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Abstract—A two-user discrete memoryless compound multiple
access channel with a common message and conferencing de-
coders is considered. The capacity region is characterizedin the
special cases of physically degraded channels and unidirectional
cooperation, while achievable rate regions are provided for the
general case. The results are then extended to the corresponding
Gaussian model. In the Gaussian setup, the provided achievable
rates are shown to lie within a fraction of one bit from
the boundary of the capacity region in several special cases.
Numerical results are also provided to obtain insights about the
potential gains of decoder cooperation in the underlying model.

I. I NTRODUCTION

Consider a communication system in which finite-capacity
directed links exist between either the encoders or the de-
coders. This framework is widely studied in the information-
theoretic literature to obtain insight into the potential ad-
vantages of cooperative transmission or reception strategies.
Moreover, this system accurately models scenarios, typical
in wireless communications, in which the encoders or the
decoders have multiple radio interfaces providing orthogonal
signal paths between nearby terminals. This information-
theoretic framework is usually referred to as “conferencing”,
emphasizing the possibly interactive nature of the commu-
nication over such links. Conferencing encoders in a two-
user multiple access channel (MAC) have been investigated
in [1], [3]1 and for a two-user interference channel in [4].
These works show that conferencing encoders can create de-
pendence between the transmitted signals by coordinating the
transmission via the out-of-band links, thus mimicking multi-
antenna transmitters. Conferencing decoders have insteadbeen
studied [6] - [9] for a broadcast channel and in [10] for a
relay channel. Such decoders can use the out-of-band links to
exchange side information about the received signals so as to
mimic a multiantenna receiver (see also [11]).

This work extends the state of the art described above by
considering the compound MAC with conferencing decoders
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1It is noted that a MAC with conferencing encoders can be seen as a special
case of a MAC with generalized feedback.
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Fig. 1. A discrete-memoryless compound MAC with conferencing decoders
and common information (for short, CM).

and a common message (see Fig. 1). This model generalizes
the setup of a single-message broadcast (multicast) channel
with conferencing decoders studied in [6]2 - [9] in that,
here we have two transmitters interested in broadcasting their
messages to the conferencing receivers. The model also gen-
eralizes the compound MAC with common message studied
in [4], by allowing conferencing among the decoders. The
main contributions are the following: (i) The capacity region is
derived for the two-user discrete-memoryless compound MAC
with a common message and conferencing decoders for the
special cases of physically degraded channels and unidirec-
tional cooperation (Sec. IV); (ii ) Achievable rate regions are
given for the general model of Fig. 1 (Sec. V); (iii ) Extension
to the Gaussian case is provided, establishing the capacity
region with unidirectional cooperation and deriving general
achievable rates. Such achievable rates are also shown to be
within a fraction of one bit of the capacity region in several
special cases (Sec. VI). Finally, numerical results are also
reported. In this paper, some results are stated without proof.
A full treatment can be found in [17], which also considers a
scenario with both conferencing encoders and decoders.

The rest of the paper is organized as follows. The system
model and the definitions are introduced in Section II. Some
preliminary results and an outer bound on the capacity region
is given in Section III. In Section IV, the capacity region
is characterized in the special cases of physically degraded
channels and unidirectional cooperation. Section V is devoted

2[8] also considers a broadcast channel with private messages to the two
users.



to characterization the of achievable rate regions for one-and
two-round conferencing. The Gaussian compound MAC with
conferencing decoders is explored in Section VI, in which it
is shown that the schemes of Section V achieve all the rates
within a fraction of one bit of the capacity region. Numerical
results for the Gaussian setting are also presented.

II. SYSTEM MODEL AND MAIN DEFINITIONS

We consider the model illustrated in Fig. 1, which is
a discrete-memoryless compound MAC with conferencing
decoders and common information (here, for short, we
will refer to this channel as CM) and is denoted by
(X1,X2, p

∗(y1, y2|x1, x2),Y1,Y2) with input alphabetsX1,X2

and output alphabetsY1,Y2. Each i-th encoder,i = 1, 2,
is interested in sending a private messageWi ∈ Wi =
{1, 2, ..., 2nRi} of rateRi [bit/channel use] to both receivers,
and, in addition, there is a common messageW0 ∈ W0 =
{1, 2, ..., 2nR0} of rateR0 to be delivered by both encoders to
both decoders. It is noted that the channel is memoryless and
time-invariant in that the conditional distribution of theoutput
symbols at any timej = 1, 2, ..., n satisfies

p(y1,j, y2,j |x
n
1 , xn

2 , yj−1
1 , yj−1

2 , w̄) = p∗(y1,j, y2,j |x1,j , x2,j)

with w̄ = [w0, w1, w2] ∈ W0×W1×W2 being a given triplet
of messages. Notation-wise, we employ standard conventions
(see, e.g., [12]), where the probability distributions aredefined
by the arguments, upper-case letters represent random vari-
ables and the corresponding lower-case letters represent their
realizations, and superscripts identify the number of samples
to be included in a given vector, e.g.,yj−1

1 = [y1,1 · · · y1,j−1].
It is finally noted that the channel defines to conditional
marginalsp(y1|x1, x2) =

∑
y2∈Y2

p∗(y1, y2|x1, x2) and simi-
larly for p(y2|x1, x2). Further definitions are in order.

