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Abstract

An overview of the understanding of correlations between energy gap and refractive index of semiconductors is presented here. The
atomic approach of Moss, the nearly free electron model of Penn, the oscillator concept of Wemple and the optical polarizability
approach of Finkenrath are considered in this study. The Ravindra relation is discussed in the context of alternate approaches that have
been presented in the literature. Case studies of applications of these relations to infrared materials and wide band gap semiconductors

are presented.
© 2006 Elsevier B.V. All rights reserved.

1. Introduction

The refractive index and energy gap of semiconductors
represent two fundamental physical aspects that character-
ize their optical and electronic properties. The applications
of semiconductors as electronic, optical and optoelectronic
devices are very much determined by the nature and mag-
nitude of these two elementary material properties. These
properties also aid in the performance assessment of band
gap engineered structures for continuous and optimal
absorption of broad band spectral sources. In addition,
devices such as photonic crystals, wave guides, solar cells
and detectors require a pre-knowledge of the refractive
index and energy gap. Application specific coating technol-
ogies (ASPECT™) [1] including antireflection coatings and
optical filters [2] rely on the spectral properties of materials.

The energy gap determines the threshold for absorption
of photons in semiconductors. The refractive index in the
semiconductor is a measure of its transparency to incident
spectral radiation. A correlation between these two funda-
mental properties has significant bearing on the band struc-
ture of semiconductors. In 1950, Moss [3] proposed a basic
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relationship between these two properties using the general
theory of photoconductivity which was based on the photo
effect studies of Mott and Gurney [4], Smekal [5], Zwicky
[6], Gudden and Pohl [7] and Pearson and Bardeen [8].
According to this theory, the absorption of an optical
quantum will raise an electron in alkali halides to an
excited state rather than freeing it from the center. Thermal
energy then moves this electron to the conduction band
from the lattice. Such a photo effect takes place in imper-
fections at certain lattice points, and thus, the electron
behaves similar to an electron in an isolated atom with a
dielectric constant of the bulk material. As a result of this
effective dielectric constant, ¢gg, the energy levels of the
electron are scaled down by a factor of 1/ef; which
approximately corresponds to the square of the refractive
index, n. This factor, thus, should be proportional to the
energy required to raise an electron in the lattice to an
excited state as given by the Bohr formula for the ioniza-
tion energy, E, of the hydrogen atom, E = 2n’m*e*/c?h?,
where, m”* is the electron effective mass, e is the electronic
charge, ¢ is the relative permittivity and / is the Plank con-
stant. This minimum energy determines the threshold
wavelength, 1., which then varies as the fourth power of
the refractive index. Experimental data on different photo-
conductive compounds show that the values of n*/1. were
close to 77 throughout a range of refractive indices. The
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similarities in the quotient show that the photoelectrons
stem from the same type of lattice imperfections, or alter-
natively, the binding energies to the different types of
hydrogen-like centers are similar. Thus the Moss relation
was formulated as [3]:

n4

% —77/um (1)
Jee
where 7 is the refractive index and /. is the wavelength cor-
responding to the absorption edge. In terms of energy gap,
this is [9]:

n‘E, = 95eV (2)

According to this relation, the refractive index of a semi-
conductor can be determined with a known energy gap,
E,. This relation, again, was based on the general assump-
tion that all energy levels in a solid are scaled down by a
factor of 1/&2;.

2. Penn model

In 1962, Penn [10] proposed a simple model for an iso-
tropic semiconductor with electrons in a sphere of momen-
tum space and are characterized by an isotropic energy
gap. In his investigation of a nearly free electron model
for a semiconductor, Penn showed that two common
assumptions were flawed in Callaway’s approximation of
the static dielectric constant [11]. Previous semiconductor
models did not allow for the formation of standing waves
in the Brillouin zone. The Umklapp process was neglected.
The energy, E, and wave function, y, with respect to the
state k for this model are given by,

Ef = l{EO +Ey £ [(Ey - Ep) + B2
Vi = (€ + oge™ ") /[1 + ()]

where
o =1E,/(Ef — E))

Ey = (B /2m)k?, K ®)

Here, E is the electron energy, k is the wave vector, K is
the Fermi wave vector and o represents an averaged Jones
boundary [12]. The electron energy E as a function of wave
vector k for an isotropic three-dimensional free electron
model is plotted in Fig. 1. This model of placing the energy
gap above the Fermi surface was first suggested by Call-
away [11] in his investigation of the correlation energy of
electrons.

