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Week 14: Chapter 15

Oscillatory Motion

Periodic Motion

 Periodic motion is motion of an object that 
regularly returns to a given position after a fixed time 
interval

 A special kind of periodic motion occurs in 
mechanical systems when the force acting on the 
object is proportional to the position of the object 
relative to some equilibrium position
 If the force is always directed toward the equilibrium 

position, the motion is called simple harmonic motion

Motion of a Spring-Mass 
System

 A block of mass m is 
attached to a spring, the 
block is free to move on a 
frictionless horizontal 
surface
 Use the active figure to vary 

the initial conditions and 
observe the resultant 
motion

 When the spring is neither 
stretched nor compressed, 
the block is at the 
equilibrium position
 x = 0

Hooke’s Law

 Hooke’s Law states Fs = - kx
 Fs is the restoring force
 It is always directed toward the equilibrium position

 Therefore, it is always opposite the displacement from 
equilibrium

 k is the force (spring) constant

 x is the displacement

More About Restoring Force

 The block is displaced 
to the right of x = 0
 The position is positive

 The restoring force is 
directed to the left

More About Restoring Force, 2

 The block is at the 
equilibrium position
 x = 0

 The spring is neither 
stretched nor 
compressed

 The force is 0
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More About Restoring Force, 3

 The block is displaced 
to the left of x = 0
 The position is negative

 The restoring force is 
directed to the right

Acceleration

 The force described by Hooke’s Law is the 
net force in Newton’s Second Law

Hooke Newton
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Motion of the Block

 The block continues to oscillate between –A 
and +A
 These are turning points of the motion

 The force is conservative

 In the absence of friction, the motion will 
continue forever
 Real systems are generally subject to friction, so 

they do not actually oscillate forever

Simple Harmonic Motion –
Mathematical Representation

 Model the block as a particle
 The representation will be particle in simple harmonic 

motion model

 Choose x as the axis along which the oscillation 
occurs

 Acceleration

 We let 

 Then a = -2x
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Simple Harmonic Motion –
Mathematical Representation, 2

 A function that satisfies the equation is 
needed
 Need a function x(t) whose second derivative is 

the same as the original function with a negative 
sign and multiplied by 2

 The sine and cosine functions meet these 
requirements 

Simple Harmonic Motion –
Graphical Representation

 A solution is x(t) = A
cos (t + 

 A,  are all 
constants

 A cosine curve can be 
used to give physical 
significance to these 
constants



3

Simple Harmonic Motion –
Definitions

 A is the amplitude of the motion
 This is the maximum position of the particle in 

either the positive or negative direction

  is called the angular frequency
 Units are rad/s

  is the phase constant or the initial phase 
angle

Simple Harmonic Motion, cont

 A and  are determined uniquely by the 
position and velocity of the particle at t = 0
 If the particle is at x = A at t = 0, then  = 0

 The phase of the motion is the quantity (t + 
)

 x (t) is periodic and its value is the same each 
time t increases by 2 radians

Period

 The period, T, is the time interval required 
for the particle to go through one full cycle of 
its motion
 The values of x and v for the particle at time t

equal the values of x and v at t + T

2
T






Frequency

 The inverse of the period is called the 
frequency

 The frequency represents the number of 
oscillations that the particle undergoes per 
unit time interval

 Units are cycles per second = hertz (Hz)
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Summary Equations – Period 
and Frequency

 The frequency and period equations can be 
rewritten to solve for 

 The period and frequency can also be 
expressed as:
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An object of mass m is hung from a spring and set into 
oscillation. The period of the oscillation is measured and 
recorded as T. The object of mass m is removed and 
replaced with an object of mass 2m. When this object is 
set into oscillation, what is the period of the motion?

A.  2T

B.  1.4T       

C. T

D.  0.7T      

E. T/2

T2

2/T
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Period and Frequency, cont

 The frequency and the period depend only on 
the mass of the particle and the force 
constant of the spring 

 They do not depend on the parameters of 
motion

 The frequency is larger for a stiffer spring 
(large values of k) and decreases with 
increasing mass of the particle

Motion Equations for Simple 
Harmonic Motion

 Simple harmonic motion is one-dimensional and so 
directions can be denoted by + or - sign

 Remember, simple harmonic motion is not uniformly 
accelerated motion
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Maximum Values of v and a

 Because the sine and cosine functions 
oscillate between ±1, we can easily find the 
maximum values of velocity and acceleration 
for an object in SHM
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Graphs

 The graphs show:
 (a) displacement as a 

function of time
 (b) velocity as a function 

of time
 (c ) acceleration as a 

function of time

 The velocity is 90o out of 
phase with the 
displacement and the 
acceleration is 180o out 
of phase with the 
displacement 

