15 races reported by EventRacer that SIERRA did not report because they could be ruled out;
the races fall into two categories. First, EventRacer considers that UI actions can occur a�er Activity lifecycle
callbacks (e.g., onClick a�er onStop). However, SIERRA rules this out because when an Android Activity goes to an
invisible state (i.e., is stopped), an UI callback cannot be executed. Second, EventRacer considers UI and UI action
as racy, but SIERRA can order UI events (Section 4.3). �e remaining races missed by EventRacer are in actions
the dynamic detector does not cover. �is demonstrates the soundness advantage of a static approach compared
with a dynamic approach.

6.5 Discussion
False positives. �anks to action-sensitivity, SHBG and symbolic execution, SIERRA is able to �lter a great

amount of false positives. However, we found some cases where false positives may happen. For example, in
OpenManager, SIERRA reports a race as follows: both onCreate and onClick create a thread that fetches some data
from disk and posts callbacks to update the ListView items. SIERRA considers thread callbacks as non-deterministic.
But there is an implicit dependency in the app: onClick can only be triggered a�er the ListView is �lled with data by
the thread from onCreate. Such implicit dependencies are beyond the current capabilities of SIERRA. Another type
of false positives comes from over-approximate merging in arrays or containers. SIERRA uses index-insensitive
analysis to handle instances stored into an array or list. Finally, a symbolic executor timeout may also produce
false positives – if we cannot refute within the time budget, we report a potential race to maintain soundness.

Benign races. Symbolic execution is instrumental in �ltering out the vast majority of candidate races. �e
reported races are true positives because SIERRA witnesses a feasible path. However, a true race does not mean
it is harmful. Actually, the majority of the true races are due to guard variables in the control �ow graph. For
example, in Figure 8, SIERRA reports a true race of reading mIsRunning on line 3 of action A and writing it on line
14 of action B. Note that mIsRunning is a guard variable to protect mAccumTime from incorrect access. If action A
happens �rst, the read value is true in action A, and in the alternative order, the read value is f alse . Although
this race is a true race, it is arguably benign. We have examined the race reports (“A�er Refutation” column) and

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Static Detection of Event-based Races in Android Apps • 1:17

found that 74.8% �t this pa�ern. For the remaining race reports, SIERRA witnesses di�erent values of an instance
variable being set in alternative order of the actions. To conclude, all the true races reported by SIERRA are due to
bad programming practices and should be �xed, but the precise extent of the harm in�icted upon the app varies
from race to race.

False negatives. SIERRA is sound up to re�ection and native code, which is standard practice in Java static
analysis. Re�ection use beyond the capabilities of DroidEL and unsafe concurrent use of native code use might
result in false negatives, i.e., missing races.

6.6 Results on the 174 App Dataset
SIERRA’s results (medians) on the additional set of 174 apps which were not subject to manual analysis are shown
in Table 5. SIERRA typically reports 43.5 potential races per app, and the analysis takes 960 seconds. �ese results
are mostly in line with the 20-app dataset but we believe the results are more indicative due to the larger set size
(174 vs. 20).

7 RELATED WORK
Hong and Kim [15] have surveyed race detection techniques for traditional programs. Out of the 43 tools/ap-
proaches surveyed, only 7 were static since, as they noted, “the accuracy of [static] execution models is o�en low
because of the imprecision inherent to static analysis methods.” Hence there is a clear need for accuracy in static
race detection.
Event-driven race detection. Recent works have looked at detecting event-driven races. EventRacer [21, 22]

detects event-driven races in web applications while EventRacer Android [7], CAFA [16] and DroidRacer [18]
focus on Android apps. �ese approaches are all dynamic, hence prone to false negatives and dependent on
high-quality inputs; these drawbacks are the main impetus for our work.
Race detection for traditional apps. Race detection has been widely studied; proposed approaches were

