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a b s t r a c t

Identifying homogeneous subgroups of variables can be challenging in high dimensional
data analysis with highly correlated predictors. The generalized fused lasso has been
proposed to simultaneously select correlated variables and identify them as predictive
clusters (grouping property). In this article, we study properties of the generalized fused
lasso. First, we present a geometric interpretation of the generalized fused lasso alongwith
discussion of its persistency. Second, we analytically show its grouping property. Third, we
give comprehensive simulation studies to compare our version of the generalized fused
lasso with other existing methods and show that the proposed method outperforms other
variable selection methods in terms of prediction error and parsimony. We describe two
applications of our method in soil science and near infrared spectroscopy studies. These
examples having vastly different data types demonstrate the flexibility of themethodology
particularly for high-dimensional data.

© 2014 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

Suppose that we observe (x1, y1), . . . , (xn, yn), where xi = (xi1, . . . , xip)T is a p-dimensional predictor and yi is the
response variable. We consider a standard linear model for each of n observations

yi =

p
j=1

βjxij + ϵi, for i = 1, . . . , n,

with E(ϵi) = 0 and Var(ϵi) = σ 2. We also assume that the predictors are standardized and the response variable is centered,
n

i=1

yi = 0,
n

i=1

xij = 0 and
n

i=1

x2ij = 1 for j = 1, . . . , p.

The dramatic increase in the amount of data collected inmany fields comes with a corresponding increase in the number
of predictors p available in data analyses. For simpler interpretation of the underlying processes generating the data, it is
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often desired to have a relatively parsimonious model. This in turn creates the challenge of identifying important predictors
out of the many that are available.

As a motivating example, we consider a study involving near infrared (NIR) spectroscopy data measurements of cookie
dough (Osborne, Fearn, Miller, & Douglas, 1984). Near infrared reflectance spectral measurements were made at 700
wavelengths from 1100 to 2498 nanometers (nm) in steps of 2 nm for each of 72 cookie doughsmadewith a standard recipe.
The study aims to predict dough chemical composition using the spectral characteristics of NIR reflectance wavelength
measurements. Here, the number of wavelengths p is much bigger than the sample size n.

One possible approach is to cluster predictors based on the correlation structure and to use averages of the predictors
in each cluster as new predictors. Park, Hastie, and Tibshirani (2007) use this approach for gene expression data analysis
and introduce the concept of a super gene. However, NIR spectroscopy data are well known to have measurement errors
which induce positive correlations among the wavelengths. Ideally, we would like to keep all relevant (possibly correlated)
wavelengths while achieving better predictive performance. The hierarchical clustering used in Park et al. (2007) for
grouping does not account for the correlation structure of the predictors.

While variable selection in regression is an increasingly important problem, it is also very challenging, particularly when
there is a large number of highly correlated predictors. Since the important contribution of the least absolute shrinkage and
selection operator (lasso) method by Tibshirani (1996), many other methods based on regularized or penalized regression
have been proposed for parsimonious model selection, particularly in high dimensions, e.g. elastic net, fused lasso, OSCAR
and generalized lasso (Bondell & Reich, 2008; Tibshirani, Saunders, Rosset, Zhu, & Knight, 2005; Tibshirani & Taylor, 2011;
Zou & Hastie, 2005). Briefly, these methods involve penalization to fit a model to data, resulting in shrinkage of the
estimators. Many methods have focused on addressing various possible shortcomings of the lasso method, for instance
when there is dependence or collinearity between predictors.

In the lasso, a bound is imposed on the sum of the absolute values of the coefficients:

β = argmin
β

y −

p
j=1

βjxj


2

subject to
p

j=1

|βj| ≤ t,

where y = (y1, . . . , yn) and xj = (x1j, . . . , xnj).
The lassomethod is a shrinkagemethod, like ridge regression (Hoerl & Kennard, 1970), with automatic variable selection.

Due to the nature of the L1 penalty term, the lasso shrinks each coefficient and selects variables simultaneously. However,
a major drawback of the lasso is that if there exists collinearity among a subset of the predictors, it usually only selects one
to represent the entire collinear group. Furthermore, the lasso cannot select more than n variables when p > n.

Penalized regression methods have also been proposed for grouped predictors (Bondell & Reich, 2008; She, 2010;
Tibshirani et al., 2005; Zou & Hastie, 2005). All these methods work by introducing a new penalty term in addition to the
L1 penalty term of the lasso to account for correlation structure. For example, based on the fact that ridge regression tends
to shrink the correlated predictors toward each other, the elastic net (Zou & Hastie, 2005) uses a linear combination of the
ridge and lasso penalties for grouppredictor selection; elastic net solves the following constrained least squares optimization
problem,

β = argmin
β

y −

p
j=1

βjxj


2

subject to α

p
j=1

|βj| + (1 − α)

p
j=1

β2
j ≤ t.

The second term forces highly correlated predictors to be averaged while the first term leads to a sparse solution of these
averaged predictors.

Bondell andReich (2008) proposeOSCAR (Octagonal Shrinkage andClusteringAlgorithm for Regression),which is defined
by

β = argmin
β

y −

p
j=1

βjxj


2

subject to
p

j=1

|βj| + c
p

j<k

max{|βj|, |βk|} ≤ t.

By using a pairwise L∞ norm as the second penalty term, OSCAR encourages equality of coefficients.
Unlike the elastic net and OSCAR, the fused lasso (Tibshirani et al., 2005) accounts for spatial correlation of predictors. A

key assumption in the fused lasso is that the predictors have a certain type of ordering. The fused lasso solves

β = argmin
β

y −

p
j=1

βjxj


2

subject to
p

j=1

|βj| ≤ t1 and
p

j=2

|βj − βj−1| ≤ t2.