Fig. 2 shows the density of states vs. the energy and
describes the treatment of the Penn model. The dashed line
represents Callaway’s model and the solid line represents
the Penn model. According to the Penn model, the states
from the energy gap are removed and piled up at the top
of the valence band and the bottom of the conduction band
[10]. The resulting graph is thus asymptotic.

Based on this model, Penn describes the dielectric func-
tion as:
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Fig. 1. Electron energy as a function of k for isotropic three-dimensional
nearly free electron model [10].
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Fig. 2. Density of states vs. energy. The solid curve represents the three-
dimensional nearly free electron model while the dashed curve represents
Callaway’s model [10].
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In this equation, k' =k +q — (2Kg)(k + q)/|k + q| where

K is the reciprocal lattice vector and q is a wave number.
N is the occupation number for the states k and k + q. e
is the electronic charge. If the Brillouin zone is divided into
sections, then the dielectric function can be written as:

(@) —1+8£Z(5 'M' ()

where &), = 1 when k is in the i region and 0 otherwise. M, is
the matrix element. For the specific case when ¢ =0,

£(0) ~ 1+ (hwp/Eo)* + [1 — (Eg/Er/4) + ((Eg/Er)” +48)]
(6)

where w,, is the plasma frequency and Ef is the Fermi en-

ergy. The expression in the brackets is nearly equal to 1 for

materials with band gaps in the commonly occurring range
where (Eo/Ey) = 0.3 [12]. Since the most significant varia-
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tion occurs in the expression before the square brackets, (5)
can be written as,

&(0) ~ 1 + (hw,/Eo)* - So (7)

where S, represents the quantity in brackets in Eq. (6).
Penn approximates S, to be nearly 1, thereby neglecting
the smaller quantities of E,/Er. The dielectric function is
thus:

&(0) & 1 + (hwy/Eo)? (8)

Grimes and Cowley [12] found a more accurate value of Sy,
In their investigation, Grimes and Cowley found that the
value of Sy is only weakly dependent on the band gap
and that a value of 0.62 is a fairly good representation of
So. Thus, with this slightly more accurate value for S,
the energy gap can be determined by using appropriate val-
ues of the dielectric constant.

In the Penn model, the dielectric constant was found to
have reasonable values for small values of wave number
(q). This model is quite simplistic in design, though it
accounts for the formation of standing waves near the
Brillouin zone. It does not consider the degeneracy that
may occur in the Brillouin zone. In spite of the simplicity
of the Penn model, the mere isotropy of the system allows
the model to be applied to a liquid or amorphous
semiconductor.

3. Ravindra relation

The Ravindra relation, which was initially proposed
empirically [13] was shown to be an approximation [14]
of the Penn model [10]. One feature common to all the
semiconductor band structures is that the valence and con-
duction bands are more or less parallel to each other at
least along the symmetry directions. This formed the basis
for Gupta and Ravindra [14] to define:

E,=E,+K 9)

Using Eq. (9) in the Penn model in Eq. (8) and considering
the situation for which E,/K <1, Gupta and Ravindra ar-
rived at an expression for the refractive index:

n =K, — K:E, + K3 E, — K4 E, (10)

where the values of K are calculated by Gupta and Ravin-
dra [14] and the higher values are neglected since they are
too small to be considered. Eq. (10) then reduces to a form:

n=4.16— 1.12E, + 0.31E2 — 0.08E3 (11)

The oscillator model from Wemple [15] defines the dielec-
tric constant as: ¢ = 1 + E4/E, where ¢ is the real part of
the complex dielectric constant, Ey4 is the oscillator strength
and E, is the average energy gap which is approximately
equal to the Penn energy gap, E,.