either static [13, 26] or dynamic [11, 14]. However, these e�orts have mainly focused on detecting multi-threaded
data races in applications running on desktop or server platforms. In Android, event-driven races are 4x–7x more
numerous than data races [16, 18]. Moreover, techniques geared at desktop/server programs can be ine�ective for
detecting event-based races. For example, traditional dynamic race detectors assume that instructions executed
on the same thread have program order. However, this is not true for Android due to asynchronous programming
model and Looper events arriving in non-deterministic order.
Static analysis for Android. Many static analysis approaches for Android have been proposed, with speci�c

purposes such as constructing GUI models [10, 23], or information �ow [5]. Hopper [9] also uses backward
symbolic execution but with a di�erent goal, �nding null pointer dereferences. We employ an array of techniques,
that while geared at �nding races, we believe can also be used as a general, precise static analysis framework for
Android apps.

8 CONCLUSIONS
We have presented SIERRA, the �rst (to our knowledge) approach for static event-based race detection in Android
apps. Existing Android race detectors are dynamic, as are most race detectors for traditional programs, due
to the di�culty of ordering memory accesses statically. We show that, by employing precise, automatically-
constructed harnesses and a static happens-before graph, we can order actions quite e�ectively. Further, by
employing action-sensitivity as well as symbolic execution we can eliminate a large percentage of false positives.
Experiments reveal that our approach is e�ective at �nding true races without a large number of false positives,
yet has acceptable performance. We believe that SIERRA opens the way for precise analysis of, and race detection
in, event-based systems in general.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:18 • Yongjian Hu and Iulian Neamtiu

REFERENCES
[1] Mobile/Tablet Operating System Market Share, Oct 2015. h�ps://www.netmarketshare.com/operating-system-market-share.aspx?

qprid=8&qpcustomd=1.
[2] F-Droid, 2017. h�ps://f-droid.org/.
[3] Android Developers. Activity Lifecycle, 2017. h�p://developer.android.com/reference/android/app/Activity.html.
[4] Android Developers. App Components, 2017. h�ps://developer.android.com/guide/components/index.html.
[5] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and

Patrick McDaniel. Flowdroid: Precise context, �ow, �eld, object-sensitive and lifecycle-aware taint analysis for android apps. In
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’14, pages 259–269, New
York, NY, USA, 2014. ACM.

[6] Tanzirul Azim and Iulian Neamtiu. Targeted and depth-�rst exploration for systematic testing of android apps. In Proceedings of the
2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages & Applications, OOPSLA ’13, pages
641–660, New York, NY, USA, 2013. ACM.

[7] Pavol Bielik, Veselin Raychev, and Martin Vechev. Scalable race detection for android applications. In Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015, pages 332–348,
New York, NY, USA, 2015. ACM.

[8] Sam Blackshear, Bor-Yuh Evan Chang, and Manu Sridharan. �resher: Precise refutations for heap reachability. In Proceedings of the
34th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’13, pages 275–286, New York, NY, USA,
2013. ACM.

[9] Sam Blackshear, Bor-Yuh Evan Chang, and Manu Sridharan. Selective control-�ow abstraction via jumping. In Proceedings of the 2015
ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015, pages
163–182, New York, NY, USA, 2015. ACM.

[10] Sam Blackshear, Alexandra Gendreau, and Bor-Yuh Evan Chang. Droidel: A general approach to android framework modeling. In
Proceedings of the 4th ACM SIGPLAN International Workshop on State Of the Art in Program Analysis, SOAP 2015, pages 19–25, New York,
NY, USA, 2015. ACM.

[11] Michael D. Bond, Katherine E. Coons, and Kathryn S. McKinley. Pacer: Proportional detection of data races. In Proceedings of the 31st
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’10, pages 255–268, New York, NY, USA, 2010.
ACM.

[12] Leonardo de Moura and Nikolaj Bjørner. Z3: An e�cient smt solver. In Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008, Held as Part of the Joint European Conferences on �eory and Practice of So�ware, ETAPS 2008,
Budapest, Hungary, March 29-April 6, 2008. Proceedings, volume 4963 of Lecture Notes in Computer Science, pages 337–340. Springer, 2008.