The second constraint, called a fusion penalty, encourages sparsity in the differences of coefficients. The method can theo-
retically be extended to multivariate data, although with a corresponding increase in computational requirements.

She (2010) introduces the clustered lasso (classo), a generalization of the fused lasso. Without the ordering restriction on
predictors, the classo is defined by

β = argmin
β

y −

p
j=1

βjxj


2

subject to
p

j=1

|βj| ≤ t1 and
p

j<k

|βj − βk| ≤ t2.
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All of these aforementionedmethods can be encapsulated in the framework of the generalized lasso (Tibshirani & Taylor,
2011):

β = argmin
β

y −

p
j=1

βjxj


2

subject to ∥Dβ∥1 ≤ t

where D ∈ Rm×p is a specified penalty matrix.
Assuming

D =


In
λF


, F =


−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
0 0 0 . . . −1 1


,

the generalized lasso becomes the fused lasso.
All the above methods, however, have some limitations when it comes to applying them to high dimensional data such

as the cookie dough data set. For example, OSCAR cannot handle high dimensional data because it considers all pairwise
comparisons and solves the optimization problem with quadratic programming, which additionally requires a number of
auxiliary variables. The pathwise algorithm for the generalized lasso by Tibshirani and Taylor (2011) is not computationally
efficient for high-dimensional data with numerous penalty terms like the fused lasso (m = 2p−1), since the path algorithm
solves its dual problem whose dimension is the number of penalty terms.

In this paper, we introduce a variant of the generalized lasso that effectively selects positively correlated variables in high
dimension with an exact grouping property which we will explain in Section 2. We call this procedure a Hexagonal Operator
for Regression with Shrinkage and Equality Selection, or HORSES for short. Our method is similar to classo in terms of penalty
form, so we call procedures with L1 and fusion penalty terms the generalized fused lasso and consider both methods as
variants of the generalized fused lasso. The differences between the two methods will be explained in Section 2. We study
several interesting properties of the generalized fused lasso. First, HORSES representation provides a better geometrical
view of the generalized fused lasso and a better understanding its persistency. Second, we analytically show that HORSES
(equivalently, generalized fused lasso) is a variable selection method that is specifically tailored to the situation in which
there are strong positive correlations between predictors. HORSES finds a homogeneous subgroup structure within the high
dimensional predictor space. In addition, we implement comprehensive simulation studies to compare our version of the
generalized fused lasso with other existing methods and show that the generalized fused lasso outperforms other variable
selection methods in terms of prediction error and parsimony.

The remainder of the paper is organized as follows. In Section 2, HORSES representation of the generalized fused lasso
is introduced. In Section 3, we briefly review the recent advances in algorithms for solving the generalized fused lasso and
introduce our algorithm for HORSES. In addition, we provide procedures to select tuning parameters. Simulation studies to
show the performances of variable selection and prediction are presented in Section 4. Two data analyses using HORSES are
presented in Section 5. We conclude the paper with a discussion in Section 6.

2. Generalized fused lasso with its geometric view

In this section we describe our variant of the generalized fused lasso. Following the formulation of the elastic net, our
penalty term is a linear combination of an L1 penalty for the coefficients and another L1 penalty for pairwise differences of
coefficients. Computation can be done by solving a constrained least-squares problem.

The novelty of the generalized fused lasso is that it encourages grouping of positively correlated predictors with a sparsity
solution.While the elastic net and OSCAR have a similar feature, thesemethods can put negatively correlated predictors into
the same group. Fig. 1 shows the shape of the constraint regions for the elastic net, OSCAR and HORSES methods. The shape
of the constraint region for HORSES is hexagonal. Compared to the elastic net and OSCAR, HORSES encourages equality of
coefficients only in the direction of y = x.

HORSES yields estimates using

β = argmin
β

y −

p
j=1

βjxj


2

subject to α

p
j=1

|βj| + (1 − α)

j<k

|βj − βk| ≤ t,

where d−1
≤ α ≤ 1 and d is a thresholding parameter. Our penalty term is mathematically equivalent to the classo except

for the thresholding parameter d. However, our specification of the penalty terms using a linear combination provides a
geometric interpretation of the constraint region which cannot be presented with the form of the classo penalty term. Note
that one can write the HORSES optimization problem in the equivalent Lagrangian form

argmin
β


y −

p
j=1

βjxj


2

+ λ


α

p
j=1

|βj| + (1 − α)

j<k

|βj − βk|

 .
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(a) elastic net. (b) OSCAR. (c) HORSES.

Fig. 1. Graphical representation of the constraint region in the (β1, β2) plane for (a) elastic net, (b) OSCAR, and (c) HORSES.

a b

Fig. 2. Graphical representation in the (β1, β2) plane. HORSES solutions are the first time the contours of the sum of squares function hit the hexagonal
constraint region. (a) Contours centered at OLS estimate with a negative correlation. Solution occurs atβ1 = 0; (b) Contours centered at OLS estimate with
a positive correlation. Solution occurs atβ1 = β2 .

With the HORSES formulation, instead of an octagon as in Fig. 1(b) for OSCAR, constraint regions of the generalized
fused lasso are represented by a hexagon (Fig. 1(c)), which focuses on selection of groups of predictors that are positively
correlated. This explains why the generalized fused lasso works better when there are strong positive correlations among
the predictors.

In a graphical representation in the (β1, β2) plane, the solution is the first time the contours of the sum of squares loss
function hit the constraint regions. Fig. 2 gives a schematic view. Fig. 2(a) shows the solution for HORSES when there is
negative correlation between predictors. HORSES treats them separately by making β1 = 0. On the other hand, HORSES
yieldsβ1 = β2 when predictors are positively correlated, as in Fig. 2(b).

