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Abstract—In the downlink of a broadcast fading channel,
the base station can capitalize on multiuser diversity through
channel aware scheduling. In MIMO systems, the design of the
scheduler has to take into account the processing performed at
the trasmitter and the receivers.
In this work, we consider channel aware scheduling for

orthogonal linear precoding at the base station that guarantees
interference free reception for each scheduled users. The problem
is set in a novel mathematical framework and a scheduling
algorithm is proposed that is shown by simulation to guar-
antee superior performance as compared to know techniques.
Moreover, fairness constraints inspired by the proportional fair
criterion are introduced in the scheduling process in order to
guarantee the desired long term fairness properties.

I. INTRODUCTION

In the downlink of a broadcast fading channel, the base
station can capitalize on multiuser diversity provided by in-
dependent fading realizations across different users. Channel
aware scheduling is a technique that allows to achieve this
goal by appropriately timing transmission to a subset of one
or more users in each available time (code/frequency) slot.
Scheduling is performed according to the knowledge of the
channel state information available at the scheduler with the
general goal of granting transmission to the users that have
instantaneous channel near the peak [1].

If base station and users are equipped with a single antenna,
it has been shown that transmission to the user with the
strongest channel is a strategy that achieves channel capacity
[2]. However, if the base station is equipped with an antenna
array, more users can be served simultaneously in the same
time slot. In particular, if the base station has nT antennas,
up to nT users can be allocated in the same time slot with
controlled interference. In this case, transmission to a single
user is not the optimal solution and the design of the scheduler
becomes more complicated depending on the beamforming
and power allocation strategy [3] [4].

In MIMO systems (i.e., antenna array at both base station
and terminals), the scheduler can leverage on another degree
of freedom since each user can be assigned to multiple spatial
channels [5]. In fact, if each user has nR receiving antennas
(nR ≤ nT ), the base station can grant up to nR spatial
channels (out of the available nT ) to any user [6]. The
design of the scheduler has to take into account the processing
performed at the transmitter (e.g., linear precoding and power
allocation) and the receivers (e.g., linear equalizer).

Scheduling with linear processing at the base station that
simply associates each spatial channel with a transmitting an-
tenna and linear interfaces at the receivers has been considered
in [5] (zero forcing equalizer) and [7] (MMSE equalizer).
In this paper, we consider channel aware scheduling for
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Fig. 1. Block diagram of a broadcast channel with linear interfaces at the
transmitter (base station) and receivers (users).

orthogonal linear precoding at the base station and linear
zero-forcing equalizers at the receivers (Orthogonal Space
Division Multiple Access, OSDMA [8]). Using the OSDMA
transmitting/receiving strategy, the spatial channels intended
for a given user do not interfere neither with the signal destined
to other users nor among themselves.

Channel aware scheduling for OSDMA has been first
studied in [8]. We set the problem in a novel mathematical
framework and propose a scheduling algorithm that is shown
by simulation to guarantee superior performance in terms
of sum capacity. Moreover, fairness constraints inspired by
the proportional fair criterion [9] [10] are introduced in the
scheduling process in order to guarantee the desired long term
fairness properties.

II. SIGNAL MODEL AND PROBLEM FORMULATION

The broadcast channel with linear interfaces at the trans-
mitter and receivers is depicted in fig. 1. Let K̆ be the set of
K̆ available users. The ith user is equipped with an antenna
array of nR,i elements and the base station with nT antennas.
The subset of K(t) users that are served by the base station
within the tth time slot is denoted as K(t)⊆ K̆ and its element
indexed by k = 1, 2, ...,K(t).

The scheduler allocates dk(t) ≤ nR,k spatial channels to
the kth user so that all the available nT spatial channels are
used:

K(t)X
k̄=1

dk(t) = nT . (1)

The signal intended for the kth user, collected in the dk(t)×1
vector xk(t) is linearly precoded by the nT × dk(t) matrix
Mk(t). Following the conventional notation (see, e.g., [6])
and referring to fig. 1, the signal received by the kth user
across its nR,k receiving antennas within the tth time slot can
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be written as the nR,k × 1 vector yk(t)

yk(t) =Hk(t)Mk(t)xk(t)+
X
i6=k

i∈K(t)

Hk(t)Mi(t)xi(t)+nk(t)

(2)
where Hk(t) is the nR,k × nT channel matrix of the kth
user and nk(t) is the zero mean additive Gaussian noise with
E[nk(t)nk(t)