Performing a similar treatment with the dielectric func-
tion in the optical region, they [14] show a similar equation
for the refractive index with the constants evaluated,

n=4.16 — 0.85E, (12)

Other forms of the Ravindra relation include a variation of
the relation with respect to temperature and pressure [16]:

dn dE
%: —0.62% (14)

3.1. Moss relation and its implications

It is perhaps noteworthy to mention that other optical
properties of semiconductors are merely integral relations
to the energy gap and refractive index. Moss [9] pointed
out that the absorption edge can be calculated using the
refractive index. Moss [9] showed that the refractive index
and absorption edge are related by:

1 di
2711:2X/ Kl e (15)
s

e

n—1=

which for long wavelengths at zero frequency becomes,

1

Here, K is the absorption coefficient and 4. is the wave-
length corresponding to the absorption edge. This function
is integrated over the wavelength rather than energy. This
expression shows that the long wavelength refractive index
is determined simply by the total area under the curve of
absorption coefficient vs. wavelength — it is independent
of the absorption spectrum [18]. As a result, if a certain le-
vel of absorption persists over a given energy interval — as it
occurs where absorption is due to transitions between two
allowed energy bands — then, the smaller the width of the
forbidden zone, the greater will be the spread of absorption
in wavelength, resulting in a greater value of the integral
and larger n [9].

Moss [9] provided an illustration of this relation in his
paper. This analysis shows that much of the refractive
index originates from narrow bands of intense absorptions.
The absorption occurs at wavelengths below 1 pm which
corresponds to the very short wavelength compared to
the absorption edge.

With these observations, Moss concluded that the nar-
row absorption band of semiconductors in the UV region
is the factor which determines the refractive index. Two
conclusions followed from this assumption: (1) the relation
between the energy gap and UV oscillator frequency are
factors in determining the relationship between the refrac-
tive index and the long wavelength absorption edge; (2) any
modifications of the absorption edge that do not vary at
the same time are not expected to produce a change in
the refractive index.

Moss compared his relation with the Ravindra relation
[9]. The Ravindra relation predicts no results of indices
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beyond 4.1. However, very reliable infrared materials, such
as PbSe and PbSnTe, do exist at refractive indices of 4.7
and 7.0 respectively. The Moss formula, however, closely
estimates these values with the formula: n4Eg: 108 eV
where the constant has been revised. This formula yields
refractive indices of 4.6 for PbSe and 6.03 for PbSnTe.
For low refractive indices, the Ravindra relation predicts
impractical results. It predicts that the refractive index will
become zero when the energy gap is 6.6 eV. The Moss
formula on the other hand requires that the energy gap
be infinity for the same result. For the index to be unity,
the Ravindra relation predicts the energy gap to be 5SeV.
However, there exist materials which exceed this value.
The Moss relation requires that the energy gap should
be greater than 100 eV to obtain a refractive index of 1.
This is much larger than the refractive index of any
material.

In a theoretical derivation of optical polarizability, Fin-
kenrath [17] described a treatment in the transitions from
the valence band to the conduction band. These transitions
are represented by differential oscillator densities that occur
at distributed resonant frequencies. The combined polariz-
abilities are summed and replaced by an integral over the
relevant frequencies. These differential oscillators are iden-
tified through the wave number and occupation probability
based on spherical energy surfaces. The result of this study
showed that (. — 1)2Eg is a complex expression that is
basically constant. From this expression, one can see that
neglecting unity compared to the dielectric constant gives
the Moss relation. According to Finkenrath’s estimate,
the average value of the constant is nearly 95¢V. These
observations are made for direct interband transitions. It
must be understood that, if the transitions are not direct,
then deviations could arise from ignoring the transitions
from other bands and the varying densities of states and
the matrix elements.

Moss [9] thus showed the interrelations between the
refractive index and the absorption. He showed that the
important factor that determines the index is the frequency
of the UV absorption peak. Reasonable values for the
refractive index can be found using the model of a single
classical oscillator at this frequency. The relation between
the refractive index and the absorption edge band energy
arises from the comparative nature of the band edge and
the resonance energy. Assuming a constant energy differ-
ence, a relation similar to the linear Ravindra relation
can be obtained. However, the Ravindra relation is shown
to have a few shortcomings at high and low index values.
The Moss relation out performs the Ravindra relation in
these areas and is further supported by formal theory from
Finkenrath. From the different semiconductors known, one
can understand that a relationship between refractive index
and energy gap, or for that matter, other optical constants
that are integrally related, can only be general and approx-
imate at best. From Moss [9], it is seen that where the Rav-
indra relation fails, the Moss relation holds approximately
true.