What distinguishes HORSES from other generalized fused lasso is the thresholding parameter d. With d, one can prevent
the estimates from being a solution only via the second penalty function, so the HORSES method always achieves sparsity.
We recommend d =

√
p, where p is the number of predictors. This ensures that the constraint parameter region lies between

those of the L1 norm and the elastic net method, i.e. the set of possible estimates for the HORSES procedure is a subset of
that of the elastic net. As a result, we can show that HORSES is persistent (Greenshtein & Ritov, 2004) when the elastic net
is persistent. If we choose d = p, the HORSES parameter region lies within that of the OSCAR method, but requires a much
stronger condition for persistence.

Definition 2.1 (Greenshtein & Ritov, 2004). β is persistent ifR(β) − R(β∗)
P
−→ 0 where

R(β) =
1
n
E

y −

p
j=1

βjxj


2

, R(β) =
1
n

y −

p
j=1

βjxj


2

,

and β∗
= argminβ∈MnR(β). Here Mn is a constraint region of β .

Following Greenshtein and Ritov (2004), define z = (Z0, . . . , Zp) = (Y , X1, . . . , Xp). Then

R(β) =

p
j=0

p
k=0

βjβkE (ZjZk), R(β) =
1
n

n
i=1

p
j=0

p
j=0

βjβkZijZik

where β0 = −1.
Hence

|R(β) − R(β∗)| ≤ max
j,k

1n i

ZijZik − E (ZjZk)


j


k

βjβk


= ∥β∥
2 max

j,k

1n i

ZijZik − E (ZjZk)

 .
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From Greenshtein and Ritov (2004), one can assume that

max
j,k

1n
n

i=1

ZijZik − E (ZjZk)

 = O


log n
n


.

Therefore,

sup
β∈Mn

|R(β) − R(β∗)| ≤ sup
β∈Mn

∥β∥
2
1 · O


log n
n


.

For the lasso, the sufficient condition for persistence is

sup
β∈M0

n

∥β∥
2
1 = t2n = o


n

log n

1/2

,

where M0
n =


β :

p
j=1 |βj| ≤ tn


. Define constraint regions of HORSES, OSCAR and the elastic net as follows:

Mn =


xTβ : α

p
j=1

|βj| + (1 − α)

j<k

|βj − βk| ≤ tn,
1

√
p

≤ α ≤ 1


,

M′

n =


xTβ : α

p
j=1

|βj| + (1 − α)

j<k

max{|βj|, |βk|} ≤ tn, 0 ≤ α ≤ 1


,

M′′

n =


xTβ : α

p
j=1

|βj| + (1 − α)

j=1

β2
j ≤ tn


.

For OSCAR, elastic net and HORSES, one can easily show that ∥β∥
2
1 attains the maximum when β1 = β2 = · · · = βp. Hence

sup
β∈M′

n

∥β∥
2
1 = (ptn)2 and sup

β∈M′′
n

∥β∥
2
1 = pt2n .

Hence, elastic net is persistent if tn = o


n
p2 log n

1/2
while OSCAR needs the stronger condition tn = o


n

p4 log n

1/2
.

HORSES achieves the maximum with

β1 = β2 = · · · = βp =
tn
pα

.

As a result,

sup
β∈Mn

∥β∥
2

=


tn
α

2

= pt2n ,

when α = 1/
√
p. Therefore, if tn in HORSES is of the same order of tn in elastic net, HORSES is persistent.

As the correlation between two predictors increases, the predictors aremore likely to be grouped together. The elastic net
also has a grouping property, but does not assign identical coefficients to predictors within groups. The following theorem
shows that HORSES has the exact grouping property, that is, each covariate will be assigned to the same coefficient within
clusters.

Theorem 2.1. Let λ1 = λα and λ2 = λ(1 − α) be the two tuning parameters in the HORSES criterion. Given data

y, X


with centered response y and standardized predictors X = (x1, . . . , xp)t , let βλ1, λ2) be the HORSES estimate using the tuning
parameters


λ1, λ2


. Let ρij = xTi xj be the sample correlation between covariates xi and xj.

For a given pair of predictors xi and xj, suppose that bothβi(λ1, λ2) andβj(λ1, λ2) are distinct but adjacent in the sense that,
for all k ≠ i, j,βk ∉

βi(λ1, λ2),βj(λ1, λ2)

. Then there exists λ0 ≥ 0 such that if λ > λ0 then

βi

λ1, λ2


= βj


λ1, λ2


, for all α ∈ [d−1, 1].

Furthermore, it must be that

λ0 ≤ 2∥y∥

2(1 − ρij).
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Proof. Suppose the covariates (x1, x2, . . . , xp) are ordered such that their corresponding coefficient estimates satisfyβ1 ≤ β2 ≤ · · · ≤ βL < 0 < βL+1 · · · ≤ βQ

andβQ+1 = · · · = βp = 0.
Letθ1, . . . ,θG denote the G unique nonzero values of the set ofβj, so that G ≤ Q .
For each g = 1, 2, . . . ,G, let

Gg = {j : βj =θg}
denote the set of indices of the covariates that correspond to those values for the coefficients. Now construct the grouped
n × G covariate matrix X∗

≡

x∗

1 · · · x∗

G


with

x∗

g =


j∈Gg

xj.

The optimization problem can be rewritten with the above active set notation as:

argmin
θg


y −

G
g=1

θgx∗

g


2

+ λ1

G
g=1

wgθg + λ2


g1<g2

vg1,g2

θg2 − θg1

 .

Here wg is the number of elements in the set Gg and vg1,g2 is the number of pairs (j1, j2) where j1 ∈ Gg1 and j2 ∈ Gg2.
Suppose we consider the derivative of the objective function with respect to θg which is

−2x∗T
g


y − X∗θ+ λ1wg + λ2


g1<g

vg1,g −


g<g2

vg,g2


= 0.