Definition 1: A ((2nR0 , 2nR1 , 2nR2), n, K) code for the CM
channel consists of two encoding functions (i = 1, 2)

fi: W0 ×Wi → Xn
i , (1)

a set of2K “conferencing” functions and corresponding output
alphabetsVi,k (k = 1, 2, ..., K):

g1,k: Yn
1 × V2,1 × · · · × V2,k−1 → V1,k (2a)

g2,k: Yn
2 × V1,1 × · · · × V1,k−1 → V2,k, (2b)

and decoding functions:

h1: Yn
1 × V2,1 × · · · × V2,K → W0 ×W1 ×W2 (3a)

h2: Yn
2 × V1,1 × · · · × V1,K → W0 ×W1 ×W2. (3b)

Notice that the conferencing functions (2) prescribeK
conferencing rounds between the decoders that start as soonas
the two decoders receive the entire block ofn output symbols
yn
1 and yn

2 . Each conference round, say thekth, corresponds
to a simultaneous and bidirectional exchange of messages
between the two decoders taken from the alphabetsV1,k and
V2,k, similarly to [1] and [14]. It is noted that other works
have used slightly different definitions of conferencing rounds
[8], [6], [16]. After K conferencing rounds, the receivers

decode with functions in (3) by capitalizing on the exchanged
conferencing messages. Due to the orthogonality between the
main channel and the conferencing links, the two phases of
transmission on one hand and conferencing/ decoding on the
other can take place simultaneously in a pipelined fashion.

Definition 2: A rate triplet (R0, R1, R2) is said to be
achievable for the CM channel with conferencing links with
capacities (C12, C21) (see Fig. 1), if for anyε > 0 there exists
for all n sufficiently large an((2nR0 , 2nR1 , 2nR2), n, K) code
with any K ≥ 0 such that the probability of error at the two
receivers satisfies

Pe =
1

2n(R0+R1+R2)

∑

w̄

Pr

[
{h1(Y

n
1 , V k

2 ) 6= w̄}∪
{h2(Y

n
2 , V k

1 ) 6= w̄}|w̄ sent

]
≤ ε,

and the conferencing alphabets are such that

K∑

k=1

|V1,k| ≤ nC12 and
K∑

k=1

|V2,k| ≤ nC21. (4)

The capacity regionCCM (C12, C21) is the closure of the
set of all achievable rates (R0, R1, R2) in the presence of
conferencing links with capacities (C12, C21).

III. PRELIMINARIES AND OUTER BOUND

Similarly to [4], it is useful to define the rate region
RMAC,i(p(u), p(x1|u), p(x2|u)) for the MAC seen at thei-th
receiver (i = 1, 2) as the set of rates

RMAC,i(p(u), p(x1|u), p(x2|u)) =

{(R0, R1, R2):Rj ≥ 0, j = 0, 1, 2

R1 ≤ I(X1; Yi|X2U),

R2 ≤ I(X2; Yi|X1U),

R1 + R2 ≤ I(X1X2; Yi|U),

R0 + R1 + R2 ≤ I(X1X2; Yi)},

where the joint distribution of the involved variables is given
by p(u)p(x1|u)p(x2|u)p(yi|x1, x2).

If C12 = C21 = 0, the capacity regionCCM (0, 0) of the
CM is given by [4]:

CCM (0, 0) =
⋃





⋂

i=1,2

RMAC,i(p(u), p(x1|u), p(x2|u))






=
⋃{

(R0, R1, R2): Rj ≥ 0, j = 0, 1, 2,

R1 ≤ min{I(X1; Y1|X2U), I(X1; Y2|X2U)}

R2 ≤ min{I(X2; Y1|X1U), I(X2; Y2|X1U)}

R1 + R2 ≤ min{I(X1X2; Y1|U), I(X1X2; Y2|U)}

R0 + R1 + R2 ≤ min{I(X1X2; Y1), I(X1X2; Y2)}
}
,

where the union is taken over all joint distributions that
factorize asp(u)p(x1|u)p(x2|u)p∗(y1, y2|x1, x2).

It is remarked that no convex hull operation is necessary in
evaluatingCCM (0, 0) as the region is convex [4] (see also [2],
Appendix A).