4. Alternate approaches and interpretations

Further relations were developed as a modification or
addition to the Moss and Ravindra relations. While the
Moss formula is limited by the structure of the material,
the Ravindra relation is restricted by the refractive index.
From the Ravindra relation, the refractive index cannot
be greater than a value of 4.1, which corresponds to an
energy gap of 6.587 eV. In an effort to broaden the applica-
tion of these two concepts, several authors have presented
variations of the Moss and Ravindra relations.

In 1992, a relation similar to the Moss relation was pro-
posed by Reddy and Anjaneyulu [19]. According to their
formula, the relation is:

E.e" =363 (17)

This relation holds true for energy gaps greater than 0 eV.
Reddy and Ahammed [20] proposed an empirical rela-
tion that was a modification of the Moss formula [18]

n*(E, — 0.365) = 154 (18)

This relation was proposed to overcome some of the draw-
backs of the Moss relation. However, it is not valid when
the energy gap is less than 0.36 eV nor does it hold for
infrared materials such as lead salts and InSb.

Further derivations based on the Moss and Ravindra
relations include approaches by Herve and Vandamme
[21]. They separated the semiconductors into a covalently
bonded group and ionically bonded group. For a cova-
lently bonded crystal, the dielectric function is:

gw)=1+ 4Tch2/[m(w§ — ?)] (19)

where N is the density of valence electrons, m the rest mass
and wy the UV resonance frequency. Eq. (19) describes the
dielectric constant for elements like Si and Ge. For the case
of binary compounds such as NaCl or GaAs, the dielectric
function needs to account for the ionic bonding. Thus the
dielectric function in an ionic diatomic lattice is,

#(0) = ¢ (wop) + Q) (@ — ) (20)

where Q,, is similar to the plasma frequency for ions and wy
is the infrared resonance frequency. To account for materi-
als in the optical range, o < wp < o, Herve and Vand-
amme proposed,

, 4y
n =[] =n = ”QﬁQ (21)
where A is the hydrogen ionization energy ~13.6 ¢V and B
is 3.47 eV. Herve and Vandamme based this equation on
oscillatory theory, assuming the UV resonance energy has
a constant difference with band gap energy,

hwy = E, + B (22)

Herve and Vandamme claim that their model provides the
lowest deviation for III-V, I-VII and chalcopyrites. This
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model is accurate for most materials used in optoelectronic
device structures and high band gap materials. Yet it does
not explain the behavior of the IV-VI group.

In the Moss, Ravindra and Herve and Vandamme rela-
tions, the variation of the energy gap with temperature
leads to three relations. By differentiating their relation
with respect to temperature, we arrive at:

dn 13.6° dE, >
ar- o aai i \ar T8 23
d7  n(E, +B)’ (dT ! (23)
where B, = $& Allowing, E, + B = 11-262 -1,

2 1)3/2
1@:_(11—1)“ <dE‘°'+Bl> (24)
ndT  13.6n2(E,+B)’ \dT

Similarly, the Moss and Ravindra relations were differenti-
ated to arrive at temperature coefficient for the energy gap.

A few values of (dE,/dT) and (dn/dT) calculated using
this relation for some semiconductors are given in Table 1.

In conducting this study, Herve and Vandamme [22]
found two particular temperature dependences. Generally,
the energy gap and temperature are inversely proportional
for most semiconductors, that is, as 7 increases, the energy
gap decreases, and, as a result, the refractive index
increases. This occurs in diamond and similar structures.
On the other hand, infrared detector materials including
the lead sulphide, lead selenide and lead telluride exhibit
a positive temperature coefficient of energy gap and nega-
tive refractive index temperature dependence.

Herve and Vandamme [22] found that the Moss relation
showed the strongest deviation at lower energy gaps
(<1.43eV), as shown in Fig. 3. Above this value, the Moss
relation provides results closest to the experimental values.

Calculations made with the Ravindra relation show
more accurate estimations for energy band gap values less
than 1.43 eV. These results deviate at energy gaps greater
than 1.43eV. Herve and Vandamme found that their
model presents the best results below the specified energy
gap and is quite close to the experimental results above
1.43 eV.

