Week 14: Chapter 15

Oscillatory Motion

Periodic Motion

e Periodic motion is motion of an object that
regularly returns to a given position after a fixed time
interval

e A special kind of periodic motion occurs in
mechanical systems when the force acting on the
object is proportional to the position of the object
relative to some equilibrium position

« |If the force is always directed toward the equilibrium
position, the motion is called simple harmonic motion

Motion of a Spring-Mass
System

o Ablock of mass mis =
attached to a spring, the CV BFYYYTIrYY)
block is free to move on a "‘,"f‘f'“'ﬁ"f W
frictionless horizontal Tk
surface
o Use the active figure tovary ()

the initial conditions and
observe the resultant
motion

e When the spring is neither
stretched nor compressed,
the block is at the
equilibrium position
e x=0

Hooke’s Law

e Hooke’s Law states F, = - kx
o Fis the restoring force
It is always directed toward the equilibrium position

Therefore, it is always opposite the displacement from
equilibrium

o kis the force (spring) constant
o X is the displacement

More About Restoring Force

e The block is displaced
to the right of x =0
o The position is positive

e The restoring force is
directed to the left ()

More About Restoring Force, 2 | ¢

e The block is at the
equilibrium position
e x=0

e The spring is neither

stretched nor ) L{“Hﬂw_éﬂ .

0

compressed
e The force is 0 — S
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More About Restoring Force, 3

e The block is displaced
to the left of x =0
o The position is negative
e The restoring force is F,
directed to the right (c)

Acceleration

e The force described by Hooke’s Law is the
net force in Newton’s Second Law

FHooke = I:Newton
—kx =ma,
a, = _k X

m

Motion of the Block

e The block continues to oscillate between —A
and +A
e These are turning points of the motion

e The force is conservative

e In the absence of friction, the motion will
continue forever

o Real systems are generally subject to friction, so
they do not actually oscillate forever

Simple Harmonic Motion —
Mathematical Representation | ::

e Model the block as a particle
o The representation will be particle in simple harmonic
motion model
e Choose x as the axis along which the oscillation
occurs )
d°x k

o Acceleration a=——=-—Xx
dt m

o We let a)Z:h
m

e Thena=-a?x

Simple Harmonic Motion —
Mathematical Representation, 2

ece000
eceoe

e A function that satisfies the equation is
needed
o Need a function x(t) whose second derivative is

the same as the original function with a negative
sign and multiplied by «?

e The sine and cosine functions meet these
requirements

Simple Harmonic Motion — i
Graphical Representation :

e A solution is x(t) = A
cos (at + @)

e A w gareall
constants

e A cosine curve can be
used to give physical
significance to these
constants
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Simple Harmonic Motion, cont

e A and ¢ are determined uniquely by the
position and velocity of the particle att =0
o Ifthe particleisatx=Aatt=0,then¢$=0

e The phase of the motion is the quantity (ot +
)

e X (t) is periodic and its value is the same each
time ot increases by 2z radians

Simple Harmonic Motion —
Definitions :
e A is the amplitude of the motion
e This is the maximum position of the particle in
either the positive or negative direction
e wis called the angular frequency
e Units are rad/s
e ¢is the phase constant or the initial phase
angle
Period :

e The period, T, is the time interval required
for the particle to go through one full cycle of
its motion

e The values of x and v for the particle at time t
equal the valuesof xandvatt+T

r
w

Frequency :

e The inverse of the period is called the
frequency

e The frequency represents the number of
oscillations that the particle undergoes per
unit time interval

1 o
r= T 2rn
e Units are cycles per second = hertz (Hz)

Summary Equations — Period | &
and Frequency :

e The frequency and period equations can be
rewritten to solve for @

2r
w=2rf =—"
f T

e The period and frequency can also be
expressed as:

P
k 2z7\m

3
L3
An object of mass m is hung from a spring and set into .
oscillation. The period of the oscillation is measured and H
recorded as T. The object of mass m is removed and

replaced with an object of mass 2m. When this object is

set into oscillation, what is the period of the motion?

