Scalable Query Optimization for Efficient Data
Processing using MapReduce

Yi Shan #!, Yi Chen 2

School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
School of Management, New Jersey Institute of Technology, Newark, NJ, USA

1 yshanl@asu.edu

Abstract—MapReduce is widely acknowledged by both indus-
try and academia as an effective programming model for query
processing on big data. It is crucial to design an optimizer which
finds the most efficient way to execute an SQL query using
MapReduce. However, existing work in parallel query processing
either falls short of optimizing an SQL query using MapReduce
or the time complexity of the optimizer it uses is exponential.
Also, industry solutions such as HIVE, and YSmart do not
optimize the join sequence of an SQL query and cannot guarantee
an optimal execution plan. In this paper, we propose a scalable
optimizer for SQL queries using MapReduce, named SOSQL.
Experiments performed on Google Cloud Platform confirmed
the scalability and efficiency of SOSQL over existing work.

I. INTRODUCTION

It becomes increasingly important to process SQL queries
on big data. Query processing consists of two parts: query
optimization and query execution. The query optimizer first
generates a query plan. Each node in the query plan encapsu-
lates a single operation that is required to execute the query.
Then based on the query plan, the query optimizer generates an
execution plan, defined as an ordering of the nodes in the query
plan. An execution plan stands for an execution sequence of
all operations. Finally, the query engine will follow the query
execution plan to execute the query. Different algorithms have
been proposed to efficiently implement each operation, such
as selection, join, etc.

There has been decade long research on processing SQL
queries in parallel, as summarized in a survey book [12].
For an input SQL query, a query optimizer first generates the
optimized query plan. It has been shown that a query plan in
the structure of either a deep left tree (DLT) or a bushy tree
(BT) is typically effective, which can be efficiently generated.
Then the query optimizer constructs an optimal execution plan
by breaking the optimal query plan into a sequence of binary
join operations. In parallel systems, a multi-way join must be
broken down to binary joins to execute, since each parallel job
is able to execute only one binary join. This is because existing
join algorithms are designed for binary joins. Finally, each
binary join operation is carried out by a parallel job whose
output might be used as input to other jobs [7].

Example 1.1: Let us look at a simple SQL query @ with
three joins, shown in Figure 1. Two optimized query plans
are generated by the existing work [7], [9], [14], a DLT
query plan shown in Figure 2(a), and a BT query plan shown
in Figure 2(b). For the BT query plan, the query optimizer

2yi.chen@njit.edu

select *
from A, B, C, D
where A.JK1 = B.JK1 and B.JK2 = C.JK2 and C.JK3 = D.JK3

Fig. 1. Query Q1
Size: 1000 G
G Size: 1ee@
Size: 300 F
A Size: 49 Size: 60 E F Size: 50
size: s E
B Size: 40
A B C D
Size: 40 :
= D C Size: 40 Size: 40 Size: 40 Size: 40 Size: 40
(a) QP (b) QP
Fig. 2. Query Plans of Query Q1

further generates a query execution plan consisting of three
parallel jobs, one for each binary join operation, as illustrated
in Figure 3(a). We have three jobs: table A and B are joined
with result table E, then table C and D are joined with result
table F, and then, the result table E is joined with table F. m

In recent years, MapReduce has been widely acknowledged
as an effective programming model to process big data.
MapReduce follows a shared-nothing model and leverage
commodity hardware to effectively handle large-scale data.
Studies have been performed on how to leverage MapReduce
framework for efficient SQL query processing on big data.
Many studies focus on how to implement join operations in
MapReduce framework, in particular, using one MapReduce
Job, denoted as MRJ, to execute a single join operation [5],
[13], [16], [4], [8], [10]. These studies provide great insights
into how to run a MRJ. However, limited investigation has
been done about how to find the best way to break a query
into a set of MRJs. In other words, limited research has been
studied on query optimization for SQL queries on MapReduce
framework.

One option is to leverage the query optimizers developed for
parallel SQL query processing to generate a query plan and an
execution plan when processing SQL queries on MapReduce
framework [15]. However, it is observed that in MapReduce
framework multi-way joins are not necessarily broken down
into binary joins to execute, and a MRJ can execute a multi-
way join [4].