Table 1

Energy gap, its temperature coefficient and refractive index temperature
dependence for some semiconductors as calculated by the Herve Vand-
amme equation [22]

Material E, (eV) dE/dT (eVK ™) (dn/dT)/n (K™Y
InSb 0.18 —28x107* 6.9%x107°
PbSe 0.278 +5.1x1074 —2.1x107*
Ge 0.67 —37x107* 6.9%x107°
GaSb 0.75 —37x107* 82x107°
Si 1.1 —28x107* 40%x107°
InP 1.35 29%107* 27%x107°
GaAs 1.43 —39x107* 45%107°
AlAs 2.15 —4.0x107* 46%x107°
AlP 241 —3.7x107* 3.6x107°
SiC 2.86 33x107* 29%107°
GaN 3.5 —48x107* 26%x107°
C 5.48 —50%x107° 40x 107°
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Fig. 3. Temperature coefficient of refractive index vs. energy band gap.
The solid line represents the experimental results. The cross (X) represent
the differentiated Moss formula, the (+) represent the differentiated
Ravindra formula and the open squares ([J) represent the Herve
Vandamme model [22].

5. Case studies of applications to condensed matter physics
5.1. IR detector materials

One application of the energy gap-refractive index
relation helps to determine the strontium composition in
PbSe and lead-alkaline-earth-chalcogenide materials
(Pby_,Sr,Se [23]). The compounds are notably used in
mid infrared (mid-IR) lasers and mid-IR/ultraviolet (UV)
detectors. The energy gap and refractive indices of these
materials depend on the strontium composition. Majumdar
et al. [23] sought to determine the electronic and optical
properties of the ternary compound for Sr compositions.
PbSe has a direct band gap at 0.3 eV, at the L point of
the Brillouin zone [23]. Contrastingly, SrSe has a wide indi-
rect band gap between the X-I" bands of the Brillouin
zone. As the amount of Sr in Pb;_,Sr,Se increases, the
band gap changes from narrow and direct to wide and indi-
rect. Majumdar et al. have determined the composition at
which this change takes place.

In their experiment [23], the transmission spectra mea-
sured from the epitaxial layers of Pb;_,Sr,Se were used
to calculate the refractive index and the absorption coeffi-
cient. The refractive index was approximated from odd
interference peaks in the long wavelength region, which is
below the energy gap. This approximated value was then
fitted with the experimental curve from which the true
refractive index and absorption coefficient were deter-
mined. The refractive index of Pb,_,Sr,Se was calculated
and was found to be in the range of 4.8-2.04 for room tem-
perature and for a strontium composition of 0-1 at a wave-
length of 4 um. Similarly, SrSe has a refractive index of
2.04 at room temperature and at a wavelength of 4 pm.
This is shown in Fig. 4.

From Fig. 4, the refractive index of PbSe shows a nega-
tive temperature coefficient while SrSe shows a positive
coefficient. When the composition is nearly Pb g,Srq 15Se,
the refractive index at the specified wavelength is
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Fig. 4. Refractive index of Pb,_,Sr,Se for different strontium composi-
tions at room temperature and liquid nitrogen temperature (77 K) at a
wavelength of 4 um. Inset shows refractive index of SrSe at 77 K [23].

independent of temperature in the measured range. The
slope of the curvature of the absorption coefficient changes
dramatically with the increase of Sr in the compound. Such
a change in curvature of the absorption coefficient repre-
sents a change in band gap.
The absorption coefficients for direct and indirect tran-
sitions are calculated as follows:
Xdirect = —1/2 (hU - Eg)l/z
(hv) (25)
B 2
Olindirect = E (hl) - Eg + Ep)

Here, A and B are constants, /v is the photon energy and
E,, is the phonon energy. The phonon energy is much lower
than the energy band gap and so is neglected. These equa-
tions only hold true in the region where the photon energy
is greater than the energy band gap. Taking the second
derivative of the absorption coefficient («) (25) with respect
to the photon energy yields,

dzadirect o _AEg 3 ) A
dw)y 4 )= 3k EgH{(h)
— ()’Eg} 7, (26)

which is negative for hv > E, and,

2 2
d amdlr;ct -2 BEg3 (27)
d(hv) (hv)
which is positive for v > E,. As the absorption coefficient
changes from negative to positive, the band gap changes
from direct to indirect due to the increase in strontium
composition [23]. Fig. 5 shows the direct and indirect band
gap plotted against the strontium composition at 77 K for
Pb,_,Sr,Se.