We also consider the derivative with respect to θh:

−2x∗T
h


y − X∗θ+ λ1wh + λ2


g1<h

vg1,h −


h<g2

vh,g2


= 0.

Subtracting the latter from the former gives

− 2

x∗T
g − x∗T

h


y − X∗θ+ λ1


wg − wh


+ λ2


(v+,g − vg,+) − (v+,h − vh,+)


= 0, (1)

where


g1<a vg1,a = v+,a and


b<g2 vb,g2 = vb,+. The Eq. (1) is equivalent to

−2

x∗T
g − x∗T

h


y − X∗θ− λwh + λ


1 − α

 h−1
k=g+1

wk = 0.

In the theorem, we assumeβi andβj are adjacent, we have h = g + 1 (we assume g < hwithout loss of generality) andh−1
k=g+1 wk = 0. Thus,

λwh = 2

x∗T
g − x∗T

h


y − X∗θ.

Since X is standardized, ∥xTi − xTj ∥
2

= 2(1 − ρij). This together with the fact that ∥y − Xβ∥
2

≤ ∥y∥2 gives

wh ≤ 2λ−1
∥y∥


2(1 − ρij).

Therefore, if 2λ−1
∥y∥


2(1 − ρij) < 1, then we encounter a contradiction to the fact that wh ≥ 1. �

Theorem 2.1 shows that, for a given λ, if any two adjacent estimatesβi andβj are not same, the given λ should be larger
than 2∥y∥


2(1 − ρij). This indirectly implies that, for any adjacent pairs xi and xj, the required magnitude of penalization

(the value of λ) to make their coefficients be equal is inversely proportional to the correlation coefficient ρij. Thus, we need
a lower (or higher, respectively) value of λ if ρij is positive (or negative, respectively) to make their coefficient be equal.

3. Computation and tuning

Developing an efficient algorithm to implement generalized fused lasso procedures is critical for its application to high
dimensional data. Recent advances of such algorithms for the generalized fused lasso are twofold: the pathwise algorithm
and the optimization procedure for a given set of tuning parameters. The pathwise algorithm for the generalized fused lasso
was first discussed by Friedman, Hastie, Höfling, and Tibshirani (2007). They consider the pathwise coordinate descent
algorithm, which sequentially solves a series of the coordinate descent (CD) algorithm. However, monotonicity of the
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solution path does not hold for general design matrix. Furthermore, the CD algorithm for non-separable penalty term
may not converge. Hence a modified CD algorithm is used in their procedure. Tibshirani and Taylor (2011) propose a path
algorithm for the fused lasso but this has difficulty for the generalized fused lasso due to the number of penalty terms
(m = p(p + 1)/2). Recently, another set of algorithms based on the optimization technique called the first order method,
is introduced. For example, Ye and Xie (2011) introduce an algorithm based on split-Bregman iteration, which iteratively
solves an augmented Lagrangian function having additional least square penalties for the violation of linear constraints. Lin,
Pham, and Ruszczynski (2011) propose the alternating linearization algorithm which solves two linearized sub-problems
derived from the original problem. Liu, Yuan, and Ye (2010) rewrite the generalized fused lasso as the fused lasso signal
approximator (FLSA) with an identity designmatrix and further reformulate the FLSA as a problem of finding an appropriate
subgradient of the fused penalty at the minimizer.

To implement HORSES, we use the modified CD algorithm by Friedman et al. (2007) but do not apply the pathwise
step since the monotonicity of the solution path does not hold for a general design matrix. Instead, we estimate tuning
parameters by minimizing the prediction error with cross-validation. The code is implemented in C and the R statistical
package. Example code is available from the second author upon request.

3.1. Computation

Recall that solving the equations for the HORSES procedure,

minimize

y −

p
j=1

βjxj


2

subject to α

p
j=1

|βj| + (1 − α)

j<k

|βj − βk| ≤ t,

is equivalent to solving its Lagrangian counterpart

f (β) =
1
2

y −

p
j=1

βjxj


2

+ λ1

p
j=1

|βj| + λ2


j<k

|βj − βk|, (2)

where λ1 = λα and λ2 = λ(1 − α) with λ > 0.
Solving (2) to obtain estimates for the HORSES procedure, we modify the pathwise coordinate descent algorithm

of Friedman et al. (2007). The pathwise coordinate descent algorithm is an adaptation of the coordinate-wise descent
algorithm for solving the 2-dimensional fused lasso problem with a non-separable penalty (objective) function. Our
extension involves modifying the pathwise coordinate descent algorithm to solve the regression problem with a fusion
penalty. As shown in Friedman et al. (2007), the proposed algorithm is much faster than a general quadratic program solver.
Furthermore, it allows the HORSES procedure to run in situations where p > n.

Our modified pathwise coordinate descent algorithm has two steps, the descent and the fusion steps. In the descent
step, we run an ordinary coordinate-wise descent procedure to sequentially update each parameter βk given the others.
The fusion step is considered when the descent step fails to decrease the objective function. In the fusion step, we add an
equality constraint on pairs of βks to take into account potential fusions and do the descent step alongwith the constraint. In
other words, the fusion step moves given pairs of parameters together under equality constraints to decrease the objective
function. The details of the algorithm are as follows:

• Descent step:
The derivative of (2) with respect to βk given βj = β̃j, j ≠ k, is

∂ f (β)

∂βk
= xTk xkβk −


y −


j≠k

β̃jxj
T

xk + λ1sgn(βk) + λ2

k−1
j=1

sgn(β̃j − βk) + λ2

p
j=k+1

sgn(βk − β̃j), (3)

where the β̃js are current estimates of the βj’s and sgn(x) is a subgradient of |x|. The derivative (3) is piecewise linear in
βk with breaks at {0, β̃j, j ≠ k} unless βk ∉ {0, β̃j, j ≠ k}.
– If there exists a solution to


∂ f (β)


∂βk


= 0, we can find an interval (c1, c2) which contains it, and further show that

the solution is

β̃k = sgn

ỹT xk − λ2


j<k

sjk +


j>k

skj


×

ỹT xk − λ2


j<k

sjk +

j>k

skj

− λ1


+

xTk xk
,

where ỹ = y −


j≠k β̃jxj, and sjk = sgn(β̃j −
c1+c2

2 ).