Example 1.2: Continuing our example, for query plan in
Figure 2(b), the execution plan shown in Figure 3(a) is a valid
execution plan for (); in MapReduce framework. Another

E F G F e
X Pl 24
A B C D E F
C D
A B
MRJ1 MR3J2 MRJ3 MRJ1 MRJ2
(@) EPa (b) EPs2
Fig. 3. Execution Plans of QP»

execution plan is shown Figure 3(b) using MapReduce, where
table C and D are joined with result table F by M R.J;. Then
table A, B and F are joined by M R.J, as a multi-way join. m

Clearly not all execution plans are equal in terms of effi-
ciency. [4] shows that sometimes having one MRJ for multi-
way join can be more efficient than using a set of binary joins
due to data movement cost . Thus the traditional approach
used in parallel SQL query processing, which constructs an
execution plan by breaking the query plan into a sequence of
binary join operations, may not be optimal for processing SQL
queries in MapReduce framework.

In this paper, we studies the problem of how to optimize
query execution plan for executing SQL queries in MapReduce
framework with the goal of improving the overall query
processing efficiency. The generated query execution plan
needs to be effective to achieve efficient query execution, and
its generation needs to be efficient. As our contribution, we
developed a prototype system, SOSQL, Scalable Optimizer of
SQL, that takes an SQL query as input and generates a query
execution plan that consists of a sequence of MRJ, where
an MRJ can be a binary join or a a multi-way join. This
problem is challenging because finding the optimal execution
plan is NP-hard. To address this challenge, we identify a chain
join property of executing join operations on MapReduce,
and prove that each join operation executed on MapReduce
must be a single branch tree structured query plan. Then
we propose a polynomial algorithm to optimize the query
execution plan. The proposed solution for query execution
plan optimization has a time complexity of O(n?), where n
is the number of input tables of the input SQL query. We
have performed empirical studies on Google Cloud Platform
using TPC-H datasets. The evaluation shows that our approach
has significant speedup over HIVE 1.1.0, which represents a
common industry solution. SOSQL also largely outperforms
existing work that uses exponential algorithms to optimize
execution plan, such as AQUA [15]. The average speedup of
SOSQL over HIVE is 1.64, while 1.47 for AQUA.

II. RELATED WORK

There are a lot of studies on parallel processing for SQL
queries. [7], [9], [14] proposes a general framework to execute
an SQL query. The query engine first generates a query plan.
Then an execution plan is generated by breaking the query
plan into a sequence of binary join operations. Finally, each
binary join operation is carried out by a job. An survey book
[12] provides a good overview of this field.

There are a lot of studies on leveraging MapReduce frame-
work for SQL query processing. The focus of the studies is

join algorithm implementation in MapReduce framework. [5],
[13], [16], [4], [8], [10], [11] studies the use of one MRIJ to
execute a single join operation such as equi-join and theta-
join. [5] proposes four binary equi-join algorithms using
MapReduce, among which repartition join is the most widely
used one. [13] proposes a workload partition algorithm to
handle binary theta-join algorithms using MapReduce. [4]
extends the above two and proposes a multi-way binary join
algorithm. [16] proposes a multi-way theta-join algorithm
using MapReduce.

Limited studies have been performed on query optimization
for processing SQL queries on MapReduce framework, in
particular, how to find the best way to break an SQL query
into multiple MRJs to achieve high efficiency. [15], [16]
discusses how to break an SQL query into multiple multi-
way joins, using an algorithm of exponential time complexity.
HIVE, YSmart, PIG and other industry solutions for SQL
query processing using MapReduce do not optimize the join
sequences.

III. PROBLEM STATEMENT

Each SQL query can be represented by a join graph. Each
vertex stands for a table and each edge stands for a join
between two tables of the query. Our optimization goal is to
find the optimal way to break the join graph into a set of
sub-graphs and assign each sub-graph to an MRJ such that all
edges of the join graph are executed with minimal time. We
name a sequence of MRJs as an MRIJ assignment (MRJA).
Furthermore, we use Cost(M R.J) to indicate the cost of an
MRJ and Cost(MRJA) for an MRJA. Then, formally we
have the problem statement and optimization goal of query
processing using MapReduce shown below:

Definition 3.1:[Problem Statement]

Given an SQL query @, find an MRJA such that each of
its MRJs executes a sub-query of () and combined return the
results of @ s.t. Cost(M RJA) is minimized. (]

For example, Figure 3 shows 2 possible MRJAs to run ();.
Our optimization goal is to find the optimal one among all
possible MRJAs of ;.

