
Dr. Schesser BME 496
Capstone II

1

Standards for Writing
Requirements

Dr. Schesser BME 496
Capstone II

2

Standards for Requirements
Documents

• Based on the ANSI/IEEE Guide to
Software Requirements STD 830-1984

• Requirements use the “shall” language
– The system shall allow users to only enter

numerical data.
• Requirements are clearly numbered
• Requirements should not be confused with

background information
• Requirements are concise

Dr. Schesser BME 496
Capstone II

3

Characteristics of a Good
Requirements Document

• A good Requirements Document is:
1. Unambiguous
2. Complete
3. Verifiable
4. Consistent
5. Modifiable
6. Traceable
7. Usable during the Operation and

Maintenance Phase

Dr. Schesser BME 496
Capstone II

4

Unambiguous
• A Requirements Document is unambiguous if

and only if every requirement stated therein
has only one interpretation.
1. As a minimum, this requires that each characteristic

of the final product be described using a single
unique term.

2. In cases where a term used in a particular context
could have multiple meanings, the term must be
included in a glossary where its meaning is made
more specific.

Dr. Schesser BME 496
Capstone II

5

Complete
• A Requirements Document is complete if it possesses

the following qualities:
1. Inclusion of all significant requirements, whether relating to

functionality, performance, design constraints, attributes or
external inter-faces.

2. Definition of the responses of the system to all realizable
classes of inputs in all realizable classes of situations. Note that
it is important to specify the responses to valid and invalid input
values.

3. Conformity to any standard that applies to it. If a particular
section of the standard is not applicable, the Requirements
Document should include the section number and an
explanation of why it is not applicable.

4. Full labeling and referencing of all figures, tables, and diagrams
in the Requirements Document and definition of all terms and
units of measure.

Dr. Schesser BME 496
Capstone II

6

Verifiable

• A Requirements Document is verifiable if
and only if every requirement stated
therein is verifiable. A requirement is
verifiable if and only if there exists some
finite cost-effective process with which a
person or machine can check that the
system product meets the requirement.

Dr. Schesser BME 496
Capstone II

7

Verifiable continued
Examples of non-verifiable requirements

include statements such as:
• The product shall work well, or The product shall

have a good human interface. These requirements
cannot be verified because it is impossible to
define the terms good or well.

• The program shall never enter an infinite loop. This
requirement is non-verifiable because the testing
of this quality is theoretically impossible.

• The output of the program shall usually be given
within 10 s. This requirement is non-verifiable
because the term usually cannot be measured.

Dr. Schesser BME 496
Capstone II

8

Verifiable continued
• An example of a verifiable statement is

– The output of the program shall be given within 20 s of event X,
60% of the time; and shall be given within 30 s of event X, 100%
of the time. This statement can be verified because it uses
concrete terms and measurable quantities.

• If a method cannot be devised to determine whether the
system meets a particular requirement, then that
requirement should be removed or revised.

• If a requirement is not expressible in verifiable terms at
the time the Requirements Document is prepared, then
a point in the development cycle (review, test plan issue,
etc) should be identified at which the requirement must
be put into a verifiable form.

Dr. Schesser BME 496
Capstone II

9

Consistent
• A Requirements Document is consistent if and

only if no set of individual requirements
described in it conflict.

• There are three types of likely conflicts in a
Requirements Document:
1. Two or more requirements might describe the same

real world object but use different terms for that
object. For example, a program's request for a user
input might be called a prompt in one requirement
and a cue in another.

Dr. Schesser BME 496
Capstone II

10

Consistent
2. The specified characteristics of real world objects

might conflict. For example:
1. The format of an output report might be described in one

requirement as tabular but in another as textual.
2. One requirement might state that all lights shall be green

while another states that all lights shall be blue.
3. There might be a logical or temporal conflict

between two specified actions. For ex- ample:
1. One requirement might specify that the system will add two

inputs and another specify that the system will multiply
them.

2. One requirement might state that A must always follow B,
while another requires that A and B occur simultaneously.

Dr. Schesser BME 496
Capstone II

11

Modifiable
• A Requirements Document is modifiable if its structure and style are

such that any necessary changes to the requirements can be made
easily, completely, and consistently. Modifiability generally requires
A Requirements Document to:
1. Have a coherent and easy-to-use organization, with a table of contents,

an index, and explicit cross-referencing.
2. Not be redundant; that is, the same requirement should not appear in

more than one place in the Requirements Document.
• Redundancy itself is not an error, but it can easily lead to errors.
• Redundancy can occasionally help to make a Requirements Document

more readable, but a problem can arise when the redundant document is
updated. Assume, for instance, that a certain requirement is stated in two
places. At some later time, it is determined that the requirement should be
altered, but the change is made in only one of the two locations-. The
Requirements Document then becomes inconsistent.

• Whenever redundancy is necessary, the Requirements Document should
include explicit cross-references to make it modifiable.

Dr. Schesser BME 496
Capstone II

12

Traceable

• A Requirements Document is traceable if
the origin of each of its requirements is
clear and if it facilitates the referencing of
each requirement in future development or
enhancement documentation.

• Two types of traceability are
recommended:

Dr. Schesser BME 496
Capstone II

13

Traceable continued
1. Backward traceability (that is, to previous stages of

development) depends upon each requirement
explicitly referencing its source in previous
documents.

2. Forward traceability (that is, to all documents
spawned by the Requirements Document) depends
upon each requirement in the Requirements
Document having a unique name or reference
number.

When a requirement in the Requirements
Document represents an apportionment or a
derivative of another re-quirement, both forward
and backward trace-ability should be provided.

Dr. Schesser BME 496
Capstone II

14

Usable During the Operation and
Maintenance Phase

• The Requirements Document must
address the needs of the operation and
maintenance phase, including the
eventual replacement of the system.

Dr. Schesser BME 496
Capstone II

15

Usable During the Operation and
Maintenance Phase

1. Maintenance is frequently carried out by personnel not associated with
the original development. Local changes (corrections) can be
implemented by means of a well-commented code. For changes of
wider scope, however, the design and requirements documentation is
es-sential. This implies two actions;

a) The Requirements Document should be modifiable as indicated previously..
b) The Requirements Document should contain a record of all special

provisions that apply to individual components such as:
i. Their criticality (for example, where failure could impact safety or cause large

finan-cial or social losses).
ii. Their relation to only temporary needs (for example, to support a display that may

be retired soon).
iii. Their origin (for example, function X is to be copied from an existing product in its

entirety).
2. Knowledge of this type is taken for granted in the developing

organization but is frequently missing in the maintenance organization.
If the reason for or origin of a function is not understood, it is frequently
impossible to perform adequate system maintenance on it.