The following equations were found to describe the best
fit for the curve of the calculated direct and indirect band
gap energies:

4
g 3 Direct Bandgap Energies
e
|~
| ol
w2
: /
23
T
& 1
Indirect Bandgap Energics

0.0 0.2 0.4 0.6 0.8 1.0
Sr composition

Fig. 5. Direct and indirect band gap energies for Pb, ,Sr,Se at different
compositions of strontium at 77 K [23].

E
E

=0.278 4 1.356x + 1.040x” + 1.144x* (eV)
=0.29 + 1.527x (eV)

Edirect

(28)

indirect

As can be seen, the direct band gap shows a dependence on
a polynomial function of the strontium composition (x)
while the indirect band gap is linear in nature with respect
to the strontium composition. In this experiment, Majum-
dar et al. found the indirect band gap of SrSe at 77 K to be
1.82 ¢V and the direct band gap to be 3.81 eV. For PbSe,
the direct band gap occurred at 0.278 eV at 77 K. Majum-
dar et al. assumed that the lowest indirect band gap energy
for all strontium compositions (0.43-1) occurs at similar
bands which separate linearly as the amount of strontium
increases. This occurs as the indirect band gap of
Pb,_,Sr,Se changes linearly with the strontium composi-
tion. When the indirect band gap energy curve of lower
Sr composition is extrapolated, the direct energy band
gap curve crosses at x ~ 0.2. This suggests that at
x ~ 0.2 — 1, the lowest energy band gap of Pb,_,Sr,Se is
direct.

Majumdar et al. have thus, determined the refractive
indices and direct and indirect band gaps of Pb,_,Sr,Se
for strontium compositions ranging from 0 to 1. Using
the data obtained in this experiment, it would be possible
to aid further development of optoelectronic devices based
on Pb;_,Sr,Se.

5.2. HgZnTe (MZT)

Ali Omar and El-Akkad [24] performed a study on the
optical parameters of mercury zinc telluride (MZT) in solid
solution. MZT is a direct band gap material with an energy
gap between —0.15 and 2.20 eV depending on the compo-
sition ratio. An equation describing the energy gap is,

E, = ap + ax'? + ax + asx* + agx’ (eV) (29)
The best fit was found to be,

E, = —0.1016 + 1.978x + 0.3144x’ (30)
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Fig. 6. E, vs. percent composition. TE refers to the energy gap equation
(29) and QF refers to the best fit equation (30). N refers to the ternary
solution equation (32) [24].

where x represents the percent composition. According to
Nag [25], an empirical formula illustrating the dependency
of energy gap on percent composition is given by,

E, = (a — bZ)’ (31)

where a and b depend on the semiconductor group. When
this formula is applied to the ternary solution, FEy(x)
becomes:

Ey(x) = 0.15 + 0.8637x + 1.245x (eV) (32)

Fig. 6 describes the results of Egs. (29)—(32).

Relating the energy gap to the refractive index, Ali
Omar and El-Akkad refer to the Ravindra relation. With
reference to the best fit, this equation is:

n=4.036— 1.127x — 0.262x> (33)

In the range of 0 < x < 1 the quadratic approximation is
nem = 3.84 — 1.56x + 0.428x7 (34)

From graphical illustrations of the refractive index vs. per-
cent composition, as in Fig. 7, the refractive index is seen to
decrease with x.

4.0
35k

3.0

2.5}

1.0 " ] . 1 } |
[+] 0.2 0.3 06 0.8 1.0

Fig. 7. Refractive index vs. composition ratio. R refers to refractive index
with respect to best fit, CM refers to the quadratic approximation [24].

Studying the relation between these parameters, compo-
sition and E, for MZT allows for an understanding and use
of the material for IR detectors and solar cells.

5.3. GaN

Bourissa [26] performed a study on the pressure
dependence of optoelectronic properties of GaN in the
zinc-blende structure. The refractive index was calculated
at different pressures with the Moss, Ravindra and
Herve Vandamme relations. On a graph of the band lineup
vs. pressure, the conduction band minimum is seen to
increase with the increase in pressure at I' yet it is seen to
decrease at X. The valence band maximum decreases at I'
(Fig. 8).