To define the cost model, we first discuss the join algorithms
used. There are four types of join algorithms used in MapRe-
duce framework: repartition join, directed join, broadcast join
and semi-join. Among these four join algorithms, repartition
join is the most widely used [5], [4]. [4] proposes replicate
join that extends repartition join to support multi-way join
and improve the efficiency of query processing. We adopt this
join algorithm of a single MRIJ in this paper. As shown in
[6], to join n tables 17,75, ...T,, each replicate join could be
represented in simple relational algebra as 77 X T, X ...T},,
which is a chain join. A chain join means input tables are
joined one after another in sequential order.

We define the cost of an MRJA as the summation of the
cost of its MRJs. Formally, for an MRJA with a sequence
of ¢ MRJs s.t. MRJA = (MRJy, MRJs,..., MRJ,), we
have Cost(MRJA) =", Cost(MR.J;). . For Cost(MRJ;),
there is much research defining the cost model of replicate join
using an MRJ [16], [4], [15], [13]. We take a simple cost

model which considers I/O cost dominates MRJ run time, as
in [5]. That is, the cost model of each MRJ is measured as
the sum of total mapper input size and shuffle data size.
Continuing our example, let us discuss how to compute
Cost(M R.J) with 4 reducers. We have the sum of total input
= |A| + |B| + |F| = 130. To compute shuffle data size,
we first need to calculate for how many times each tuple,
tu, is replicated from mappers to reducers. Suppose there are
r reducers, and m join keys among all tables. If tu has t
of the m join keys, then tu will be replicated for e
times. Cost(M R.J2) has 2 join keys, JK1 and JK2. So each
tuple in table A and table F are replicated twice, 4277 For
each tuple tu € B, it is replicated for once. So the shuffle
data size = 2 x |A| + |B| + 2 x |F| = 220. So we have
Cost(MRJ2) = 130 + 220 = 350. Similarly, for M RJ; in
Figure 3(b), we have Cost(MRJ;) = 160. As a result, for
the corresponding MRJA, we have Cost(MRJA) = 510.

IV. QUERY OPTIMIZATION

Our SQL query processing system, SOSQL, consists of
three major components. First, the query plan optimizer gen-
erates the optimal query plan for an SQL query. Then, the
execution plan optimizer takes the optimal query plan together
with MapReduce framework settings as input and generates the
optimized execution plan and its corresponding MRJA. Finally,
we run MRJs of the MRJA using an MapReduce query engine.

A. Query Plan Optimizer

As proposed in [9], an optimal query plan stands for the
conceptually optimal join sequence in a tree structure.

For example, Figure 2 shows two different query plans of
(1 in Figure 1. For @1, query plan QP; in Figure 2 is a
DLT query plan, while QP is a BT query plan. In QQ P, join
operation GG is dependent on E and F', however E and F
are independent on each other. In QP;, join operation G is
dependent on F' which is dependent on E. For QPy, it can
be represented as D X C X B X A in relational algebra,
which is a chain join. For Q P, it can be represented as (A X
B) X (C X D), which is not a chain join. With the estimated
size of intermediate tables annotated on the graph, we have
Cost(QPy) = |D|+|C|+|B|+|A|+ |E|+ |F|+|G| = 1,510
and Cost(QPy) = 1,270.

Given all table sizes, we refer to [9] which proposed
polynomial algorithms with time complexity O(n?) to find
the optimal DLT and BT structured query plans.

B. Query Execution Plan Optimizer

With an optimized query plan generated, in this section we
discuss how to optimize the execution plan and the corre-
sponding MRJA. First we will define optimal query execution
plan based on optimal query plan. Then, for both DLT and
BT structured query plans, we devise algorithms to optimize
the query execution plan respectively.

G G
G E F
A B C D E F A B C D
(@) (b) (© ()] (e

Fig. 4. Query Optimization of QP»

1) Properties of Query Execution Plan: As introduced in
Section III, replicate join is a chain join in relational algebra.
Also, we see from the above example that a DLT query plan
can be represented as a chain join in relational algebra as well.
We prove that each DLT query plan can be implemented as
an replicate join, which a property that we use to guide the
generation of query execution plan. This indicates that each
MRI of a replicate join must execute a DLT query plan, such
as Figure 3. Next, we leverage this theorem to devise efficient
query execution plan generation optimizer.