H ] = σ2nInR,k .
The received signal yk(t) lies in a nR,k-dimensional linear

space. However, only dk(t) ≤ nR,k spatial channels are
assigned to the kth user. Therefore, the useful part of the
received signal spans a dk(t)-dimensional subspace that we
refer to as receiving subspace. In order to account for this, at
the receiver, the nR,k × 1 received signal yk(t) is pre-filtered
by the dk(t)× nR,k matrix Bk(t)

H

ỹk(t) = Bk(t)
Hyk(t) = H̃k(t)Mk(t)xk(t) +

+
X
i6=k

i∈K(t)

H̃k(t)Mi(t)xi(t) + ñk(t), (3)

where we have defined the dk(t) × nT equivalent channel
H̃k(t) = Bk(t)

HHk(t) and ñk(t) = Bk(t)
Hnk(t). In order

to simplify the analysis and without limiting the generality of
the approach, we assume

Bk(t)
HBk(t) = Idk(t), (4)

so that E[ñk(t)ñk(t)H ] = σ2nIdk(t). The range space of Bk(t)
corresponds to the receiving subspace for the kth terminal. As
a last step, equalization and detection is performed on ỹk(t).

In this work, we assume that the channel matrices Hk(t) are
known to the transmitter and receivers, e.g., by transmission of
pilot symbols and feedback of the channel state information
from the receivers to the base station [11]. An analysis of
the effect of imperfect channel state information and feedback
delays is proposed in [12].

In order to simplify the notation, in the following the
temporal dependence on t is omitted.

A. Problem formulation
In principle, we would like to find the subset of users K and

the set of precoding matrices M ={Mi}K̆i=1 and pre-filtering
matrices B = {Bi}K̆i=1 so that the sum capacity is maximized
under a total power constraint (recall also constraints (1) and
(4)):

{B,M} = argmax
B,M

K̆X
i=1

Ci(B,M) (5a)

s.t.
K̆X
i=1

tr(MiM
H
i ) ≤ P̄ , (5b)

where Ci(B,M) is the link capacity for the ith user [6]

Ci(B,M) = log2 |Idi+R−1i (H̃iMiM
H
i H̃

H
i )| (6)

with
Ri = σ2nIdi +

X
k 6=i
k∈K

HiMkM
H
k H

H
i . (7)

In (6)-(7) the assumption of Gaussian codebooks with
E[xix

H
i ] = Idi is implied. Moreover, as a result of the

optimization problem (5) the ith user belongs to the set of
active users K if di > 0 or equivalently (Mi,Bi) are not
empty matrices.

Solution of the optimization problem (5) is not known, even
for the case of given sets K and B. In [8], an algorithm
is proposed for obtaining an approximate solution based on
the additional constraint of zero inter-user interference and
the separate computation of precoding and scheduling as
explained in Sec. III. The treatment is aimed at setting the
results of [8] in the discussed mathematical framework and
review the main concepts. A novel approximate solution of
(5) is then proposed in Sec. IV. The algorithm is still based
on the inclusion of the zero inter-user interference constraint
but, differently from [8], it performs jointly precoding and
scheduling.

III. REVIEW OF MIMO-OSDMA WITH LSV SCHEDULING

According to the approximate solution of (5) proposed in
[8], at first the scheduling step is performed. This amounts to
select the subset K and the corresponding K matrices Bk.
Recall that the choice of Bk implies the allocation of dk
spatial channel to the kth user and the corresponding receiving
subspace. Then, the design of the precoding matrices Mk is
carried out with the additional constraint of granting inter-user
interference free transmission (MIMO-OSDMA).

A. Largest Singular Value (LSV) channel aware scheduling
In [8], selection of the subset K and of the corresponding

K matrices {Bk}Kk=1 is performed so as to set as active the
spatial channels corresponding to the largest singular values
of matrices {Hi}K̆i=1. To elaborate, let λi,j , j = 1, . . . , ri =
rank(Hi) be the non-zero singular values of channel matrix
Hi gathered in the diagonal matrix Λi and (ui,j ,vi,j) the
corresponding left and right singular vectors collected by
columns in matrices Ui and Vi respectively: Hi = UiΛiV

H
i .

The LSV algorithm selects the nT largest singular values of
the set {λi,j | i = 1, ..., K̆, j = 1, . . . , ri} and builds matrices
Bk with the corresponding left singular vectors vi,j .