We now derive an outer bound to the capacity region
CCM (C12, C21) with conferencing at the decoders. To this end,



it is useful to define the rate region achievable when the two
receivers are allowed to fully cooperate (FC), thus equivalently
forming a two-antenna receiver. In this case, we have:

RMAC,FC(p(u), p(x1|u), p(x2|u)) =
{
(R0, R1, R2):Rj ≥ 0, j = 0, 1, 2,

R1 ≤ I(X1; Y1, Y2|X2, U),

R2 ≤ I(X2; Y1, Y2|X1, U),

R1 + R2 ≤ I(X1, X2; Y1, Y2|U),

R0 + R1 + R2 ≤ I(X1, X2; Y1, Y2)
}

where the joint distribution is of the form

p(u)p(x1|u)p(x2|u)p∗(y1, y2|x1, x2). (5)

Proposition 1: We have CCM (C12, C21) ⊆
CCM−out(C12, C21) where (dropping the dependence on
p(u), p(x1|u), p(x2|u) to simplify the notation)

CCM−out(C12, C21) =
⋃

{(RMAC,1 + C12)∩

(RMAC,2 + C21) ∩ (RMAC,FC)},

where union is taken over joint distributions of the form (5).
Similarly to CCM (0, 0), regionCCM−out(C12, C21) can be

proved to be convex following [2], Appendix A.
Proof: Follows from cut-set arguments.

IV. CAPACITY REGION WITH PHYSICALLY DEGRADED

CHANNELS AND UNIDIRECTIONAL COOPERATION

The next proposition establishes the capacity region
CCMD(C12, C21) for the CM channel with degraded outputs.

Proposition 2: If the CM channel is physically degraded as
(X1, X2) − Y1 − Y2, then the capacity region is obtained as

CCMD(C12, C21) = CCM−out(C12, 0)

=
⋃{

(R0, R1, R2): Rj ≥ 0,

R1 ≤ min{I(X1; Y1|X2, U), (X1; Y2|X2, U) + C12},

R2 ≤ min{I(X2; Y1|X1, U), I(X2; Y2|X1, U) + C12},

R1 + R2 ≤ min{I(X1, X2; Y1|U), I(X1, X2; Y2|U) + C12},

R0 + R1 + R2 ≤ min{I(X1, X2; Y1), I(X1, X2; Y2) + C12}

}
,

Notice that herep∗(y1, y2|x1, x2) = p(y1|x1, x2)p(y2|y1) due
to degradedness.

Proof: See Appendix.
Establishment of the capacity region is also possible in the

special case where only unidirectional cooperation is allowed,
that is C12 = 0 or C21 = 0. This result is akin to [9] where
a broadcast channel with two receivers and unidirectional
cooperation was considered.

Proposition 3: In the case of unidirectional cooperation
(C12 = 0 or C21 = 0), the capacity region is given by,
respectively,

CCM (0, C21) = CCM−out(0, C21) (7)

CCM (C12, 0) = CCM−out(C12, 0). (8)

Proof: Achievability follows from the scheme used in the
proof of Proposition 2. The converse is immediate.

V. GENERAL ACHIEVABLE RATES

Achievable rates can be derived for the general CM channel,
extending the analysis of [8] from the broadcast setting with
one transmitter to the CM channel. Notice that [8] uses a
different definition for the operation over the conferencing
channels but this turns out to be immaterial for the achievable
rates discussed below.

Proposition 4:The following rate region is achievable with
one-round conferencing, i.e.,K = 1:

ROR(C12, C21) =
⋃

{(R0, R1, R2): Rj ≥ 0, j = 0, 1, 2,

R1 ≤ min{I(X1; Y1, Ŷ2|X2, U), I(X1; Y2, Ŷ1|X2, U)},

R2 ≤ min{I(X2; Y1, Ŷ2|X1, U), I(X2; Y2, Ŷ1|X1, U)},

R1 + R2 ≤ min{I(X1, X2; Y1Ŷ2|U), I(X1, X2; Y2, Ŷ1|U)}

R0 + R1 + R2 ≤ min{I(X1, X2; Y1, Ŷ2), I(X1, X2; Y2, Ŷ1)}}

subject to

C12 ≥ I(Y1; Ŷ1|Y2) (10a)

C21 ≥ I(Y2; Ŷ2|Y1) (10b)

with |Ŷi| ≤ |Yi| + 1, and the union is taken over all joint
distributions that factorize as

p(u)p(x1|u)p(x2|u)p∗(y1, y2|x1, x2)p(ŷ1|y1)p(ŷ2|y2).

Proof: (Sketch): The proof follows similarly to Theo-
rem 3 in [8] and is thus only sketched here. A one-step
conference (K = 1) is used. Encoding and transmission
at the transmitters are performed as for a MAC channel
with common information (see proof of Proposition 2). Each
receiver compresses its received signal by Wyner-Ziv quan-
tization exploiting the fact that the other receiver has its
own correlated observation given by the corresponding output
sequence. The compression indices are exchanged during
the single conferencing round via symbolsV1,1 and V2,1.
Decoding is then carried out at each receiver using joint
typicality: For instance, receiver 1 looks for jointly typi-
cal sequences(un(w0), x

n
1 (w0, w1), x

n
2 (w0, w2), y

n
1 , ŷn

2 ) with
wi ∈ Wi, whereŷn

2 is the compressed version of the channel
output received by the second decoder.