8 W. Jang et al. / Journal of the Korean Statistical Society ( ) –

– If there is no solution to

∂ f (β)


∂βk


= 0, we let

β̃k =


β̃l if f (β̃l) = min


f (0), f (β̃j), for j ≠ k


0 if f (0) ≤ f (β̃j), for every j ≠ k.

• Fusion step:
If the descent step fails to decrease the objective function f (β), we consider the fusion of pairs of βks. For every single

pair (k, l), l ≠ k, we consider the equality constraint βk = βl = γ and try a descent move in γ . The derivative of (2) with
respect to γ becomes

∂ f (β)

∂γ
= (xTk xk + xTl xl)γ − ỹT (xk + xl) + 2λ1sgn(γ ) + 2λ2


j<k,l

sgn(β̃j − γ ) + 2λ2


j>k,l

sgn(γ − β̃j),

where ỹ = y −


j≠k,l β̃jxj. If the optimal value of γ obtained from the descent step decreases the objective function, we
accept the move βk = βl = γ .

3.2. Choice of tuning parameters

Estimation of the tuning parameters α and λ used in the algorithm above is very important for its successful implemen-
tation, as it is for the other methods of penalized regression. Several methods have been proposed in the literature, and any
of these can be used to tune the parameters of the HORSES procedure. K -fold cross-validation (CV) randomly divides the
data into K roughly equally sized and disjoint subsets Dk, k = 1, . . . , K ;

K
k=1 Dk = {1, 2, . . . , n}. The CV error is defined by

CV(α, λ) =

K
k=1


i∈Dk


yi −

p
j=1

β(−k)
j (α, λ)xij

2

,

whereβ(−k)
j (α, λ) is the estimate of βj for a given α and λ using the data set without Dk.

Generalized cross-validation (GCV) and Bayesian information criterion (BIC) (Tibshirani, 1996; Tibshirani et al., 2005;
Zou, Hastie, & Tibshirani, 2007) are other popular methods. These are defined by

GCV(α, λ) =
RSS(α, λ)

n − df
,

BIC(α, λ) = n × log

RSS(α, λ)


+ log n × df

whereβj

α, λ


is the estimate of βj for a given α and λ, df is the degrees of freedom and

RSS(α, λ) =

n
i=1


yi −

p
j=1

βj(α, λ)xij

2

.

Here, the degrees of freedom is a measure of model complexity. To apply these methods, one must estimate the degrees
of freedom (Efron, Hastie, Johnstone, & Tibshirani, 2004). Following Tibshirani et al. (2005) for the fused lasso, we use the
number of distinct groups of non-zero regression coefficients as an estimate of the degrees of freedom.

4. Simulations

We numerically compare the performance of HORSES and several other penalized methods: ridge regression, LASSO,
elastic net, and OSCAR. The first five scenarios are very similar to those in Zou and Hastie (2005) and Bondell and Reich
(2008). We also consider two more scenarios for p > n where we choose p = 100 because this is the maximum number of
predictors that can be handled by the quadratic programming used in OSCAR.

The data are generated from the model

y = Xβ + ϵ,

where ϵ ∼ N

0, σ 2


. Except for scenario C5 and C7, we generate predictors xi = (xi1, . . . , xip)t from a multivariate normal

distribution with mean 0 and covariance Σ where Σj,j = 1 for j = 1, . . . , p.

(C1) n = 20, p = 8, Σi,j = 0.7|i−j|, σ = 3 and

β = (3, 2, 1.5, 0, 0, 0, 0, 0)T .

(C2) n = 20, p = 8, Σi,j = 0.7|i−j|, σ = 3 and

β = (3, 0, 0, 1.5, 0, 0, 0, 2)T .
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Table 1
True number of groups in each scenario.

C1 C2 C3 C4 C5 C6 C7

3 3 1 1 3 4 2

(C3) n = 20, p = 8, Σi,j = 0.7|i−j|, σ = 3 and

β = (0.85, 0.85, 0.85, 0.85.0.85, 0.85, 0.85, 0.85)T .

(C4) n = 100, p = 40, Σi,j = 0.5, σ = 15 and

β = (0, . . . , 0  
10

, 2, . . . , 2  
10

, 0, . . . , 0  
10

, 2, . . . , 2  
10

)T .

(C5) n = 50, p = 40, σ = 15 and

β = (3, . . . , 3  
15

, 0, . . . , 0  
25

)T .

The predictors for scenario (C5) are generated as follows:

xi = Z1 + ηx
i , Z1 ∼ N(0, 1), i ∈ G1 = {1, . . . , 5}

xi = Z2 + ηx
i , Z2 ∼ N(0, 1), i ∈ G2 = {6, . . . , 10}

xi = Z3 + ηx
i , Z3 ∼ N(0, 1), i ∈ G3 = {11, . . . , 15}

xi ∼ N(0, 1), i = 16, . . . , 40,

where ηx
i ∼ N(0, 0.16), i = 1, . . . , 15. Then Corr(xi, xj) ≈ 0.85 for i, j ∈ Gk for k = 1, 2, 3.