The lowest direct energy gap increases with increas-
ing pressure while the indirect gap is seen to have a
smaller dependence on pressure. As a result, the direct
band gap of zinc-blende GaN cannot be expected to cross-
over to indirect behavior in the pressure range studied
(Fig. 9).

The dependency of band gap on pressure can be repre-
sented by,

A Aa\’
E=da +b" (_a) +c (_a) (35)
ap ap

where Aa = a, + ap and a, and q, are lattice constants at
pressure p and zero pressure. Applying this to the equation
describing least square fit, namely,

E(p) = E(0) = dﬁ—](f’)p (36)

13.0

12.0 L P |

10.0

Band Lineup (eV)
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Fig. 8. Band lineup in eV vs. pressure in (kbar). The valence band

maximum I is indicated by (—) while the conduction band minimum I is
indicated (- - -). (-9-) indicates the conduction band X bottom [26].
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Fig. 9. Direct and indirect band gaps of GaN as a function of pressure in
(kbar) [26].

is then,
2
Ey=3.2-2383 <¥) +195.62 (ﬁ)
ao ao
A Aa\’
EX =691+324 (-“) — 240.65 (—“)
ao 7N
A Aa\’
EL =723 -23.60 (—“) + 106.10(—“) (37)
ao ao
2
EX =470 - 0.16<Aa> +1.22 (A")
7N aop
A Aa\’
E' = 6.20 — 25.48 (—“) +166.76 (—“)
7N 7N
2.55
GaN
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Fig. 10. Refractive index as a function of pressure for GaN. (—) indicates
Moss relation, (---) represents Ravindra relation and (-y-) is the Herve
Vandamme relation [26].

Table 2
Refractive indices at zero pressure and the first pressure derivative for
GaN [26]

Model n dn (1073 kbar™!)
ip

Moss relation 2.41 —0.67

Ravindra et al. relation 2.10 —2.40

Herve and Vandamme relation -2.29 —1.13

These dependencies show a non-linear behavior. From
Fig. 9, the valence band width is shown to increase with
pressure. This can be attributed perhaps to decreasing ion-
icity under hydrostatic compression which is typical of
semiconductors.

The refractive index obtained by the three models is also
plotted as a function of pressure in Fig. 10.

In Fig. 10, the refractive index is seen to decrease line-
arly with respect to increasing pressure, as opposed to the
energy gap which shows the opposite behavior. It can be
concluded that for GaN and other III-V compounds, the
smaller the energy band gap, the larger the refractive index.

In Table 2 are the refractive indices at zero pressure and
the first pressure derivative. The refractive index obtained
by the Moss relation shows a large difference when com-
pared with the Ravindra and Herve Vandamme relations.
Since no known experimental data has been published on
the refractive index of GaN, Bourissa calculated the index
using ¢, = n”. The results of the refractive index for the
three relations were 5.81, 4.41 and 5.24 respectively.

Compared to the experimental value of 5.15 for the
dielectric constant obtained by Yu et al. [27], the value
5.24 as obtained by the Herve Vandamme relation is a bet-
ter result. However, the value of the dielectric function of
5.8, theoretically calculated by Zheng et al. [28] is almost
in agreement with the Moss relation.

The pressure derivative of the refractive index is another
significant parameter which explains pressure induced dis-
tortion. The first pressure derivative calculated through
the Ravindra relation indicates a greater effect of applied
hydrostatic pressure to the refractive index. Results of cal-
culations show that the pressure derivative is negative and
this appears to be the trend among the IT1I-V group. How-
ever, a study by Johanssen et al. [29] shows a direct linear
relation between refractive index and increase in pressure.
Thus, it is believed that ionicity of the material plays a sig-
nificant role in determining the magnitude and sign of the
pressure coefficient of refractive index.

6. Conclusions

The various energy gap-refractive index relations and
their applications to semiconductors have been summa-
rized in the above study. The analysis examines the contri-
butions of Moss, Penn, Finkenrath, Wemple and
Ravindra. Applications of these relations to IR detector
materials such as Pb,_,Sr.Se and Hg;_,Zn,Te and UV
detector material such as GaN have been discussed.
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