Remark 1: The one-round strategy of Proposition 4 does
not subsume the scheme used in Proposition 2 and Propo-
sition 3 to achieve capacity in the presence of physically
degraded channels and unidirectional cooperation. Since this
latter scheme, as detailed in the Appendix, is also based on a
one-round strategy (where only one of the conferencing links
is used to convey partial information about the decision of the
sending decoder), the rate region obtained as the convex hull
of the unionROR(C12, C21) ∪ CCM (0, C21) ∪ CCM (C12, 0)
is also achievable withK = 1 and generally includes
ROR(C12, C21).

Remark 2: In the one-round schemes of Proposition 2 and
Proposition 3, one of the receivers decodes both messages only
from its received signal from the transmitters, and forwards
the bin indices over the conferencing link. We can consider



an alternative one-round scheme in which each receiver only
decodes one of the messages from its received signal and
forwards the bin index for the decoded message over the
conferencing link. Then each receiver decodes the remaining
message from both the received signal and the bin index.
Ignoring the common message (R0 = 0), convex hull of
the following rate region can be achieved by this one-round
scheme, e.g.K = 1.

RdfTR(C12, C21) =
⋃

{(R1, R2): Rj ≥ 0, j = 0, 1, 2,

R1 ≤ min{I(X1; Y1), I(X1; Y2|X2) + C12},

R2 ≤ min{I(X2; Y2), I(X2; Y1|X1) + C21},

where the union is taken over all joint distributions that
factorize asp(x1)p(x2)p

∗(y1, y2|x1, x2).
Now consider a special case in which the channel from

the transmitters to receivers is composed of two links of
capacityCi from transmitteri to receiveri, i = 1, 2. It is
possible to show that the capacity region of this special setup
is given by{(R1, R2):0 ≤ R1 ≤ min{C1, C12}, 0 ≤ R2 ≤
min{C2, C21}}, and is achievable by the above scheme, in
which each receiver decodes the message of the transmitter it
is connected to, and forwards it to the other receiver over the
conferencing link. We should note that the quantization based
protocols fail to achieve this capacity.

The achievable scheme of Proposition 4 has one round of
conferencing. Below, we construct an examples for which this
scheme fails to achieve the outer bound (6).

Example 1. Consider a symmetric scenario (i.e.,
p∗(y1, y2|x1, x2) = p∗(y2, y1|x1, x2) = p∗(y1, y2|x2, x1) =
p∗(y2, y1|x2, x1)) with R0 = 0 and equal private rates
R1 = R2 = R, and fix U equal to a constant without
loss of generality (given the absence of a common
message) and input distribution top(x1)p(x2). We are
interested in finding the maximum achievable equal
rate R1 = R2 = R. Assume that the conferencing
capacities satisfyC12 = H(Y1|Y2) = H(Y2|Y1) and
1
2I(X1X2; Y2|Y1) ≤ C21 < H(Y1|Y2). In this case, it can
be seen that the maximum equal rate is upper bounded as
R ≤ Rout = 1

2I(X1X2; Y1Y2) by the outer bound (6), which
corresponds to the maximum equal rate of a system with
full cooperation at the receiver side. This bound can be
achieved if both receivers have access to both outputsY1

and Y2. With the one-round strategy, sinceC12 = H(Y1|Y2)
receiver 1 can provideY1 to receiver 2 via Slepian-Wolf
compression, but receiver 2 cannot do the same with receiver
1 since C21 < H(Y1|Y2). Therefore, rateRout cannot be
achieved by such a strategy, which in fact attains equal rate
ROR = 1

2I(X1X2; Y1Ŷ2) < Rout (recall (10)).
We now consider a second strategy that generalizes the

previous one and is based on two rounds of conferencing
(K = 2). As will be shown below, this strategy is able to
improve upon the one-round scheme, while still failing to
achieve the outer-bound (6) in the general case.

Proposition 5:The following rate region is achievable with

two rounds of conferencing, i..e.,K = 2 3,

RTR(C12, C21) = co
⋃

{RTR,12 ∪RTR,21} (11)

where

RTR,12 = {(R0, R1, R2): Rj ≥ 0, j = 0, 1, 2,

R1 ≤ min{I(X1; Y1|X2, U) + C21,

I(X1; Y2, Ŷ1|X2, U)},

R2 ≤ min{I(X2; Y1|X1, U) + C21,

I(X2; Y2, Ŷ1|X1, U)},

R1 + R2 ≤ min{I(X1, X2; Y1|U) + C21,

I(X1, X2; Y2, Ŷ1|U)},

R0 + R1 + R2 ≤ min{I(X1, X2; Y1) + C21,

I(X1, X2; Y2, Ŷ1)}},

andRTR,21 is similarly defined

RTR,21 = {(R0, R1, R2): Rj ≥ 0, j = 0, 1, 2,

R1 ≤ min{I(X1; Y1, Ŷ2|X2, U),

I(X1; Y2|X2, U) + C12},

R2 ≤ min{I(X2; Y1, Ŷ2|X1, U),

I(X1; Y2|X2, U) + C12},

R1 + R2 ≤ min{I(X1, X2; Y1, Ŷ2|U),

I(X1; Y2|X2, U) + C12},

R0 + R1 + R2 ≤ min{I(X1, X2; Y1, Ŷ2),

I(X1; Y2|X2) + C12}},

subject to

C12 ≥ I(Y1; Ŷ1|Y2) (13a)

C21 ≥ I(Y2; Ŷ2|Y1) (13b)

with |Ŷi| ≤ |Yi| + 1, and the union is taken
over all joint distributions that factorize as
p(u)p(x1|u)p(x2|u)p∗(y1, y2|x1, x2)p(ŷ1|y1)p(ŷ2|y2).