(C6) n = 50, p = 100, Σi,j = 0.7|i−j|, σ = 3 and

β = (3, . . . , 3  
5

, 0, . . . , 0  
10

, 2, . . . , 2  
5

, 0, . . . , 0  
10

, −1.5, . . . ,−1.5  
5

, 0, . . . , 0  
10

, 1, . . . , 1  
5

, 0, . . . , 0  
50

)T .

(C7) n = 100, p = 40, σ = 15 and

β = (2, . . . , 2  
10

, −2, . . . ,−2  
10

, 0, . . . , 0  
20

)T

The predictors for scenario (C7) are generated as follows:

Z1 ∼ N(0, 1)
xi = Z1 + ηx

i , i ∈ G1 = {1, . . . , 10}
xi = −Z1 + ηx

i , i ∈ G2 = {11, . . . , 20}
xi ∼ N(0, 1), i = 21, . . . , 40

where ηx
i ∼ N(0, 0.16), i = 1, . . . , 20. Then Corr(xi, xj) ≈ 0.85 for i, j ∈ Gk for k = 1, 2 and Corr(xi, xj) ≈ −0.85

for i ∈ Gk and j ∈ Gl for k ≠ l. In other words, there are two blocks of non-zero coefficients and their corresponding
variables are positively correlated in the same block and negatively correlated in the different block.

We generate 100 data sets of size 2n for each scenario C1–C7. In each data set, the final model is estimated as follows:
(i) For each (α, λ), we use the first n observations as a training set to estimate the model and use the other n observations
as a validation set to compute the prediction error PE(α, λ); (ii) We set the tuning parameters to be the values (α∗, λ∗) that
minimize the prediction error PE(α, λ); (iii) The final model is estimated using the training set with (α, λ) = (α∗, λ∗).

We compare themean square error (MSE) and themodel complexity of the five penalizedmethods. TheMSE is calculated
as in Tibshirani (1996) via

MSE = (β − β)TV(β − β),

where V is the population covariance matrix for X . The model complexity is measured by the number of groups. Based on
the coefficient values and correlation structure, Table 1 shows the true number of groups for each of the seven scenarios.
Note that the true number of groups is not always the same as the degrees of freedom. For example, we note that the true
number of groups in scenario C5 is three based on the correlation structure although all nonzero coefficients have the same
value. On the other hand, scenario C4 assumes a compound symmetric covariance structure, therefore the number of groups
only depends on the coefficient values. Hence, the order of the coefficients does not matter and we can consider scenario
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Table 2
MSE and model complexity.

Case Method MSE MSE MSE DF DF DF
Med. 10th perc. 90th perc. Med. 10th perc. 90th perc.

C1 Ridge 2.31 0.98 4.25 8 8 8
Lasso 1.92 0.68 4.02 5 3 8
Elastic net 1.64 0.49 3.26 5 3 7.5
OSCAR 1.68 0.52 3.34 4 2 7
HORSES 1.85 0.74 4.40 5 3 8

C2 Ridge 2.94 1.36 4.63 8 8 8
Lasso 2.72 0.98 5.50 5 3.5 8
Elastic net 2.59 0.95 5.45 6 4 8
OSCAR 2.51 0.96 5.06 5 3 8
HORSES 2.21 1.03 4.70 5 2 8

C3 Ridge 1.48 0.56 3.39 8 8 8
Lasso 2.94 1.39 5.34 6 4 8
Elastic net 2.24 1.02 4.05 7 5 8
OSCAR 1.44 0.51 3.61 5 2 7
HORSES 0.50 0.02 2.32 2 1 5.5

C4 Ridge 27.4 21.2 36.3 40 40 40
Lasso 45.4 32 56.4 21 16 25
Elastic net 34.4 24 45.3 25 21 28
OSCAR 25.9 19.1 38.1 15 5 19
HORSES 21.2 19.3 33.0 3.5 1 19.5

C5 Ridge 70.2 41.8 103.6 40 40 40
Lasso 64.7 27.6 116.5 12 9 18
Elastic net 40.7 17.3 94.2 17 13 25
OSCAR 51.8 14.8 96.3 12 9 18
HORSES 46.1 18.1 92.8 11 5.5 19.5

C6 Ridge 27.71 19.53 38.53 100 100 100
Lasso 13.36 7.89 20.18 31 24 39.1
Elastic net 13.57 8.49 25.33 30 23.9 37
OSCAR 13.16 8.56 19.16 50.00 35.9 83.7
HORSES 12.20 7.11 22.02 33.5 24 66.3

C7 Ridge 18.29 7.85 26.61 40 40 40
Lasso 27.67 18.70 42.73 15 11 24
Elastic net 24.69 16.99 36.94 14 11 21
OSCAR 27.17 16.70 43.25 15 10 23
HORSES 16.40 6.58 32.72 16 5 18.1

C4 as having only one group of non-zero coefficients. We take the model complexity of scenario C6 to be four, based on
the coefficient values. However, it is possible that some of the zero coefficients might be included as signals because of
strong correlations and relatively small differences in coefficient values in this case. For example, the correlation between
x50(β50 = 1) and x51(β51 = 0) is 0.7. Therefore it is possible that the true model complexity in this case may be bigger than
four. C7 is similar to C5, hence it is not straightforward to determine the true model complexity in C7.

The simulation results are summarized in Table 2. The HORSES procedure reports the smallest dfs except for scenarios C1
and C6. In both scenarios, the differences of df between the least complex model and HORSES is marginal (4 vs 5 in C1 and
30 vs 33.5 in C6). The HORSES procedure is also very competitive in theMSE comparison. Its MSE is the smallest in scenarios
C2–4 and C6–7 and the second or third smallest in scenarios C1 and C5.

