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Week 14: Chapter 15

Oscillatory Motion

Periodic Motion

 Periodic motion is motion of an object that 
regularly returns to a given position after a fixed time 
interval

 A special kind of periodic motion occurs in 
mechanical systems when the force acting on the 
object is proportional to the position of the object 
relative to some equilibrium position
 If the force is always directed toward the equilibrium 

position, the motion is called simple harmonic motion

Motion of a Spring-Mass 
System

 A block of mass m is 
attached to a spring, the 
block is free to move on a 
frictionless horizontal 
surface
 Use the active figure to vary 

the initial conditions and 
observe the resultant 
motion

 When the spring is neither 
stretched nor compressed, 
the block is at the 
equilibrium position
 x = 0

Hooke’s Law

 Hooke’s Law states Fs = - kx
 Fs is the restoring force
 It is always directed toward the equilibrium position

 Therefore, it is always opposite the displacement from 
equilibrium

 k is the force (spring) constant

 x is the displacement

More About Restoring Force

 The block is displaced 
to the right of x = 0
 The position is positive

 The restoring force is 
directed to the left

More About Restoring Force, 2

 The block is at the 
equilibrium position
 x = 0

 The spring is neither 
stretched nor 
compressed

 The force is 0
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More About Restoring Force, 3

 The block is displaced 
to the left of x = 0
 The position is negative

 The restoring force is 
directed to the right

Acceleration

 The force described by Hooke’s Law is the 
net force in Newton’s Second Law

Hooke Newton
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Motion of the Block

 The block continues to oscillate between –A 
and +A
 These are turning points of the motion

 The force is conservative

 In the absence of friction, the motion will 
continue forever
 Real systems are generally subject to friction, so 

they do not actually oscillate forever

Simple Harmonic Motion –
Mathematical Representation

 Model the block as a particle
 The representation will be particle in simple harmonic 

motion model

 Choose x as the axis along which the oscillation 
occurs

 Acceleration

 We let 

 Then a = -2x

2
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d x k
a x

dt m
  

2 k
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 

Simple Harmonic Motion –
Mathematical Representation, 2

 A function that satisfies the equation is 
needed
 Need a function x(t) whose second derivative is 

the same as the original function with a negative 
sign and multiplied by 2

 The sine and cosine functions meet these 
requirements 

Simple Harmonic Motion –
Graphical Representation

 A solution is x(t) = A
cos (t + 

 A,  are all 
constants

 A cosine curve can be 
used to give physical 
significance to these 
constants
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Simple Harmonic Motion –
Definitions

 A is the amplitude of the motion
 This is the maximum position of the particle in 

either the positive or negative direction

  is called the angular frequency
 Units are rad/s

  is the phase constant or the initial phase 
angle

Simple Harmonic Motion, cont

 A and  are determined uniquely by the 
position and velocity of the particle at t = 0
 If the particle is at x = A at t = 0, then  = 0

 The phase of the motion is the quantity (t + 
)

 x (t) is periodic and its value is the same each 
time t increases by 2 radians

Period

 The period, T, is the time interval required 
for the particle to go through one full cycle of 
its motion
 The values of x and v for the particle at time t

equal the values of x and v at t + T

2
T






Frequency

 The inverse of the period is called the 
frequency

 The frequency represents the number of 
oscillations that the particle undergoes per 
unit time interval

 Units are cycles per second = hertz (Hz)

1
ƒ

2T




 

Summary Equations – Period 
and Frequency

 The frequency and period equations can be 
rewritten to solve for 

 The period and frequency can also be 
expressed as:

2
2 ƒ

T

  

1
2 ƒ

2

m k
T

k m



 

An object of mass m is hung from a spring and set into 
oscillation. The period of the oscillation is measured and 
recorded as T. The object of mass m is removed and 
replaced with an object of mass 2m. When this object is 
set into oscillation, what is the period of the motion?

A.  2T

B.  1.4T       

C. T

D.  0.7T      

E. T/2

T2

2/T
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Period and Frequency, cont

 The frequency and the period depend only on 
the mass of the particle and the force 
constant of the spring 

 They do not depend on the parameters of 
motion

 The frequency is larger for a stiffer spring 
(large values of k) and decreases with 
increasing mass of the particle

Motion Equations for Simple 
Harmonic Motion

 Simple harmonic motion is one-dimensional and so 
directions can be denoted by + or - sign

 Remember, simple harmonic motion is not uniformly 
accelerated motion

2
2

2

( )   cos ( )

sin(  t )

cos(  t  )

x t A t

dx
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dt

d x
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dt

 
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  

 

   

   

Maximum Values of v and a

 Because the sine and cosine functions 
oscillate between ±1, we can easily find the 
maximum values of velocity and acceleration 
for an object in SHM

max

2
max

k
v A A

m
k

a A A
m





 

 

Graphs

 The graphs show:
 (a) displacement as a 

function of time
 (b) velocity as a function 

of time
 (c ) acceleration as a 

function of time

 The velocity is 90o out of 
phase with the 
displacement and the 
acceleration is 180o out 
of phase with the 
displacement 