This algorithm can equivalently be stated as the solution of
the following optimization problem: find the set B = {Bi}K̆i=1
so that (recall also constraints (1) and (4)):

B = argmax
B

K̆X
i=1

°°BH
i Hi

°°2 , (8)

Notice that an user belongs to K if the corresponding number
of assigned channel di is not zero, or equivalently Bi is not
empty.

B. MIMO Orthogonal Space Division Multiple Access (OS-
DMA)

Given the output of the scheduling algorithm (i.e., the set
K and matrices {Bk}Kk=1), the precoding matrices Mk are
derived by maximizing the sum capacity (5) with an additional
zero interference constraint among the users. Notice that the
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zero-interference assumption is capacity achieving in the high
signal-to-noise ratio regime where the interference plays a
major role in defining the system performance. In particular,
the following optimization problem is solved:

M = argmax
M

KX
i=1

Ci(B,M) (9a)

s.t.
KX
k=1

tr(MkM
H
k ) ≤ P, (9b)

H̃iMj = 0 if i 6= j, (9c)

Constraint (9c) ensures zero-interference among the K active
users. Therefore, the capacity for the ith user can be written
as (6) with Ri = σ2nIdi .

The resulting precoding matrix Mk has the following form
[8]

Mk = ΘkPk, (10)

where Θk is a nT × dk matrix is selected as

Θk = V̄
0
kṼk (11)

where V̄0
k is a nT × dk basis of the dk−dimensional null

space of the nT × (nT − dk) matrix H̄H
k with the singular

value decomposition

H̄k = [H̃H
1 · · · H̃H

k−1H̃
H
k · · · H̃H

K ]
H =

=
£
Ūi Ū

0
i

¤ · Λ̄i 0
0 0

¸ £
V̄i V̄

0
i

¤H
, (12)

this guarantees the zero inter-user interference constraint (9c).
Matrix Ṽk is the dk × dk range space of H̃H

k , thus ensuring
zero interference among all the spatial channels. Finally, Pk

is a dk × dk diagonal matrix that defines power allocation
over the spatial channels selected according to the multi-user
waterfilling criterion.

IV. MIMO-OSDMA WITH SVS SCHEDULING

The approximate solution of the problem (9) proposed by
[8] suffers from degraded performance (as it will be shown
in Sec. VI) mainly because the precoding matrices Mk and
the prefiltering matrices Bk (and the associated set K) are
optimized separately. Here we propose a joint optimization
that approximates problem (9) as follows. i) The zero inter-
ference constraint (9c) is imposed, thus obtaining a MIMO-
OSDMA system as in [8]. As explained in Sec. III-B, the
resulting precoding matrices have the form (10)-(11). ii) The
objective function Ci(B,M) is approximated by its first term
of the Taylor expansion: Ci(B,M) ≈ 1/σ2n

°°BH
i HiMi

°°2.
The latter approximation is expected to hold at sufficiently
low signal-to-noise ratios. The resulting optimization problem
reads (recall also constraints (1) and (4) and define V̄0 =
{V̄0

i }K̆i=1):

{B, V̄0} = argmax
B,V̄0

K̆X
i=1

Ni(B, V̄0), (13a)

s.t. H̃iV̄
0
j = 0 , i 6= j, (13b)

where we defined Ni(B, V̄0) =
°°BH

i HiV̄
0
i

°°2 . The objective
function (13a) is amenable to an efficient numerical optimiza-
tion and will be shown in Sec. VI to yield relevant advantages
as compared to the separate optimization proposed in [8].
Notice that in order to simplify the solution of the problem,
the remaining term of the precoding matrices (10), Ṽk and
Pk, are assumed to be computed according to Sec. III-B, thus
guaranteeing zero interference among different streams and
the enforcement of the total power constraint.

