Review Material on Calculus for Differential Equations Math 222

1 Derivative

- Let $g(x)=\cos (f(x))$, find the derivative of $g(x)$ if $f^{\prime}(x)=x^{2}$.
- What is $h^{\prime}(x)$ if $h(x)=\sin (x) x^{2}$?
- If $z^{\prime}(x)=\frac{1}{3+5 x^{2}}$, what is $z(x)$?
- If $q q^{\prime}=\frac{1}{\sqrt{x^{2}+1}}$, what is $q(x)$?
- Let $f(t)=t e^{a t}+b$, where $a \neq 0$ and b are constant coefficients and $t>0$. (a) Find a and b such that $f(t)$ has a critical point at $t=2$. (b) Continue from (a), find b such that $f=3$ at the critical point. (c) Finally, determine the behavior of $f(t)$ as $t \rightarrow \infty$ with a and b from above. (d) With a and b from (b), sketch $f(t)$ for $t \in[0,10]$.
- Let $g(t)=\sin t e^{\alpha t}+\beta$, with $\alpha \neq 0$ and β constant coefficients. Find the conditions on α and β such that there is more than one critical point for $g(t)$. Find the expression for the critical points in terms of α and β.
- Let $y(t)=5 e^{-\frac{t}{10}} \cos \left(\omega_{0} t\right)$ for $t>0$. (a) Sketch $y(t)$ for $t \in\left[0, \frac{10 \pi}{\omega_{0}}\right]$ if the oscillation frequency $\omega_{0}=2 \pi$ per second (Hertz). (b) If $y(4)=0$, what can one say about the frequency ω_{0} ? (c) The function $y(t)$ has a time-varying oscillation amplitude $5 e^{-\frac{t}{10}}$. Find the time T when this time-dependent amplitude first decreases to less than 1.
- Compute the Taylor series of $g(x)=\cos (x)$ around $x=0$.
- Compute the Taylor series of $h(x)=\sin (x)$ around $x=0$.
- Let x and y satisfy the equation $x^{2}+4 y^{2}=4$. Find $\frac{d y}{d x}=$? Find $\frac{d x}{d y}=$?

2 Integration

- Find $\int \frac{1}{1-x^{2}} d x=$?
- Find $\int \frac{1}{\sqrt{1-x^{2}}} d x=$?
- Use integration by parts to find $\int x e^{-x} d x=$?
- What is $\int \cos (x) x d x$?
- Find $\int \frac{x d x}{1+x^{4}}$.
- Use the Taylor series for $\cos (x)$ and $\sin (x)$ above to show that $\cos ^{\prime}(x)=-\sin (x)$ and $\sin ^{\prime}(x)=\cos (x)$, or equivalently $\int \cos (x) d x=\sin (x)+c$ and $\int-\sin (x) d x=\cos (x)+c$.
- If $F(x)=\int \frac{1}{e^{x}+1} d x$, what is $F^{\prime}(x)$?
- What is the integral $\int_{-\infty}^{\infty} \frac{1}{1-x^{2}} d x$?
- Use the identity $\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+\cdots$ to compute the integral $\int \frac{1}{1-x} d x$. Verify your answer against the Taylor series of $\ln (1-x)$ around zero.
- Compute the integral $\int_{0}^{\infty} \cos (x) e^{-s x} d x$ with $s>0$ a constant.