A. 2T
B. 2T
C.T

D. T/42
E.T/2




Period and Frequency, cont

e The frequency and the period depend only on
the mass of the particle and the force
constant of the spring

e They do not depend on the parameters of
motion

e The frequency is larger for a stiffer spring
(large values of k) and decreases with
increasing mass of the particle

Motion Equations for Simple
Harmonic Motion

X(t) = A cos (at +¢)

V= 3—): =-wAsin(w t+¢)
2
a= ((j:iti( =—w’Acos(wt + ¢)

e Simple harmonic motion is one-dimensional and so
directions can be denoted by + or - sign

e Remember, simple harmonic motion is not uniformly
accelerated motion

Maximum Values of v and a

e Because the sine and cosine functions
oscillate between £1, we can easily find the
maximum values of velocity and acceleration
for an object in SHM

k
vmaX:a)A:\/;A

k
=w’A=—A
amax m

Graphs

e The graphs show:
o (a) displacement as a
function of time
» (b) velocity as a function
of time i
e (c) acceleration as a % =
function of time i Y
e The velocity is 90° out of
phase with the )
displacement and the a
acceleration is 180° out TF
of phase with the ol "R aaad '
displacement

SHM Example 1 :

e Initial conditionsatt=0 | r 37
are INE TN 2,
e X (0)=A o \_/ \_./
e v(0)=0 v

e This means ¢=0 N 3

o The acceleration N A TN/ 37
reaches extremes of i
A at A a

e The velocity reaches | ; f —t
extremes of t wAatx= °L.7 1 NI a1
0 2

SHM Example 2

e Initial conditions at ¥
t=0are
e X (0)=0
e v(0) =y,

e This means ¢ =— 72

e The graph is shifted
one-quarter cycle to the
right compared to the
graph of x (0) = A

1
2

¢ T 37
2




Energy of the SHM Oscillator | ¢

e Assume a spring-mass system is moving on a
frictionless surface

e This tells us the total energy is constant

e The kinetic energy can be found by
o K=%mv2=%ma? A?sin? (at+ @)

e The elastic potential energy can be found by
o U=%kx?2="1%KA2cos? (et + ¢)

e The total energyisE=K + U =% kA ?

Energy of the SHM Oscillator,
cont

e The total mechanical f= L gy 1
energy is constant % x

e The total mechanical K U
energy is proportional to the
square of the amplitude

e Energy is continuously |
being transferred between !
potential energy stored in !
the spring and the kinetic ]
energy of the block A
o Use the active figure to

investigate the relationship 0
between the motion and the
energy S—

Energy of the SHM Oscillator,

(1]
cont H
e As the motion Y #
continues, the K. U h=0
exchange of energy
also continues 142

i

e Energy can be used to i
find the velocity ‘
1

Energy in SHM, summary
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Importance of Simple
Harmonic Oscillators

e Simple harmonic oscillators
are good models of a wide
variety of physical
phenomena .

e Molecular example g T
o Ifthe atoms in the molecule 'Yf?bf}i
do not move too far, the | ; g . )
forces between them can %
be modeled as if there were
springs between the atoms
e The potential energy acts
similar to that of the SHM
oscillator

SHM and Circular Motion

e This is an overhead view of

Lamp

a device that shows the o
relationship between SHM HH
and circular motion

e As the ball rotates with

constant angular speed, its Ball
shadow moves back and T*_f.
forth in simple harmonic & A
. Turntable
motion :
| Screen
- .
|-|.rl
= ‘N]l:ldun'

of ball
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SHM and Circular Motion, 2 :
e The circle is called a 3
reference circle
e Line OP makes an
angle ¢ with the x axis a
att=0 \ ¢
e Take P att=0 as the 0 )

reference position

SHM and Circular Motion, 3

e The particle moves €
along the circle with y
constant angular
velocity o A~ /

e OP makes an angle 8 _1<| A =0
with the x axis

e At some time, the angle a2
between OP and the x
axis will be 6= at + ¢

=g =dh

(b}

SHM and Circular Motion, 4

e The points P and Q always have the same x
coordinate

e X (t) = Acos (at + ¢@)
e This shows that point Q moves with simple
harmonic motion along the x axis

e Point Q moves between the limits £A

SHM and Circular Motion, 5 s

e The x component of the * 'T-"
velocity of P equals the %
velocity of Q H l; p
e These velocities are | %
o V=-wAsin (at+ oo
( ? ——l—i‘.:‘“— X
ol @ @