Proof: (Sketch): The proof is quite similar to Theorem 4
in [8] so that here we only sketch the main points. Confer-
encing takes place viaK = 2 rounds. Moreover, two possible
strategies are considered, hence the convex hull operationin
(11), achieved by time-sharing. The achievable rate region
RTR,12 can be obtained as follows. Receiver 2 randomly
partitions the message setsW0, W1 and W2 into 2nα0C12 ,
2nα1C12 and 2nα2C12 subsets, respectively, for a given0 ≤
αi ≤ 1 and

∑2
i=0 αi = 1, as in the proof of Proposition

2. Encoding and transmission are performed as for the MAC
channel with common information. Receiver 1 compresses
its received signal using Wyner-Ziv quantization as for the
scheme discussed in the proof of Proposition 4. This index is
sent in the first conferencing round (notice that|V1,1| = nC12

and |V2,1| = 0). Upon reception of the compression index

3Notation “co” indicates the convex hull operation.



V1,1, receiver 2 proceeds to decoding via joint typicality and
then sends the subset indices (see proof of Proposition 2) to
receiver 1 viaV2,2 (now, |V1,2| = 0 and |V2,2| = nC21). The
latter decoder performs joint-typicality decoding on the subsets
of messages left undecided by its received channel output. The
rate regionRTR,21 is obtained similarly by simply swapping
the role of decoder 1 and decoder 2.

Remark 3: An alternative two-round strategy to the one in
Proposition 5 may prescribe the use of Wyner-Ziv compres-
sion in both conferencing rounds. Specifically, after the first
conferencing round, each decoder, to elaborate say the first,
can compress its received sequenceY n

1 based, not only onY n
2 ,

but also conditionally on the knowledge of the sequenceŶ n
2

(clearly also known by the second decoder) received in the first
round. The achievable rate region of such scheme can be easily
obtained following similar considerations to those leading to
Proposition 5 and is not explicitly given here. It is generally
not obvious whether such a strategy or the one of Proposition
5 should be preferred, so that the convex hull of the union
of the two regions is generally achievable and (possibly)
includes both regions. Another possibility would be to share
the conferencing capacity link in the second round between
binning of the messages (as in Proposition 5) and conditional
Wyner-Ziv compression (as discussed in this Remark). This is
not further elaborated upon here.

Example 1 (cont’d): To see the impact of the two-round
scheme, here we reconsider Example 1 discussed above for
which the one-round scheme does not achieve the outer bound.
However, it can be seen that the two-round does indeed achieve
the outer bound. In fact, receiver 1 can provideY1 to receiver 2
via Slepian-Wolf compression as for the one round case, while
receiver 2 does not send anything in the first conferencing
round (̂Y2 is a constant). Now, receiver 2 decodes and sends
the bin index of the decoded messages to receiver 1 in the
second conferencing round according to the two-round strategy
discussed above (receiver 1 is silent in the second round).
SinceC21 ≥ 1

2I(X1X2; Y2|Y1) by assumption, it can be seen
from Proposition 5 that the maximum equal rate achieved by
the two round scheme isRTR = Rout.

We finally remark that it is possible in principle to extend
the achievable rate regions derived above to more than two
conferencing rounds, following [6], [5]. While conceptually
not difficult, description of the achievable rate region would
require cumbersome notation and is thus omitted here.

VI. GAUSSIAN COMPOUND MAC

Here we consider the Gaussian version of the CM channel

Y1 = γ11X1 + γ21X2 + Z1 (14a)

Y2 = γ22X2 + γ12X1 + Z2, (14b)

with channel gainsγij ≥ 0, white zero-mean unit-power
Gaussian noise{Zi}

n
i=1 and per-symbol power constraints

E[X2
i ] ≤ Pi, i = 1, 2. Notice that channel (14) is not

physically degraded.

The outer bound of Proposition 1 can be extended to (14)
by using standard arguments. In particular, the capacity region
over the Gaussian CMCG

CM (C12, C21) satisfies the following.
Proposition 6: We have CG

CM (C12, C21) ⊆
CG

CM−out(C12, C21) where CG
CM−out(C12, C21) is the

rate region of Proposition 1 as evaluated with a Gaussian
joint distributionp(u)p(x1|u)p(x2|u) characterized by

Xi =
√

P − P ′
iU +

√
P ′

iVi, (15)

with 0 ≤ P ′
i ≤ Pi, i = 1, 2, where isU, V1 and V2 are

independent Gaussian zero-mean unit-power random variables.
The full expressions of the rate bounds can be derived from

Proposition 1 and the discussion above, and are found in [17].
Here we note thatP ′

i can be interpreted as the power that the
i-th transmitter invests in transmitting its own private message.

