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Intro & Methods COPD Sepsis Future Work
Introduction

COPD Sepsis

X-ray of COPD patient with emphysema1 (left), and sepsis blood
sample photograph2 (right). The Iterex healthcare app aims to
make chronic disease management more accessible.

1Image taken from Cleveland Health Clinic
2Image taken from Science Source
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Introduction

Determine
symptoms
and disease
variables

−→

Generate
clinical

patient case
scenarios

−→

Collect and
analyze

triage data

−→

Train
machine
learning
models

−→

Validate
machine
learning
models

−→

Iterex trials
were shown to:

Outperform Specialists
Err in Favor of patient safety
Help increase medication compliance
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Machine Learning Methodology

Precision Score: What
proportion of positive
identi�cations was
actually correct?
Recall Score: What
proportion of actual
positives was
identi�ed correctly?

Figure 1: Confusion Matrixa

aImage taken from Walber
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Machine Learning Methodology

Figure 2: Receiver operating characteristic (ROC) curve3

3Image Taken from Sharpr
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COPD Analysis and Results
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Patient Symptoms in COPD

Question: What set of patient signs, symptoms, and baseline
health factors are indicative of a physician identi�ed
exacerbation for COPD patients?

We considered over 30 health factors, such as:
General Stats like sex, age, weight
Vitals like heart/respiratory rate and temperature
Respiratory evaluations like FEV, inhaler use, or peak �ow
Medication compliance and symptom changes
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COPD Visualization and Trend Identification

Figure 3: Features comparison for
COPD data points

The heat map describes
correlations among all
the features for COPD.

This shows there are
no clear correlation
observed among the
features for predicting
the COPD exacerbation
result.
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COPD Correlation and Relative Importance

Feature Rank
Symptom 3 0.231
Symptom 2 0.182

Symptoms worse 0.172
Symptom 1 0.158
Symptom 6 0.150

FEV1 post-inhaler 0.107
Table 1: Top 6 features and their
importance ranking

Figure 4: Bar graph with error for
COPD features
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COPD Exacerbation Classification

We predicted exacerbation of COPD using the 6 most important
features in order to avoid noise created by other features.

Figure 5: Optimal AUC Accuracy: 69.5̄%

MPI 2019 New Jersey Institute of Technology June 21, 2019 8 / 16



Sepsis Analysis and Results
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Predicting the Onset of Sepsis

Question: Can we predict the onset of a septic infection using
temporal sign and symptom data?

We considered over 40 data measurements such as:
Vitals like heart rate, blood pressure, respiratory rate, and
temperature
Nutrient levels like calcium, potassium, and glucose
Blood measurements like white blood cell and platelet
counts, and hemoglobin level
General stats like age, sex, and length of stay within the ICU
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Sepsis Visualization and Trend Identification

Figure 6: Features comparison for
sepsis data points

The heat map on the left
shows that there are
no clear correlations
observed among the
features sepsis prediction
result.
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Sepsis Misdiagnosis

The clinical de�nition of SIRS (possibly indicating sepsis) is
distinguished by two or more of the following:

Heart rate > 90/min
Temp ≥ 38 or < 36o Celsius
Respiratory rate > 20/min
White blood cell count > 12 or < 4 cells/mL

This de�nition gives a 65% false positive rate in our data (2 of 3
healthy patients falsely diagnosed with sepsis!)
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Sepsis Prediction Using Post-Septic Features

This algorithm is able to
make predictions
depending on the
current label of sepsis.

Scores from the
classi�cation matrix:

Precision recall F1
0 .86 .85 .86
1 .85 .86 .85

Figure 7: ROC Curve (area under the
curve: 0.91)
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Sepsis PredictionUsing Pre/Post-Septic Features

Using both current and past labels of sepsis, we applied
moving window algorithm on this time series problem.
We use random forest classi�er and sepsis label for
prediction confusion matrix. (prediction row, true column) Predicted/True P N

P 2211 14
N 950 10628


We notice the false positive cases and false negative cases
are very small numbers, especially for false positive. We
believe this is a good classi�er.
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Sepsis PredictionUsing Pre/Post-Septic Features

All features in the data frame are used for Sepsis prediction:

Figure 8: Prediction Accuracy with all features: 0.93
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Sepsis PredictionUsing Pre/Post-Septic Features

Depending on past and future labels, we can predict the
time until a patient get sepsis.

Root Mean squared error: 1.2 hours.
To validate our results, we excludes data points from the
training set and that increases the mean squared error.
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Summary and Future Work

What have we done?
1. Predicted exacerbations in COPD patients with an accuracy
of roughly 70%

2. We can identify a collection of vitals as septic or not with an
AUC of 0.91

3. We can predict time until sepsis in with a RMSE of 1.2 hours (!)
What do we need to do?

For the regression model, Excluding data points from training
sets increase the prediction of time to get sepsis, hence we
need to �nd the optimal time / method to �x the problem.
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