SHM and Circular Motion, 6

e The acceleration of point P a=w'A
on the reference circle is | ¥
directed radially inward

e P ’sacceleration is a = «?A £
e The x component is s |
—a? A cos (at + ¢) el

e This is also the acceleration — Al
of point Q along the x axis '

(d)

Simple Pendulum

e A simple pendulum also exhibits periodic motion
e The motion occurs in the vertical plane and is
driven by gravitational force

e The motion is very close to that of the SHM
oscillator
o If the angle is <10°
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Simple Pendulum, 2 :
e The forces acting on the :
bob are the tension and i\
the weight Y
o T is the force exerted on AN
the bob by the string '
» mg is the gravitational L
force |
e The tangential component ———_i S L
of the gravitational force is mgsin & 4 4,
a restoring force 1
| mgcos @
ng
o000
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Simple Pendulum, 4 :

e The function &can be written as
6= O COS (at + &)
e The angular frequency is

o= {2
L

e The period is

T=2—ﬂ:27r\/E
® 9
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Simple Pendulum, 3 :
e In the tangential direction,
) d?
F =-mgsingd=m e
e The length, L, of the pendulum is constant, and for
small values of 4
2
d9_ 9gng--9¢
dt L L
e This confirms the form of the motion is SHM
o000
0000
o006
.:0

Simple Pendulum, Summary | :

e The period and frequency of a simple
pendulum depend only on the length of the
string and the acceleration due to gravity

e The period is independent of the mass

¢ All simple pendula that are of equal length
and are at the same location oscillate with the
same period

Clicker Question

A grandfather clock depends on the period of a
pendulum to keep correct time. Suppose a grandfather
clock is calibrated correctly and then a mischievous
child slides the bob of the pendulum downward on the
oscillating rod. The grandfather clock will run:

A. slow
B. fast
C. correctly

D. depending on the
weight of the bob.

Physical Pendulum

e If a hanging object oscillates about a fixed
axis that does not pass through the center of
mass and the object cannot be approximated
as a particle, the system is called a physical
pendulum

o It cannot be treated as a simple pendulum
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Physical Pendulum, 3
e From Newton’s Second Law,
. d%
-mgdsing =1-—-
mgd sin e

e The gravitational force produces a restoring
force

e Assuming @is small, this becomes

00
o000
o000
. 444
Physical Pendulum, 2 :
e The gravitational force
provides a torque about Pivor I
an axis through O N
e The magnitude of the Gl
torque is N
mgd sin 6 o you
e | is the moment of
inertia about the axis
through O
mg
o000
o000
34
Physical Pendulum,4 :

e This equation is in the form of an object in
simple harmonic motion

e The angular frequency is

- m?d

e The period is

T2 o /—'
@ mgd

d’¢0  (mgd),
?(fjg‘""
Physical Pendulum, 5 H

e A physical pendulum can be used to measure
the moment of inertia of a flat rigid object
o If you know d, you can find | by measuring the
period
e If | = md? then the physical pendulum is the
same as a simple pendulum

e The mass is all concentrated at the center of
mass

Torsional Pendulum

e Assume a rigid object is suspended from a
wire attached at its top to a fixed support
e The twisted wire exerts a restoring torque on

the object that is proportional to its angular
position

Torsional Pendulum, 2

e The restoring torque is t =
—Kx6

e xis the torsion constant of
the support wire

|
e Newton’s Second Law -
gives
d?o
T:_KHZIW . o,ll.
o x b

—Z-_"9 . P
dt? | e
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Torsional Period, 3