A. Successive Vector Selection (SVS) channel aware schedul-
ing

Problem (13) can be efficiently solved by a greedy approach
as detailed in the following. The idea is to select at each
step the spatial channel that yields the largest increase of the
objective function (13a). Let us denote with the superscript
(n) the quantities of interest as computed at the nth iteration.
At each iteration a spatial channel (out of the nT available)
is allocated to a specific user so that a total number of
nT iterations are needed. We are interested in updating the
receiving subspaces Bi (initialized as B(0)i equal to an empty
matrix) and the transmitting subspaces V̄0

i , or equivalently its
orthogonal complement V̄i (see (12), initialization: V̄0(0)

i =
InT ). Let uj be a possible candidate vector to be included
in the receiving subspace B(n)j of user j at the nth iteration
(j = 1, ..., K̆). As a result of the choice of uj at the nth
iteration, the objective function (13a) modifies as (dropping
the functional dependence on B, V̄0 for simplicity of notation)

K̆X
i=1

N
(n)
i (uj) =

K̆X
i=1

N
(n−1)
i +

K̆X
i=1

∆N
(n)
i (uj). (14)

Among all the possible vectors uj for all users j = 1, ..., K̆,
the vector uj is selected so as to maximize the increase of
the objective function

PK̆
i=1∆N

(n)
i (uj). In the following, the

computation of ∆N (n)
i (uj) is carried out.

To elaborate, we need to define for each user a basis U(n)
j

that spans the range space of the channel matrix Hj that at the
nth iteration has not be assigned to any receiving subspace.
Formally, it is: span{U(n)

j } = span{Uj} ∩ null{B(n)j }.
Therefore, the corresponding initialization is U(0)

j = Uj . At
the nth iteration we have

PK̆
i=1 d̂

(n)
i = n and the possible

candidate vectors to be included in the receiving subspace of
the jth user are linear combinations of the columns of U(n)

j :

uj = U
(n)
j aj , with kajk2 = 1. (15)

With the selection of (15), the corresponding receiving sub-
space is updated as B(n)j = [B

(n−1)
j uj ] while its transmit

subspace remains unchanged, V̄0(n)
j = V̄

0(n−1)
j , since no new

constraint (9c) is imposed upon it. It follows that

∆N
(n)
j (uj) =

°°°uHj HjV̄
0(n)
j

°°°2 . (16)

Then, let vj = HH
j uj be the vector corresponding to uj on

the transmitter side. The choice of uj for user j results in an
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additional zero-interference constraint for any user i 6= j (see
(13)), that leads to

V̄
(n)
i =

h
V̄
(n−1)
i wi

i
, (17)

where wi is the projection of vj over V̄0(n−1)
i , scaled to unit

length

wi = (V̄
0(n−1)
i V̄

0(n−1)H
i vj)/||V̄0(n−1)

i V̄
0(n−1)H
i vj ||.

(18)
V̄
0(n)
i is updated as well, so that span(V̄0(n)

i ) = null(V̄
(n)
i ).

This step can be performed, e.g., by updating the QR decom-
position of (17) [13]. On the other hand, nothing changes at
the receiver side of the ith user, B(n)i = B

(n−1)
i . It is easy to

show that

∆N
(n)
i (uj) = −

°°°B(n)Hi Hiwi

°°°2 i 6= j. (19)

To sum up, from (16) and (19) the increase of objective
function (13) due to the choice of vector uj at the nth iteration
is
K̆X
i=1

∆N
(n)
i (uj) =

°°°uHj HjV̄
0(n)
j

°°°2 −X
i6=j

°°°B(n)Hi Hiwi

°°°2 .
(20)

The first term in (20) accounts for the increased useful power
received by user j on the newly assigned spatial channel,
whereas the other terms represent the power loss suffered from
the other users from not being allowed to transmit over wi

anymore. Recalling (18) and (15), function (20) can be easily
recognized to be a sum of Rayleigh quotients in terms of vector
aj . While the maximization of a single Rayleigh quotient
is analytically feasible since it corresponds to the solution
of a generalized eigenvalue problem, maximizing a sum of
Rayleigh quotients is much more difficult and costly. Here,
we resort to a sub-optimal approach, by restricting aj to be
a column of an identity matrix, which translates to restricting
our search of the optimal uj to the columns of U(n)

j . This
approach has been proved by simulation to yield performance
very close to the optimum solution.