Proof: The proof is based on showing that a joint Gaus-
sian distribution onU, X1 andX2 exhausts the outer bound
region of Proposition 1 when evaluated with input power
constraintsE[X2

i ] ≤ Pi. This can be done following the steps
of [3], where the proof is given for a single MAC channel
with common information (see also [15]).

The achievable rates in Proposition 4 (forK = 1) and
Proposition 5 (forK = 2) can also be extended to the
Gaussian CM. In so doing, here we focus on jointly Gaussian
random variables (15) for the inputp(u)p(x1|u)p(x2|u) and
Gaussian test channelsp(ŷ1|y1) and p(ŷ2|y2) for Wyner-Ziv
compression. Specifically, for the latter, we select the variables
at hand aŝYi = Yi + Zq,i where the compression noiseZq,i

is zero-mean Gaussian with varianceσ2
i , and is independent

of Yi. Due to the constraints in (10), the compression noise
variancesσ2

i should satisfy:

σ2
1 ≥

1 + (γ2
11 + γ2

12)P1 + (γ2
21 + γ2

22)P2 + K

(22C12 − 1)(1 + γ2
12P1 + γ2

22P2)
(16a)

σ2
2 ≥

1 + (γ2
11 + γ2

12)P1 + (γ2
21 + γ2

22)P2 + K

(22C21 − 1)(1 + γ2
11P1 + γ2

21P2)
. (16b)

with
K , (γ12γ21 − γ11γ22)

2P1P2. (17)

The rate regions forK = 1 and K = 2 in the Gaussian
CM then follow easily from Proposition 4 and Proposition 5,
respectively, with the given choices for the random variables at
hand. Full expressions of the rate bounds can be found in [17].
Examples for special cases of interest are provided below.

A. Discussion

Here we draw some conclusions on the optimality of the
one and two-round schemes discussed above for the Gaussian
CM. We start with the one-round scheme and notice that,
by comparison with the outer bound of Proposition 6, it can
be easily seen that the scheme at hand is optimal in the
asymptotic regime of large conferencing capacitiesC12 → ∞
andC21 → ∞. In fact, in such regime the quantization noise
variances in (16) tend to zero, so that the performance ap-
proaches that of a system with full cooperation at the decoder
side, which coincide with the outer bound of Proposition 6.



Further conclusions on the gap between the outer bound and
the performance achievable with one round of conferencing at
the decoders can be drawn in two special cases. Consider first
the case of a broadcast channel with conferencing encoders,
which is obtained by settingR0 = R2 = 0 and thusP2 = 0
without loss of generality (a symmetric statement can be
straightforwardly obtained forR0 = R1 = 0). In this case, we
will show below that the one-round scheme achieves the outer
bound of Proposition 6 to within half a bit, irrespective of the
channel gains of the broadcast channel and the capacities of
the conferencing links. To elaborate, we notice that the outer
bound of Proposition 6 for the special case at hand becomes

R1 ≤ R1,out = min
{
C(γ2

11P1) + C21, (18)

C(γ2
12P1) + C12, C((γ2

11 + γ2
12)P1)

}
,

where we have definedC(x) = 0.5 log(1 + x)4, whereas the
rate achievable with one-round conferencing is

R1,OR = min

{
C

(
γ2
11P1 +

γ2
12P1

1 + σ2
2

)
, C

(
γ2
12P1 +

γ2
11P1

1 + σ2
1

)}
.

Using these two expressions, we can prove the following
proposition (see [17] for a full proof).

Proposition 7: We haveR1,OR ≥ R1,out−
1
2 . Moreover, for

the symmetric channel case, i.e.,γ2
11 = γ2

12, we haveR1,OR ≥
R1,out −

log 3−1
2 .

Next we consider the symmetric Gaussian CM, that is, we
let R0 = 0, γij = 1 for i, j ∈ {1, 2}, and P1 = P2 ,
P . We also assume symmetric conferencing link capacities
C12 = C21 , C. In such a case, the outer bound and the
achievable rate region with one-round conferencing are given
by, respectively:

CG
CM−out(C) = {(R1, R2) : R1 ≥ 0, R2 ≥ 0,

R1 ≤ min{C(P ) + C, C(2P )},

R2 ≤ min{C(P ) + C, C(2P )},

R1 + R2 ≤ min{C(2P ) + C, C(4P )}},

and

RG
OR(C) =

{
(R1, R2) : R1 ≥ 0, R2 ≥ 0,

R1 ≤ C

((
1 +

1

1 + σ2

)
P

)
,

R2 ≤ C

((
1 +

1

1 + σ2

)
P

)
,

R1 + R2 ≤ C

((
1 +

1

1 + σ2

)
2P

) }
.

with
σ2 ,

1 + 4P

(1 + 2P )(22C − 1)
.

The following result can be proved (see [17]).
Proposition 8: RG

OR ⊇ {(R1, R2) : R1 ≥ 0, R2 ≥ 0, (R1 +
δ, R2 + (∆ − δ)) ∈ CG

CM−out(C) for all δ ∈ [0, ∆]} with
∆ = log 3−1

2 .