For example, one query execution plan for query plan QP>
in Figure 2(b) would be using a single MRJ to execute it.
However, based on the property above, each MRJ must execute
a DLT query plan. Because QP» is not a DLT query plan, it
is infeasible to use one MRJ to execute (QP,. On the other
hand, the MRJA = (M RJy, M RJ>) in Figure 3(b) is a valid
execution plan.

From the above discussion we know that given a query plan
QP, a query execution plan is an MRJA with a sequence of
q MRIJs such that each M RJ; is a DLT structured sub-tree
of QP. Also M RJ; must observe no dependency when being
executed. Then the optimal query execution plan is the query
execution plan with the minimum cost.

Figure 3(a) and Figure 3(b) show two query execution plans
for the BT structured query plan QP> in Figure 2(b). For DLT
structured query plan QP; in Figure 2(a), we can generate
similar execution plans. Next we will discuss how to generate
the optimal query execution plan for input query plans.

2) Dynamic Programming Search for Optimal Execution
Plan: As an intuitive algorithm, using exhaustive search to
find the optimal query execution plan for BT query plan results
in exponential time complexity. To boost performance, we
propose a dynamic programming algorithm with O(n?) time
complexity.

For example, for QP> with root GG, we want to find the
MRIJA of the optimal execution plan with the minimum cost.

Step 1. Based on the property of Section IV-B1, we know
that the root of a query plan is executed in a DLT sub-plan
by an MRJ. So we enumerate all DLT sub-plans, Figure 4(a)
to Figure 4(c), in which G is executed in and identify the one
inducing the minimum cost. The cost of executing each DLT
sub-plan alone is 350, 380 and 220.

Step 2. After removing all edges and input tables of the DLT
sub-plan chosen in Step 1, the original query plan becomes
a forest of BT sub-plans. If we remove the DLT sub-plan in
Figure 4(a), Figure 4(e) is left. If we remove the DLT sub-plan
in Figure 4(b), Figure 4(d) is left. If we remove Figure 4(c),
Figure 4(d) and Figure 4(e) are left.

Step 3. To calculate the total cost of the DLT sub-plan in Step
1, we first need to calculate the cost of the BT sub-plans in
Step 2 because they must be executed beforehand. The cost

Q21 Q2 Q5 Q8
(a) 100GB

Fig. 5. Overall Query Processing Time

of executing Figure 4(d) or Figure 4(e) is 160 as shown in
Section III.

Step 4. For each DLT sub-plan of Step 1 and its corresponding
BT sub-plans in Step 2, they form a MRJA. So the cost
associated with the DLT sub-plan in Figure 4(a) is the sum of
executing Figure 4(a) and Figure 4(e), 510. Similarly, the cost
associated with Figure 4(b) and Figure 4(c) are 540 and 540.
Then, we return the MRJA with the minimum cost from Step
4, which is Figure 3(b).

Based on the above example, we can see a clear optimal
structure. By enumerating the DLT sub-plan in which the root
of a query plan is executed, we can break down the original BT
query plan into a set of smaller BT sub-plans. Furthermore, to
optimize the original BT query plan, we must optimize each
generated BT sub-plan.

Given a BT query plan QP, we use DLT;(v,QP) to
indicate the DLT subtree of ()P rooted at node v with height
l. For example, DLT5(G, QP,) indicates both Figure 4(a) and
Figure 4(b), while DLT; (G, QP:) indicates Figure 4(c).

Furthermore, we use dpgp|[v] to indicate the cost of the
optimal execution plan of the sub-plan rooted at v of QP.
We use LN(.) the indicate the leaf node set of a tree. For
example, dpg p, [G] indicates the cost of the optimal execution
plan of QP,. Then for a query plan QP with height h, we
have the optimal function in Equation 1.

dpQP[U} = Minlglgh(Cost(MRJ(DLTl(v,QP)))
+ oo dl)), @

v €LN(DLT;(v,QP)

where MRJ(DLT,(v,QP)) is an MRJ executing
DLT;(v,QP). v dp[v]=0if v is an input table because it
does not need to be executed.