SHM Example 1

 Initial conditions at t = 0 
are
 x (0)= A
 v (0) = 0

 This means  = 0
 The acceleration 

reaches extremes of ±
2A at A

 The velocity reaches 
extremes of ± A at x = 
0

SHM Example 2

 Initial conditions at
t = 0 are
 x (0)=0
 v (0) = vi

 This means  =  /2
 The graph is shifted 

one-quarter cycle to the 
right compared to the 
graph of x (0) = A
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Energy of the SHM Oscillator

 Assume a spring-mass system is moving on a 
frictionless surface

 This tells us the total energy is constant

 The kinetic energy can be found by
 K = ½ mv 2 = ½ m2 A2 sin2 (t + )

 The elastic potential energy can be found by
 U = ½ kx 2 = ½ kA2 cos2 (t + )

 The total energy is E = K + U = ½ kA 2

Energy of the SHM Oscillator, 
cont

 The total mechanical 
energy is constant 

 The total mechanical 
energy is proportional to the 
square of the amplitude

 Energy is continuously 
being transferred between 
potential energy stored in 
the spring and the kinetic 
energy of the block
 Use the active figure to 

investigate the relationship 
between the motion and the 
energy

 As the motion 
continues, the 
exchange of energy 
also continues

 Energy can be used to 
find the velocity

Energy of the SHM Oscillator, 
cont

 2 2

2 2 2
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A x

  

  

Energy in SHM, summary

Importance of Simple 
Harmonic Oscillators

 Simple harmonic oscillators 
are good models of a wide 
variety of physical 
phenomena

 Molecular example
 If the atoms in the molecule 

do not move too far, the 
forces between them can 
be modeled as if there were 
springs between the atoms

 The potential energy acts 
similar to that of the SHM 
oscillator

SHM and Circular Motion

 This is an overhead view of 
a device that shows the 
relationship between SHM 
and circular motion

 As the ball rotates with 
constant angular speed, its 
shadow moves back and 
forth in simple harmonic 
motion
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SHM and Circular Motion, 2

 The circle is called a 
reference circle

 Line OP makes an 
angle  with the x axis 
at t = 0

 Take P at t = 0 as the 
reference position

SHM and Circular Motion, 3

 The particle moves 
along the circle with 
constant angular 
velocity 

 OP makes an angle 
with the x axis

 At some time, the angle 
between OP and the x 
axis will be  t + 

SHM and Circular Motion, 4

 The points P and Q always have the same x
coordinate

 x (t) = A cos (t + )

 This shows that point Q moves with simple 
harmonic motion along the x axis

 Point Q moves between the limits ±A

SHM and Circular Motion, 5

 The x component of the 
velocity of P equals the 
velocity of Q

 These velocities are 
 v = -A sin (t + )

SHM and Circular Motion, 6

 The acceleration of point P
on the reference circle is 
directed radially inward

 P ’s acceleration is a = 2A
 The x component is 

–2 A cos (t + )
 This is also the acceleration 

of point Q along the x axis

Simple Pendulum

 A simple pendulum also exhibits periodic motion

 The motion occurs in the vertical plane and is 
driven by gravitational force

 The motion is very close to that of the SHM 
oscillator
 If the angle is <10o
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Simple Pendulum, 2

 The forces acting on the 
bob are the tension and 
the weight

 is the force exerted on 
the bob by the string

 is the gravitational 
force

 The tangential component 
of the gravitational force is 
a restoring force

T


mg


Simple Pendulum, 3

 In the tangential direction,

 The length, L, of the pendulum is constant, and for 
small values of 

 This confirms the form of the motion is SHM
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Simple Pendulum, 4

 The function  can be written as

 = max cos (t + )

 The angular frequency is

 The period is

g

L
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Simple Pendulum, Summary

 The period and frequency of a simple 
pendulum depend only on the length of the 
string and the acceleration due to gravity

 The period is independent of the mass
 All simple pendula that are of equal length 

and are at the same location oscillate with the 
same period

Clicker Question

A grandfather clock depends on the period of a 
pendulum to keep correct time. Suppose a grandfather 
clock is calibrated correctly and then a mischievous 
child slides the bob of the pendulum downward on the 
oscillating rod. The grandfather clock will run:

A. slow

B. fast

C. correctly

D. depending on the 
weight of the bob.

Physical Pendulum

 If a hanging object oscillates about a fixed 
axis that does not pass through the center of 
mass and the object cannot be approximated 
as a particle, the system is called a physical 
pendulum
 It cannot be treated as a simple pendulum
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Physical Pendulum, 2