V. SVS ALGORITHM WITH PROPORTIONAL FAIRNESS
CONSTRAINTS

The algorithms discussed so far aim to maximize the system
throughput. If the users are unbalanced, with some of them
experiencing strongly attenuated channels, it is expected that
the algorithms will result in an unfair sharing of system
resources that might preclude communication to some users
(see also Sec. VI). Similarly to the proportional fair criterion
[10], a scheduling procedure that achieves over a long term an
appropriate balance between sum capacity and fairness among
users can be defined by modifying (13) as follows (here we
explicit for convenience the time dependence):

{B(t), V̄0(t)} = argmax
B,V̄0

K̆X
i=1

log(E[Ni(B, V̄0)]), (21a)

s.t. H̃i(t)V̄
0
j (t) = 0 , i 6= j. (21b)

where E[·] refers to the long term average over time. Following
the analysis of [9] and the considerations in Sec. IV , it can
be shown that a procedure that (approximately) converges to
the solution of (21) can be obtained by implementing the SVS
algorithm on normalized channel matrices

HN
i (t) =

Hi(t)

αi(t)
(22)

with

αi(t) =

µ
1− 1

tc

¶
α̂i(t) +

1

tc
Ni(B(t− 1), V̄0(t− 1)), (23)

where parameter tc rules the memory of the algorithm. Para-
meter αi(t) measures the channel power that each user has
been allowed to use within a window of tc time slots. The
rationale of the algorithm is that if a given user has been
ignored by the scheduling procedure in the considered time
window, the matrix scaling (22) will force the SVS algorithm
to allocate resources to it.

The criterion (21) is a fairness constraints on the channel
norms: its implication on the channel rates is not obvious
and will be investigated in the next Section by numerical
simulations.

VI. NUMERICAL SIMULATIONS

The performance of the proposed SVS algorithm is com-
pared with the LSV algorithm [8] by Monte Carlo simulations.
We consider K̆ = 4 users, where each user has the same
number of receiving antennas nRi = 2 while the base
station is equipped with nT = 4 antennas. Where not stated
otherwise, the channels are assumed to be subject to identically
distributed Raleigh fading, vec(Hi) ∼ CN ¡0, InTnRi ¢ . As
reference performance, a random user selection algorithm is
considered that chooses randomly a set K of users such that (1)
is satisfied. On this subset, orthogonal precoding is applied as
detailed in Sec. III-B. Moreover, the performance of a nT×nT
single user MIMO link is evaluated in order to set a reference
level for the sum capacity of the multiuser system.

The ergodic sum capacity is plotted versus the signal to
noise ratio P/σ2n in fig. 2. The proposed SVS algorithm yields
a gain of about 4dB as compared to the LSV algorithm,
whose performance are, in this case, similar to random users
selection. As explained in Sec. IV, the advantage of SVS is
due to the joint computation of the transmitting and receiving
subspaces.

Fig. 3 shows sum capacity versus outage probability for
P/σ2n = 10dB. It can be seen that the slope of the outage
probability for SVS is comparable to that of a single user
channel, proving the ability of the SVS algorithm to appropri-
ately exploit the diversity of the broadcast channel.

Let us now consider unbalanced users in order to validate
the performance of the SVS algorithm with fairness con-
straints. To be specific, the channels are assumed to be selected
so that vec(Hi) ∼ CN ¡0, βiInTnRi ¢ , where β1 = 0dB,
β2 = −5dB, β3 = −10dB and β4 = −20dB. The per-
formance of the SVS algorithm is evaluated with and without
fairness constraints (tc = 20). The results are summarized
in fig. 4 in terms of ergodic sum capacity and individual
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ergodic capacity versus time t. The total throughput loss
increases as the fairness constraints are imposed by the scaling
algorithm discussed in Sec. V and converges to approximately
2bit/s/Hz. This decrease of the sum capacity translates in
a more fair sharing of resources as proved by the individual
channel capacities. Notice that the channel capacities for t = 0
correspond to the performance of the SVS algorithm with
no fairness constraints. Even though the fairness constraint
(21) was imposed on the channel norms, rather than on the
individual rates as in [10], the simulation results indicate
that the proportional fair criterion is very closely followed
by the channel capacities as well. In fact, the user capacities
approximately converge to the dashed lines in fig. 4 that denote
the individual capacities as obtained by sharing the long term
sum capacity according to the proportional fair criterion (i.e.,
in proportion to the single user capacities E[log2 |Idi+P/K ·
HiHH

i |] [10]).

VII. CONCLUSION

The problem of channel aware scheduling for broadcast
MIMO channels with orthogonal linear precoding and linear
interfaces at the receivers has been investigated. An algorithm
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based on the joint optimization of precoding and scheduling
has been proposed and its performance proved by simulation
to be superior to know techniques in terms of sum capacity.
Moreover, the introduction of proportional fairness constraints
has been discussed and a modification of the algorithm that
yields desirable long term fairness properties has been pro-
posed and validated through simulation.
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