4All logarithms are base2.

The proposition above is equivalent to saying that the total
rate loss of using one round of conferencing is less than(

log 3−1
2

)
≈ 0.293 bits. It should be pointed out that one

round of conferencing at the encoders is also optimal in all
the cases where the capacity region is known [1], [4].

Let us now consider the two-round scheme. Since the rate
region achievable by this scheme subsumes that attainable
with K = 1 (RG

TR(C12, C21) ⊇ RG
OR(C12, C21)), all the

conclusions above on the one-round scheme also apply to
the two-round strategy. Moreover, it should be noted that the
two-round approach was defined as single-session in [16] and
shown therein to be optimal among several classes of multi-
session protocols for a broadcast channel with cooperating
decoders. Finally, we can prove the following.

Proposition 9: The two-round scheme is optimal foruni-
directional cooperation: RG

TR(0, C21) = CG
CM−out(0, C21)

andRG
TR(C12, 0) = CG

CM−out(C12, 0), thus establishing the
capacity of the Gaussian CM for this special case.

Finally, we would like to comment on the sum-rate mul-
tiplexing gain of the Gaussian CM. Consider a symmetric
system with P1 = P2 , P, γ11 = γ22, γ12 = γ21,
and C12 = C21 , C. We are interested in the condi-
tions on the conferencing capacityC under which we can
achieve the maximum multiplexing gain on the sum-rate,
limP→∞ sup(0,R1,R2)∈CG

CM
(C,C)(R1 + R2)/(0.5 log P ) = 2,

corresponding to full cooperation. From the outer bound of
Proposition 6, it can be seen thatC should scale at least as
0.5 logP since the sum rate is limited byI(X1X2; Y2|U) +
C12 = C(P (γ2

11 + γ2
21)) + C. By considering the achievable

regions with one or two conferencing rounds, we can conclude
that, if C scales as(1 + ǫ) log P with any ǫ > 0, then
the optimal multiplexing gain is indeed achievable. This is
because, withC = 0.5(1 + ǫ) log P the quantization noise
variances in (16) are proportional toP−ǫ and thus tend to
zero for largeP . This result would hold even if the decoders
ignored the side information at the other decoder. In this case
we would haveσ2

i =
γ2

11
P+γ2

21
P+1

22C−1 , which is still proportional
to P−ǫ for C = 0.5(1 + ǫ) log P.

As a final remark, extending the achievable rates defined
above for the Gaussian channel (and assuming Gaussian
channel and compression codebooks as done above) to more
than two conferencing rounds would not lead to any further
gain, as with Gaussian variables “conditional” compression or
compression with side information have the same efficiency
(see [6] for a discussion).

B. Numerical results

In this section, we present some numerical examples to
get further insight into the impact of decoder conferencing
on the Gaussian CM. Fig. 2 shows the outer bound, the rate
regions achievable with one-round and two-round strategies
as well as with no cooperation (C12 = C21 = 0) for R0 = 0
(so that selectingP ′

i = Pi is sufficient in all the capacity
regions), and a symmetric scenario withP1 = P2 = 5dB,
γ2
12 = γ2

21 = −3dB, γ2
11 = γ2

22 = 0dB, C21 = C12 = 0.3.
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It can be seen that cooperation via conferencing decoders
enlarges the achievable rate region in terms of both the sum-
rate and the individual rates. Moreover, the two-step strategy
provides relevant gains with respect to the one-step approach,
while still falling short of the outer bound.

Fig. 3 and Fig. 4 show the sum of the private ratesR1 +R2

(with R0 = 0) versusC21 andC12, respectively, for the outer
bound, the one-round and two-round strategies and with no
cooperation. In both cases, we consider a case where receiver
1 has a worse signal quality than receiver 2 (stochastically
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Fig. 4. Sum of the private ratesR1 + R2 (with R0 = 0) versus the
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round strategies and with no cooperation (P1 = P2 = 10dB, γ2

12
= 0dB,

γ2

22
= 0dB, γ2

21
= −3dB, γ2

11
= −3dB, C21 = 0.8).

degraded):P1 = P2 = 10dB, γ2
12 = 0dB, γ2

22 = 0dB,
γ2
21 = −3dB, γ2

11 = −3dB. Fig. 3 shows the achievable
sum-rate versusC21 for C12 = 0.2. It is seen that ifC21 = 0
the upper bound coincides with the rate achievable with no co-
operation, showing that if the link between the “good” and the
degraded receivers is disabled, the performance is dominated
by the worst receiver and there is no gain in havingC12 > 0.
IncreasingC21 enables the rate of the worst receiver to be
increased via cooperation, thus harnessing significant gains
with respect to the case of no cooperation. In particular, itis
seen that forC21 sufficiently small (hereC21 . 0.5) the two-
step strategy is optimal, since in this region the performance
is dominated by the worst receiver whose achievable rate
increases linearly withC21 due to cooperation via binning of
the message set performed at the good receiver. The one-step
protocol instead lags behind and its performance saturatesat
C

(
γ2
22P2 + γ2

21P1 +
γ2

11
P1+γ2

21
P2

1+σ2

1

)
≃ 2.26. Finally, for suffi-

ciently largeC21, the achievable sum-rate at the worst receiver
becomes larger than2.26 and the performance tends to the
sum-rate of the best receiver,C

(
γ2
22P2 + γ2

12P1

)
+C12 ≃ 2.4,

unlessC12 is too large.