 The gravitational force 
provides a torque about 
an axis through O

 The magnitude of the 
torque is 
mgd sin 

 I is the moment of 
inertia about the axis 
through O

Physical Pendulum, 3

 From Newton’s Second Law, 

 The gravitational force produces a restoring 
force

 Assuming  is small, this becomes

2

2
sin

d
mgd I

dt
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Physical Pendulum,4

 This equation is in the form of an object in 
simple harmonic motion

 The angular frequency is

 The period is

mgd

I
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Physical Pendulum, 5

 A physical pendulum can be used to measure 
the moment of inertia of a flat rigid object
 If you know d, you can find I by measuring the 

period

 If I = md2 then the physical pendulum is the 
same as a simple pendulum
 The mass is all concentrated at the center of 

mass

Torsional Pendulum

 Assume a rigid object is suspended from a 
wire attached at its top to a fixed support

 The twisted wire exerts a restoring torque on 
the object that is proportional to its angular 
position

Torsional Pendulum, 2

 The restoring torque is 

  is the torsion constant of 

the support wire

 Newton’s Second Law 
gives 

2
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Torsional Period, 3

 The torque equation produces a motion equation for 
simple harmonic motion

 The angular frequency is 

 The period is 

 No small-angle restriction is necessary
 Assumes the elastic limit of the wire is not exceeded

I

 

2
I

T 




Damped Oscillations

 In many real systems, nonconservative 
forces are present
 This is no longer an ideal system (the type we 

have dealt with so far)

 Friction is a common nonconservative force

 In this case, the mechanical energy of the 
system diminishes in time, the motion is said 
to be damped

Damped Oscillation, Example

 One example of damped 
motion occurs when an object 
is attached to a spring and 
submerged in a viscous liquid

 The retarding force can be 
expressed as where b
is a constant
 b is called the damping 

coefficient

b R v
 

Damped Oscillations, Graph

 A graph for a damped 
oscillation

 The amplitude decreases 
with time

 The blue dashed lines 
represent the envelope of 
the motion

 Use the active figure to vary 
the mass and the damping 
constant and observe the 
effect on the damped 
motion

Damping Oscillation, 
Equations

 The restoring force is – kx
 From Newton’s Second Law
Fx = -k x – bvx = max

 When the retarding force is small compared 
to the maximum restoring force we can 
determine the expression for x
 This occurs when b is small

Damping Oscillation, 
Equations, cont

 The position can be described by

 The angular frequency will be

 2 cos( )
b tmx Ae t 


 

2

2

k b

m m
     

 



10

Damping Oscillation, Example 
Summary

 When the retarding force is small, the oscillatory 
character of the motion is preserved, but the 
amplitude decreases exponentially with time

 The motion ultimately ceases
 Another form for the angular frequency

 where 0 is the angular frequency in the absence of the 
retarding force and is called the natural frequency of the 
system

2
2
0 2

b

m
      

 

Types of Damping

 If the restoring force is such that b/2m < o, 
the system is said to be underdamped

 When b reaches a critical value bc such that 
bc / 2 m = 0 , the system will not oscillate
 The system is said to be critically damped

 If the restoring force is such that bvmax > kA 
and b/2m > o, the system is said to be 
overdamped

Types of Damping, cont

 Graphs of position 
versus time for
 (a) an underdamped 

oscillator
 (b) a critically damped 

oscillator 
 (c) an overdamped 

oscillator

 For critically damped 
and overdamped there 
is no angular frequency

Forced Oscillations

 It is possible to compensate for the loss of 
energy in a damped system by applying an 
external force

 The amplitude of the motion remains 
constant if the energy input per cycle exactly 
equals the decrease in mechanical energy in 
each cycle that results from resistive forces

Forced Oscillations, 2

 After a driving force on an initially stationary 
object begins to act, the amplitude of the 
oscillation will increase

 After a sufficiently long period of time, Edriving
= Elost to internal

 Then a steady-state condition is reached 

 The oscillations will proceed with constant 
amplitude

Forced Oscillations, 3

 The amplitude of a driven oscillation is

 0 is the natural frequency of the undamped 
oscillator
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Resonance

 When the frequency of the driving force is 
near the natural frequency (  ) an 
increase in amplitude occurs

 This dramatic increase in the amplitude is 
called resonance

 The natural frequency  is also called the 
resonance frequency of the system

Resonance, cont

 At resonance, the applied force is in phase 
with the velocity and the power transferred to 
the oscillator is a maximum
 The applied force and v are both proportional to 

sin (t + )

 The power delivered is 
 This is a maximum when the force and velocity are in 

phase

 The power transferred to the oscillator is a maximum

F v
 

Resonance, Final

 Resonance (maximum peak) 
occurs when driving 
frequency equals the 
natural frequency

 The amplitude increases 
with decreased damping

 The curve broadens as the 
damping increases

 The shape of the resonance 
curve depends on b