V. EXPERIMENTS

Our experiments run on a 32-node Hadoop 1.2.1 cluster
deployed on Google Cloud Platform (GCP) [2] with 64
cores, 240GB memory and unlimited storage using default
configuration. 64 reducers are created for each MRJ. We
generate optimized query plan and execution plan on a single
machine with 3.1GHz Intel Core i5-2400 and 16GB memory
running Windows 7. We performed experiments on the stan-
dard TPC-H dataset with 100GB data size [3]. We present the
performance analysis of processing Q3, Q21, Q2, Q5 and Q8.
These queries represent queries with varying sizes, with the
number of tables in a query to be 3, 4, 5, 6 and 8, respectively.
The number of input tables in TP-C queries vary from 3 to 8.

We compare SOSQL with three systesm. AQUA [15] repre-
sents existing work for processing SQL queries in MapReduce
that uses exponential algorithms for execution plan optimiza-
tion. HIVE 1.1.0 [1] represents common industry solutions,
where one MRIJ is used for each binary join at a time,
which is also the strategy used in existing work in parallel
query processing. Furthermore, we compare our system with a
baseline system which randomly chooses an MRJA to execute
an SQL query, named RAND. For the proposed SOSQL
system, since we generate query execution plans based on both
DLT and BT query plans, we test both approaches, denoted
as SOSQLprr and SOSQLpgr, respectively.

We compare the overall query processing time of SOSQL
with all the other three systems on TPC-H dataset of size
100GB, as shown in Figure 5. Query processing time in-
cludes both query optimization time and query execution
time. With the same data size and query, different systems
have different query processing times. As shown in Figure 5,
SOSQL always achieves the best performance with over
130% improvement over other systems. Also, we notice that
SOSQLpr performs slightly better than SOSQL p 1, which
is consistent with the observation made in the existing work
[15]. VI. CONCLUSIONS

In this paper, we proposed SOSQL which is a scalable SQL
query optimizer using MapReduce. Based on our extensive
evaluation of SOSQL using standard TPC-H dataset and
Google Cloud Platform, we conclude that SOSQL improves
the efficiency of SQL query processing in terms of both query
optimization and query execution.

VII. ACKNOWLEDGEMENTS

This work is partially supported by NSF CAREER Award
IIS-0845647, Google Cloud Service and the Leir Charitable
Foundations.

REFERENCES

[1] http://hive.apache.org/.

[2] https://cloud.google.com.

[3] http://www.tpc.org/tpch/.

[4] F. N. Afrati and J. D. Ullman. Optimizing multiway joins in a map-
reduce environment. In IEEE Trans. Knowl. Data Eng., 2011.

[5] S. Blanas, J. M. Patel, and V. E. and. A comparison of join algorithms
for log processing in mapreduce. In SIGMOD Conference, 2010.

[6] J. Chandar. Join algorithms using map/reduce. Master’s thesis,
University of Edinburgh, 2010.

[71 M.-S. Chen, P. S. Yu, and K.-L. Wu. Scheduling and processor allocation
for parallel execution of multi-join queries. In ICDE, pages 58-67, 1992.

[8] C. Doulkeridis and K. Nrvg. A survey of large-scale analytical query
processing in mapreduce. In VLDB J., pages 355-380, 2014.

[9] S. Ganguly, W. Hasan, and R. Krishnamurthy. Query optimization for

parallel execution. In SIGMOD 1992, pages 9-18, NY, USA, 1992.

K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon. Parallel data

processing with mapreduce: a survey. In SIGMOD Record, 2011.

X. Lin, Y. Ye, and S. Ma. Mrpacker: An sql to mapreduce optimizer.

In CIKM, CIKM °13, 2013.

H. Lu. Query Processing in Parallel Relational Database Systems. IEEE

Computer Society Press, Los Alamitos, CA, USA, 1994.

A. Okcan and M. Riedewald. Processing theta-joins using mapreduce.

In SIGMOD Conference, pages 949-960, 2011.

P. Valduriez and G. Gardarin. Join and semijoin algorithms for a

multiprocessor database machine. In ACM Trans. Database Syst., 1984.

S. Wu, F. Li, S. Mehrotra, and B. C. Ooi. Query optimization for

massively parallel data processing. In SoCC, page 12, 2011.

X. Zhang, L. Chen, and M. Wang. Efficient multi-way theta-join

processing using mapreduce. In PVLDB, 2012.

[10]
(11]
[12]
[13]
[14]
[15]

[16]