e The torque equation produces a motion equation for
simple harmonic motion

e The angular frequency is o= \flﬁ

I
e Theperiodis T =27,|—
K

« No small-angle restriction is necessary
« Assumes the elastic limit of the wire is not exceeded

eocee
o0

Damped Oscillations

¢ In many real systems, nonconservative
forces are present
o This is no longer an ideal system (the type we

have dealt with so far)

o Friction is a common nonconservative force

e In this case, the mechanical energy of the
system diminishes in time, the motion is said
to be damped

Damped Oscillation, Example

e One example of damped
motion occurs when an object
is attached to a spring and
submerged in a viscous liquid

e The retarding force can be
expressed as R =-bv where b
is a constant

e bis called the damping
coefficient

—W ’t:u:mw-{

ke

I

Damped Oscillations, Graph | &

e A graph for a damped
oscillation X

e The amplitude decreases
with time

e The blue dashed lines
represent the envelope of
the motion

e Use the active figure to vary
the mass and the damping
constant and observe the
effect on the damped
motion

Damping Oscillation,
Equations i

e The restoring force is — kx

e From Newton’s Second Law
IF, = -k x —bv, = ma,

e When the retarding force is small compared
to the maximum restoring force we can
determine the expression for x
e This occurs when b is small

Damping Oscillation,
Equations, cont s

e The position can be described by

X = Ae_(%m)t cos(wt + ¢)

e The angular frequency will be

w(a)
w= || =
m 2m




eocee
o0

Damping Oscillation, Example
Summary
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e When the retarding force is small, the oscillatory
character of the motion is preserved, but the
amplitude decreases exponentially with time

The motion ultimately ceases
e Another form for the angular frequency

. (b Y
@=\% " 2m

» where oy is the angular freguency in the absence of the
retarding force and is called the natural frequency of the
system
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Types of Damping

o If the restoring force is such that b/2m < ,
the system is said to be underdamped

e When b reaches a critical value b, such that
b./2m = o, , the system will not oscillate
e The system is said to be critically damped

o If the restoring force is such that bv,,,, > kA

and b/2m > o, the system is said to be
overdamped

Types of Damping, cont :

e Graphs of position

versus time for

e (a) an underdamped
oscillator

o (b) a critically damped
oscillator

e (c) an overdamped )
oscillator &

e For critically damped = ~
and overdamped there \/ -

is no angular frequency

Forced Oscillations :

e It is possible to compensate for the loss of
energy in a damped system by applying an
external force

e The amplitude of the motion remains
constant if the energy input per cycle exactly
equals the decrease in mechanical energy in
each cycle that results from resistive forces

Forced Oscillations, 2

e After a driving force on an initially stationary
object begins to act, the amplitude of the
oscillation will increase

o After a sufficiently long period of time, Eing

= Elost to internal

e Then a steady-state condition is reached

o The oscillations will proceed with constant
amplitude

Forced Oscillations, 3
e The amplitude of a driven oscillation is
E
e
Jlr-ar(2]
0 m

o a,is the natural frequency of the undamped
oscillator

10



Resonance

e When the frequency of the driving force is
near the natural frequency (o= @) an
increase in amplitude occurs

e This dramatic increase in the amplitude is
called resonance

e The natural frequency a, is also called the
resonance frequency of the system

Resonance, cont

e At resonance, the applied force is in phase
with the velocity and the power transferred to
the oscillator is a maximum
o The applied force and v are both proportional to

sin (at + ¢)
» The power delivered is Fi

This is a maximum when the force and velocity are in
phase

The power transferred to the oscillator is a maximum

Resonance, Final :

e Resonance (maximum peak) 4
occurs when driving
frequency equals the
natural frequency

The amplitude increases

h=1
" Undamped

with decreased damping _Small b
e The curve broadens as the

damping increases
e The shape of the resonance _Large b

curve depends on b

11



