

















 Real systems are generally subject to friction, so they do not actually oscillate forever



#### Simple Harmonic Motion – Mathematical Representation, 2

- A function that satisfies the equation is needed
  - Need a function x(t) whose second derivative is the same as the original function with a negative sign and multiplied by w<sup>2</sup>
  - The sine and cosine functions meet these requirements



# Simple Harmonic Motion – Definitions



- A is the amplitude of the motion
  - This is the maximum position of the particle in either the positive or negative direction
- $\omega$  is called the angular frequency
  - Units are rad/s
- $\phi$  is the phase constant or the initial phase angle

#### **Simple Harmonic Motion, cont**

- A and \$\ophi\$ are determined uniquely by the position and velocity of the particle at t = 0
  If the particle is at x = A at t = 0, then \$\ophi\$ = 0
- The phase of the motion is the quantity ( $\omega t + \phi$ )
- x (t) is periodic and its value is the same each time  $\omega t$  increases by  $2\pi$  radians





# Summary Equations – Period and Frequency

• The frequency and period equations can be rewritten to solve for  $\omega$ 

$$\omega = 2\pi f = \frac{2\pi}{T}$$

• The period and frequency can also be expressed as:

$$T = 2\pi \sqrt{\frac{m}{k}}$$
  $f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ 



#### Period and Frequency, cont



- The frequency and the period depend only on the mass of the particle and the force constant of the spring
- They do not depend on the parameters of motion
- The frequency is larger for a stiffer spring (large values of *k*) and decreases with increasing mass of the particle

### Motion Equations for Simple Harmonic Motion

 $x(t) = A \cos(\omega t + \phi)$ 

$$v = \frac{dx}{dt} = -\omega A \sin(\omega t + \phi)$$
$$a = \frac{d^2 x}{dt^2} = -\omega^2 A \cos(\omega t + \phi)$$

- Simple harmonic motion is one-dimensional and so directions can be denoted by + or sign
- Remember, simple harmonic motion is **not** uniformly accelerated motion

### Maximum Values of v and a

• Because the sine and cosine functions oscillate between ±1, we can easily find the maximum values of velocity and acceleration for an object in SHM

$$v_{\max} = \omega A = \sqrt{\frac{k}{m}} A$$
  
 $a_{\max} = \omega^2 A = \frac{k}{m} A$ 









- Assume a spring-mass system is moving on a frictionless surface
- This tells us the total energy is constant
- The kinetic energy can be found by
  - $K = \frac{1}{2} mv^2 = \frac{1}{2} m\omega^2 A^2 \sin^2(\omega t + \phi)$
- The elastic potential energy can be found by
   U = ½ kx<sup>2</sup> = ½ kA<sup>2</sup> cos<sup>2</sup> (ωt + φ)
- The total energy is  $E = K + U = \frac{1}{2} kA^2$















### SHM and Circular Motion, 4

• The points *P* and *Q* always have the same *x* coordinate

- $x(t) = A \cos(\omega t + \phi)$
- This shows that point Q moves with simple harmonic motion along the x axis
- Point Q moves between the limits ±A













#### **Clicker Question**

A grandfather clock depends on the period of a pendulum to keep correct time. Suppose a grandfather clock is calibrated correctly and then a mischievous child slides the bob of the pendulum downward on the oscillating rod. The grandfather clock will run:

A. slow

- B. fast
- C. correctly
- D. depending on the weight of the bob.















- In many real systems, nonconservative forces are present
  - This is no longer an ideal system (the type we have dealt with so far)
  - Friction is a common nonconservative force
- In this case, the mechanical energy of the system diminishes in time, the motion is said to be *damped*





# Damping Oscillation, Equations

- The restoring force is kx
- From Newton's Second Law  $\Sigma F_x = -k x - bv_x = ma_x$
- When the retarding force is small compared to the maximum restoring force we can determine the expression for *x* 
  - This occurs when b is small





- When the retarding force is small, the oscillatory character of the motion is preserved, but the amplitude decreases exponentially with time
- The motion ultimately ceases
- Another form for the angular frequency

$$\omega = \sqrt{\omega_0^2 - \left(\frac{b}{2m}\right)^2}$$

- where  $\omega_0$  is the angular frequency in the absence of the retarding force and is called the **natural frequency** of the system



- If the restoring force is such that b/2m < ω<sub>o</sub>, the system is said to be *underdamped*
- When b reaches a critical value  $b_c$  such that  $b_c / 2 m = \omega_0$ , the system will not oscillate
  - The system is said to be *critically damped*
- If the restoring force is such that bv<sub>max</sub> > kA and b/2m > ω<sub>o</sub>, the system is said to be overdamped









#### Resonance



- When the frequency of the driving force is near the natural frequency ( $\omega \approx \omega_0$ ) an increase in amplitude occurs
- This dramatic increase in the amplitude is called *resonance*
- The natural frequency  $\omega_0$  is also called the resonance frequency of the system



• At resonance, the applied force is in phase with the velocity and the power transferred to the oscillator is a maximum

- The applied force and *v* are both proportional to sin (*ωt* + *φ*)
- The power delivered is  $\vec{\textbf{F}} \square \vec{\textbf{v}}$ 
  - This is a maximum when the force and velocity are in phase
  - The power transferred to the oscillator is a maximum