It is interesting to observe that HORSES is the best in scenario C2, but third in scenario C1 although the differences inMSE
and df of the elastic net and HORSES in scenario C1 are minor. The values of the parameters are the same in both scenarios,
but variables with similar coefficients are highly correlated in scenario C1, while these variables have little correlation with
each other in scenario C2. Hence we can consider the grouping of predictors as mainly determined by coefficient values in
scenario C2while in scenario C1, the correlation structuremay have an important role in the grouping. This can be confirmed
by comparing the median MSEs of each method in the two scenarios C1 and C2. As expected, the median MSE in scenario
C1 is always smaller than the median MSE in scenario C2. The difference in the median MSEs can be interpreted as the gain
achieved by using the correlation structurewhen grouping. Because of the explicit form of the fusion penalty in HORSES, our
procedure seems to give more weights to differences among the coefficient values while still accounting for correlations. As
a result, HORSES effectively groups in scenario C2.

Not surprisingly, the HORSES procedure is much more successful than the other procedures in finding the correct model
in scenario C3, where it gives a higher weight to the fusion penalty (α close to 1/

√
p). In our simulation, the average of

chosen αs in scenario C3 is 0.5546 that is closer to 1/
√
8 ≈ 0.3536 than 1. HORSES also has the smallest MSE among the

methods. In this case, the true model is not sparse and the lasso and elastic net methods fail.



W. Jang et al. / Journal of the Korean Statistical Society ( ) – 11

1200 1400 1600 1800 2000 2200 2400

1200

1400

1600

1800

2000

2200

2400

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Fig. 3. Graphical representation of the correlation matrix of the 300 wavelengths of the cookie dough data.

HORSES outperforms the other methods again in scenario C4. Since the model assumes the compound symmetric
covariance structure, the grouping is solely based on the coefficient values. Because of the fusion penalty, the HORSES
procedure is very effective in grouping and produces 3.5 as the median df while the second smallest df is 15 with OSCAR.

In scenario C5, HORSES has the second smallest median MSE (=46.1) with the elastic net’s median MSE smallest at 40.7.
However, HORSES chooses the least complex model and shows better grouping compared to the elastic net.

Scenario C6 considers a large p and small n case. The HORSES procedure reports the smallest MSE while the elastic net
chooses the least complex model. However we notice that all methods report at least 30 as the df. This might be due to the
fact that the true model complexity in this case is not clear, as we point out above.

In scenario C7, HORSES has the smallest median MSE (=16.4). However surprisingly, HORSES also has the smallest
median df while elastic net and the OSCAR have slightly higher dfs in C7 in which they are expected to outperform the
HORSES. This seems due to the complicated correlation structure of C7. In summary, HORSES procedure outperforms the
othermethods in choosing the least complexmodel and attaining the best grouping,while also providing competitive results
in terms of MSE.

5. Data analysis

In this section, we consider two applications. The first one is a high dimensional data example where we show how the
proposed method achieves sparsity and clustering simultaneously. The other one is analysis of a small data set in which we
compare HORSES with other methods in detail.

5.1. Cookie dough data

In this case study, we consider the cookie dough data set from Osborne et al. (1984), which was also analyzed by Brown,
Fearn, and Vannucci (2001), Caron and Doucet (2008), Griffin and Brown (2012), and Hans (2011). Brown et al. (2001)
consider four components as response variables: percentage of fat, sucrose, flour and water associated with each dough
piece. Following Hans (2011), we attempt to predict only the flour content of cookies with the 300 NIR reflectance
measurements at equally spaced wavelengths between 1200 and 2400 nm as predictors (out of the 700 in the full data
set). Also as in Hans (2011) we remove the 23rd and 61st observations as outliers. Thenwe split the data set randomly into a
training set with 39 observations and a test set with 31 observations. Fig. 3 shows the correlations between NIR reflectance
measurements based on all observations. There are very strong correlations between any pair of predictors in the range of
1200–2200 and 2200–2400. Note however that strong correlations do not necessarily imply strong signals in this case since
the correlations can be due to measurement error.

With the training data set, tuning parameters of HORSES are computed to be α = 0.999 and λ = 0.1622 (equivalently,
λ1 = 0.1620 and λ2 = 0.00016). Since the L1 penalty dominates the penalty function, we expect that both HORSES and the
lasso will yield very similar results. We compare the lasso, elastic net and HORSES via the prediction mean squared error
and degrees of freedom on the test data. The OSCAR method is not included in this comparison because we are not able to
apply it due to the high dimension of the data. Table 3 presents the prediction mean squared error and degrees of freedom
of each method. The elastic net has the smallest MSE, but the differences in MSE across the three methods are small. On
the other hand, the lasso and HORSES methods provide parsimonious models with small degrees of freedom. The estimated
coefficients for the lasso, elastic net and HORSES methods are presented in Fig. 4. The elastic net produces 11 peaks while
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Fig. 4. Coefficient estimates for the 300 predictors of the cookie dough data.

Table 3
Cookie dough data results.

Elastic net HORSES Lasso

Mean squared error 2.442 2.586 2.556
Degrees of freedom 11 7 7

both the lasso and HORSES have 7 peaks. The estimated spikes from the lasso and HORSES are consistent with the results
obtained in Caron and Doucet (2008). The main difference between the two methods is at wavelengths 1832 and 1836,
where the lasso estimates are 0.204 and 0 while the HORSES estimates are 0.0853 at both wavelengths. The elastic net has
peaks at wavelength 1784 and 1804 but the other two methods do not yield a peak at those wavelengths. We observe a
reverse pattern at wavelength 2176.