SHM Example 1

 Initial conditions at t = 0 
are
 x (0)= A
 v (0) = 0

 This means  = 0
 The acceleration 

reaches extremes of ±
2A at A

 The velocity reaches 
extremes of ± A at x = 
0

SHM Example 2

 Initial conditions at
t = 0 are
 x (0)=0
 v (0) = vi

 This means  =  /2
 The graph is shifted 

one-quarter cycle to the 
right compared to the 
graph of x (0) = A
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Energy of the SHM Oscillator

 Assume a spring-mass system is moving on a 
frictionless surface

 This tells us the total energy is constant

 The kinetic energy can be found by
 K = ½ mv 2 = ½ m2 A2 sin2 (t + )

 The elastic potential energy can be found by
 U = ½ kx 2 = ½ kA2 cos2 (t + )

 The total energy is E = K + U = ½ kA 2

Energy of the SHM Oscillator, 
cont

 The total mechanical 
energy is constant 

 The total mechanical 
energy is proportional to the 
square of the amplitude

 Energy is continuously 
being transferred between 
potential energy stored in 
the spring and the kinetic 
energy of the block
 Use the active figure to 

investigate the relationship 
between the motion and the 
energy

 As the motion 
continues, the 
exchange of energy 
also continues

 Energy can be used to 
find the velocity

Energy of the SHM Oscillator, 
cont

 2 2

2 2 2

k
v A x

m

A x

  

  

Energy in SHM, summary

Importance of Simple 
Harmonic Oscillators

 Simple harmonic oscillators 
are good models of a wide 
variety of physical 
phenomena

 Molecular example
 If the atoms in the molecule 

do not move too far, the 
forces between them can 
be modeled as if there were 
springs between the atoms

 The potential energy acts 
similar to that of the SHM 
oscillator

SHM and Circular Motion

 This is an overhead view of 
a device that shows the 
relationship between SHM 
and circular motion

 As the ball rotates with 
constant angular speed, its 
shadow moves back and 
forth in simple harmonic 
motion
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SHM and Circular Motion, 2

 The circle is called a 
reference circle

 Line OP makes an 
angle  with the x axis 
at t = 0

 Take P at t = 0 as the 
reference position

SHM and Circular Motion, 3

 The particle moves 
along the circle with 
constant angular 
velocity 

 OP makes an angle 
with the x axis

 At some time, the angle 
between OP and the x 
axis will be  t + 

SHM and Circular Motion, 4

 The points P and Q always have the same x
coordinate

 x (t) = A cos (t + )

 This shows that point Q moves with simple 
harmonic motion along the x axis

 Point Q moves between the limits ±A

SHM and Circular Motion, 5

 The x component of the 
velocity of P equals the 
velocity of Q

 These velocities are 
 v = -A sin (t + )

SHM and Circular Motion, 6

 The acceleration of point P
on the reference circle is 
directed radially inward

 P ’s acceleration is a = 2A
 The x component is 

–2 A cos (t + )
 This is also the acceleration 

of point Q along the x axis

Simple Pendulum

 A simple pendulum also exhibits periodic motion

 The motion occurs in the vertical plane and is 
driven by gravitational force

 The motion is very close to that of the SHM 
oscillator
 If the angle is <10o
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Simple Pendulum, 2

 The forces acting on the 
bob are the tension and 
the weight

 is the force exerted on 
the bob by the string

 is the gravitational 
force

 The tangential component 
of the gravitational force is 
a restoring force

T


mg


Simple Pendulum, 3

 In the tangential direction,

 The length, L, of the pendulum is constant, and for 
small values of 

 This confirms the form of the motion is SHM

2

2
sint

d s
F mg m

dt
  

2

2
sin

d g g

dt L L

     

Simple Pendulum, 4

 The function  can be written as

 = max cos (t + )

 The angular frequency is

 The period is

g

L
 

2
2

L
T

g

 


 

Simple Pendulum, Summary

 The period and frequency of a simple 
pendulum depend only on the length of the 
string and the acceleration due to gravity

 The period is independent of the mass
 All simple pendula that are of equal length 

and are at the same location oscillate with the 
same period

Clicker Question

A grandfather clock depends on the period of a 
pendulum to keep correct time. Suppose a grandfather 
clock is calibrated correctly and then a mischievous 
child slides the bob of the pendulum downward on the 
oscillating rod. The grandfather clock will run:

A. slow

B. fast

C. correctly

D. depending on the 
weight of the bob.

Physical Pendulum

 If a hanging object oscillates about a fixed 
axis that does not pass through the center of 
mass and the object cannot be approximated 
as a particle, the system is called a physical 
pendulum
 It cannot be treated as a simple pendulum
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Physical Pendulum, 2