[13] Dawson Engler and Ken Ashcra�. Racerx: E�ective, static detection of race conditions and deadlocks. In Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles, SOSP ’03, pages 237–252, New York, NY, USA, 2003. ACM.

[14] Cormac Flanagan and Stephen N. Freund. Fas�rack: E�cient and precise dynamic race detection. In Proceedings of the 2009 ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’09, 2009.

[15] Shin Hong and Moonzoo Kim. A survey of race bug detection techniques for multithreaded programmes. So�w. Test. Verif. Reliab.,
25(3):191–217, May 2015.

[16] Chun-Hung Hsiao, Jie Yu, Satish Narayanasamy, Ziyun Kong, Cristiano L. Pereira, Gilles A. Pokam, Peter M. Chen, and Jason Flinn.
Race detection for event-driven mobile applications. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14, pages 326–336, New York, NY, USA, 2014. ACM.

[17] IBM T.J Watson. WALA, 2017. h�p://wala.sourceforge.net/wiki/index.php/Main Page.
[18] Pallavi Maiya, Aditya Kanade, and Rupak Majumdar. Race detection for android applications. In Proceedings of the 35th ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI ’14, pages 316–325, New York, NY, USA, 2014. ACM.
[19] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized object sensitivity for points-to analysis for java. ACM Trans.

So�w. Eng. Methodol., 14(1):1–41, January 2005.
[20] Mayur Naik, Alex Aiken, and John Whaley. E�ective static race detection for java. In Proceedings of the 27th ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’06, pages 308–319, New York, NY, USA, 2006. ACM.
[21] Boris Petrov, Martin Vechev, Manu Sridharan, and Julian Dolby. Race detection for web applications. In Proceedings of the 33rd ACM

SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’12, pages 251–262, New York, NY, USA, 2012. ACM.
[22] Veselin Raychev, Martin Vechev, and Manu Sridharan. E�ective race detection for event-driven programs. In Proceedings of the 2013

ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages & Applications, OOPSLA ’13, pages
151–166, New York, NY, USA, 2013. ACM.

[23] Atanas Rountev and Dacong Yan. Static reference analysis for gui objects in android so�ware. In Proceedings of Annual IEEE/ACM
International Symposium on Code Generation and Optimization, CGO ’14, 2014.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=8&qpcustomd=1
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=8&qpcustomd=1
https://f-droid.org/
http://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/guide/components/index.html
http://wala.sourceforge.net/wiki/index.php/Main_Page

Static Detection of Event-based Races in Android Apps • 1:19

[24] Micha Sharir and Amir Pnueli. Two approaches to interprocedural data �ow analysis. In in Steven S. Muchnick and Neil D. Jones (eds.),
Program Flow Analysis: �eory and Applications, Prentice-Hall, Englewood Cli�s, New Jersey, pages 189–234, 1981.

[25] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick your contexts well: Understanding object-sensitivity. In Proceedings
of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’11, pages 17–30, New York, NY,
USA, 2011. ACM.

[26] Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. Relay: Static race detection on millions of lines of code. In Proceedings of the the 6th Joint
Meeting of the European So�ware Engineering Conference and the ACM SIGSOFT Symposium on �e Foundations of So�ware Engineering,
ESEC-FSE ’07, pages 205–214, New York, NY, USA, 2007. ACM.

[27] B. Zhou, I. Neamtiu, and R. Gupta. Experience report: How do bug characteristics di�er across severity classes: A multi-platform study.
In So�ware Reliability Engineering (ISSRE), 2015 IEEE 26th International Symposium on, pages 507–517, Nov 2015.

[28] Bo Zhou, Iulian Neamtiu, and Rajiv Gupta. A cross-platform analysis of bugs and bug-�xing in open source projects: Desktop vs.
android vs. ios. In 19th International Conference on Evaluation and Assessment in So�ware Engineering, EASE 2015, page 10, April 2015.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