5.2. Appalachian Mountains Soil Data

Our next example is the Appalachian Mountains Soil Data from Bondell and Reich (2008). Fig. 5 shows a graphical
representation of the correlation matrix of 15 soil characteristics computed from measurements made at twenty 500 m2

plots located in the Appalachian Mountains of North Carolina. The data were collected as part of a study on the relationship
between rich-cove forest diversity and soil characteristics. Forest diversity is measured as the number of different plant
species found within each plot. The values in the soil data set are averages of five equally spaced measurements taken
within each plot and are standardized before the data analysis. These soil characteristics serve as predictors with forest
diversity as the response.

As can be seen from Fig. 5, there are several highly correlated predictors. Note that our correlation graphic shows the
signed correlation values and is thus different from the one in Bondell and Reich (2008) showing the absolute value of
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Fig. 5. Graphical representation of the correlation matrix of the 15 predictors of the Appalachian soil data.

Table 4
Results of analyzing the Appalachian soil data using OSCAR and HORSES, and two different methods for
choosing the tuning parameters.

Variable OSCAR OSCAR HORSES HORSES
(5-fold CV) (GCV) (5-fold CV) (GCV)

% Base saturation 0 −0.073 0 −0.1839
Sum cations −0.178 −0.174 −0.1795 −0.1839
CEC −0.178 −0.174 −0.1795 −0.1839
Calcium −0.178 −0.174 −0.1795 −0.1839
Magnesium 0 0 0 0
Potassium −0.178 −0.174 −0.1795 −0.1839
Sodium 0 0 0 0
Phosphorus 0.091 0.119 0.0803 0.2319
Copper 0.237 0.274 0.2532 0.3936
Zinc 0 0 0 −0.0943
Manganese 0.267 0.274 0.2709 0.3189
Humic matter −0.541 −0.558 −0.5539 −0.6334
Density 0 0 0 0
pH 0.145 0.174 0.1276 0.2319
Exchangeable acidity 0 0 0 0.0185

Degrees of Freedom 6 5 6 7

correlation. The first seven covariates are closely related. Specifically they concern positively charged ions (cations). The
predictors named ‘‘calcium’’, ‘‘magnesium’’, ‘‘potassium’’, and ‘‘sodium’’ are all measurements of cations of the correspond-
ing chemical elements, while ‘‘% Base Saturation’’, ‘‘Sum Cations’’ and ‘‘CEC’’ (cation exchange capacity) are all summaries of
cation abundance. The correlations between these seven covariates fall in the range (0.360, 0.999). There is a very strong
positive correlation between percent base saturation and calcium (r = 0.98), but the correlation between potassium and
sodium (r = 0.36) is not quite as high as the others. Of the remaining eight variables, the strongest negative correlation
is between soil pH and exchangeable acidity (r = −0.93). Since both of these are measures of acidity, this appears sur-
prising. However, exchangeable acidity measures only a subset of the acidic ions measured in pH, this subset being of more
significance only at low pH values.

Note that because ‘‘Sum Cations’’ is the sum of the other four cationmeasurements the designmatrix for these predictors
is not full rank.

We analyze the data with the HORSES and OSCAR procedures and report the results in Table 4. Although OSCAR and
HORSES use the samedefinition of df, theOSCARprocedure groups predictors based on the absolute values of the coefficients.
Therefore the number of groups is not the same as the df in OSCAR. The results for the lasso using the 5-fold cross-validation
and GCV can be found in Bondell and Reich (2008). The 5-fold cross-validation OSCAR and HORSES solutions are similar.
They select the exact same variables, butwith slightly different coefficient estimates. Since the sample size is only 20 and the
number of predictors is 15, the 5-fold cross-validation method may not be the best choice for selecting tuning parameters.
However, using GCV, OSCAR and HORSES provide different answers. Compared to the 5-fold cross-validation solutions, the
OSCAR solution has one more predictor (% Base saturation) while the HORSES solution has 3 additional predictors (% Base
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saturation, Zinc, Exchangeable acidity). More interestingly, in the OSCAR solution, % Base saturation is not in the group
measuring abundance of cations, while pH is.

On the other hand, the % Base saturation variable is included in the abundance of cations group. The HORSES solution also
produces an additional group of variables consisting of Phosphorus and pH.

6. Conclusion

Weproposed a new group variable selection procedure in regression that produces a sparse solution and also groups pos-
itively correlated variables together.We developed amodified pathwise coordinate optimization for applying the procedure
to data. Our algorithm is much faster than a quadratic program solver and can handle cases with p > n. For much bigger
data, we may consider the majorization–minimization (MM) algorithm proposed by Yu, Won, Lee, Lim, and Yoon (in press).

Such a procedure is useful relative to other available methods in a number of ways. First, it selects groups of variables,
rather than randomly selecting one variable in the group as the lasso method does. Second, it groups positively correlated
rather than both positively andnegatively correlated variables. This can be usefulwhen studying themechanismsunderlying
a process, since the variables within each group behave similarly, and may indicate that they measure characteristics that
affect a system through the same pathways. Third, the penalty function used ensures that the positively correlated variables
do not need to be spatially close. This is particularly relevant in applicationswhere spatial contiguity is not the only indicator
of functional relation, such as brain imaging or genetics.

A simulation study comparing the HORSES procedure with the ridge regression, lasso, elastic net and OSCAR methods
over a variety of scenarios showed its superiority in terms of sparsity, effective grouping of predictors and MSE.

It is desirable to achieve a theoretical optimality such as the oracle property of Fan and Li (2001) in high dimensional
cases. One possibility is to extend the idea of the adaptive elastic net (Zou & Zhang, 2009) to the HORSES procedure. Then
we may consider the following penalty form:

β = argmin
β

y −

p
j=1

βjxj


2

subject to α

p
j=1

wj|βj| + (1 − α)

j<k

|βj − βk| ≤ t,

where wj are the adaptive data-driven weights.
Investigating theoretical properties of the above estimator will be a topic of future research.
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