 The gravitational force 
provides a torque about 
an axis through O

 The magnitude of the 
torque is 
mgd sin 

 I is the moment of 
inertia about the axis 
through O

Physical Pendulum, 3

 From Newton’s Second Law, 

 The gravitational force produces a restoring 
force

 Assuming  is small, this becomes

2

2
sin

d
mgd I

dt

 

2
2

2

d mgd

dt I

        
 

Physical Pendulum,4

 This equation is in the form of an object in 
simple harmonic motion

 The angular frequency is

 The period is

mgd

I
 

2
2

I
T

mgd

 


 

Physical Pendulum, 5

 A physical pendulum can be used to measure 
the moment of inertia of a flat rigid object
 If you know d, you can find I by measuring the 

period

 If I = md2 then the physical pendulum is the 
same as a simple pendulum
 The mass is all concentrated at the center of 

mass

Torsional Pendulum

 Assume a rigid object is suspended from a 
wire attached at its top to a fixed support

 The twisted wire exerts a restoring torque on 
the object that is proportional to its angular 
position

Torsional Pendulum, 2

 The restoring torque is 

  is the torsion constant of 

the support wire

 Newton’s Second Law 
gives 

2

2

2

2

d
I

dt

d

dt I

 

  

  

 
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Torsional Period, 3

 The torque equation produces a motion equation for 
simple harmonic motion

 The angular frequency is 

 The period is 

 No small-angle restriction is necessary
 Assumes the elastic limit of the wire is not exceeded

I

 

2
I

T 




Damped Oscillations

 In many real systems, nonconservative 
forces are present
 This is no longer an ideal system (the type we 

have dealt with so far)

 Friction is a common nonconservative force

 In this case, the mechanical energy of the 
system diminishes in time, the motion is said 
to be damped

Damped Oscillation, Example

 One example of damped 
motion occurs when an object 
is attached to a spring and 
submerged in a viscous liquid

 The retarding force can be 
expressed as where b
is a constant
 b is called the damping 

coefficient

b R v
 

Damped Oscillations, Graph

 A graph for a damped 
oscillation

 The amplitude decreases 
with time

 The blue dashed lines 
represent the envelope of 
the motion

 Use the active figure to vary 
the mass and the damping 
constant and observe the 
effect on the damped 
motion

Damping Oscillation, 
Equations

 The restoring force is – kx
 From Newton’s Second Law
Fx = -k x – bvx = max

 When the retarding force is small compared 
to the maximum restoring force we can 
determine the expression for x
 This occurs when b is small

Damping Oscillation, 
Equations, cont

 The position can be described by

 The angular frequency will be

 2 cos( )
b tmx Ae t 


 

2

2

k b

m m
     

 
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Damping Oscillation, Example 
Summary

 When the retarding force is small, the oscillatory 
character of the motion is preserved, but the 
amplitude decreases exponentially with time

 The motion ultimately ceases
 Another form for the angular frequency

 where 0 is the angular frequency in the absence of the 
retarding force and is called the natural frequency of the 
system

2
2
0 2

b

m
      

 

Types of Damping

 If the restoring force is such that b/2m < o, 
the system is said to be underdamped

 When b reaches a critical value bc such that 
bc / 2 m = 0 , the system will not oscillate
 The system is said to be critically damped

 If the restoring force is such that bvmax > kA 
and b/2m > o, the system is said to be 
overdamped

Types of Damping, cont

 Graphs of position 
versus time for
 (a) an underdamped 

oscillator
 (b) a critically damped 

oscillator 
 (c) an overdamped 

oscillator

 For critically damped 
and overdamped there 
is no angular frequency

Forced Oscillations

 It is possible to compensate for the loss of 
energy in a damped system by applying an 
external force

 The amplitude of the motion remains 
constant if the energy input per cycle exactly 
equals the decrease in mechanical energy in 
each cycle that results from resistive forces

Forced Oscillations, 2

 After a driving force on an initially stationary 
object begins to act, the amplitude of the 
oscillation will increase

 After a sufficiently long period of time, Edriving
= Elost to internal

 Then a steady-state condition is reached 

 The oscillations will proceed with constant 
amplitude

Forced Oscillations, 3

 The amplitude of a driven oscillation is

 0 is the natural frequency of the undamped 
oscillator

 

0

2
22 2

0

F
mA

b
m
 


    
 
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Resonance

 When the frequency of the driving force is 
near the natural frequency (  ) an 
increase in amplitude occurs

 This dramatic increase in the amplitude is 
called resonance

 The natural frequency  is also called the 
resonance frequency of the system

Resonance, cont

 At resonance, the applied force is in phase 
with the velocity and the power transferred to 
the oscillator is a maximum
 The applied force and v are both proportional to 

sin (t + )

 The power delivered is 
 This is a maximum when the force and velocity are in 

phase

 The power transferred to the oscillator is a maximum

F v
 
�

Resonance, Final

 Resonance (maximum peak) 
occurs when driving 
frequency equals the 
natural frequency

 The amplitude increases 
with decreased damping

 The curve broadens as the 
damping increases

 The shape of the resonance 
curve depends on b