Further insight is shown in Fig. 4 where the sum-rate
is plotted versusC12 for C21 = 0.8. We notice that for
C12 = 0 only the two-step protocol is able to achieve the
upper bound, since in such a regime it is optimal for the
good receiver to decode and bin its reconstruction. Moreover,
similarly, increasingC12 enhances the gain of the two-round
strategy over the one-round strategy up to the point where the
perfomance is limited by the sum-rate at the worse receiver,
i.e., by C

(
P1

(
γ2
11 + γ2

12

)
+ P2

(
γ2
21 + γ2

22

)
+ K

)
≃ 2.48,

which coincides with the upper bound.



VII. C ONCLUSIONS

We have investigated a compound MAC with conferencing
decoders. The compound MAC can be seen as a combination
of two single-message broadcast (multicast) channels fromthe
standpoint of the transmitters, or two MACs as seen by the
receivers, and it is an extension of the previously studied
channel models. A number of capacity results have been
derived in this paper that shed light on the performance of such
systems. Among the results, we have shown that, one round of
conferencing at the decoders in a compound Gaussian MAC
achieves the entire capacity region within a fraction of one
bit/s/Hz in several special cases. As a possible extension of this
work here we mention the study of an interference channel,
rather than a compound MAC, with conferencing decoders.

VIII. A PPENDIX: PROOF OFPROPOSITION2

Converse: The converse follows immediately from Propo-
sition 1 and the data processing theorem. In fact, it is easy
to see that, because of the physical degradedness, receiver1
cannot benefit fromV K

2 , which is a function ofY n
2 andY n

1

via V k
1 . We refer to [17] for a full proof.

Achievability: Codeword generationat the transmitters is
performed as for the MAC with common information [2] [13]:

Generate2nR0 sequencesun(w0) of lengthn, with elements
independent identically distributed (i.i.d.) according to the
distribution p(u), w0 ∈ W0. For any sequenceun(w0),
generate2nRi independent sequencesxn

i (w0, wi), wi ∈ Wi,
i.i.d. according top(xi|ui(w0)), for i = 1, 2.

At receiver 1, the message setsW0,W1,W2 are partitioned
into 2nα0C12 , 2nα1C12 and 2nα2C12 subsets, respectively, for
some given0 ≤ αi ≤ 1 and

∑2
i=0 αi = 1. This is done by

assigning each codeword in the message setWi independently
and randomly to the index set{1, 2, ..., 2nαiC12}.

Encodingat transmitteri is performed by sending codeword
xn

i (w0, wi) corresponding to the common messagew0 ∈ W0

and the local messagewi ∈ Wi (i = 1, 2). Encoding at
decoder 1 takes place after decoding messagesW0, W1 and
W2 (see description of decoding below). In particular, decoder
1 sends over the conferencing link the indices of the subsets
where the estimated messagesW0, W1 andW2 lie. Notice that
this requiresnC12 bits andK = 1 conferencing rounds (i.e.,
|V1,1| = nC12). We emphasize again that the conferencing
link from decoder 2 to decoder 1 is not used (|V2,k| = 0).

Decodingat the first decoder is carried out by finding jointly
typical sequences(un(w0), x

n
1 (w0, w1), x

n
2 (w0, w2), y

n
1 ) with

wi ∈ Wi [12]. As discussed above, once the first decoder has
obtained the messagesW0, W1 and W2, it sends the corre-
sponding subset indices to receiver 2 over the conferencing
link. Decoding at receiver 2 then takes place again based on
a standard MAC joint-typicality decoder with the caveat that
the messagesW0, W1 and W2 are now known to belong to
the reduced set given by the subsets mentioned above.

Theanalysis of the probability of errorfollows immediately
from [2] [13]. In particular, as far as receiver 1 is concerned,
it can be seen from [2] [13] that a sufficient condition for
the probability of error go to zero asn → ∞ is given

by (R0, R1, R2) ∈ RMAC,1(p(u), p(x1|u), p(x2|u)). Consid-
ering receiver 2, a sufficient condition for decaying error
probability is that the rates belong to the following region:

{(R0, R1, R2): Rj ≥ 0, j = 0, 1, 2, (19)

R1 ≤ I(X1; Y2|X2, U) + α1C12

R2 ≤ I(X2; Y2|X1, U) + α2C12

R1 + R2 ≤ I(X1, X2; Y2|U) + (α1 + α2)C12

R0 + R1 + R2 ≤ I(X1, X2; Y2) + C12},

for the given αi. Taking the union over all allowedαi

concludes the proof.
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