Math 222 EXAM II, October 24, 2007

Read each problem carefully. Show all your work for each problem. No Calculators!

1. (a) (8) Determine if the functions y_{1}, y_{2} are linearly dependent or independent:
(i) $y_{1}=|\mathrm{t}-1|, \quad y_{2}=2(\mathrm{t}-1)$,
(ii) $y_{1}=3 t+1, \quad y_{2}=t+3$
(b) (8) Find a function $g(x)$ which satisfies the conditions: $W(f, g)=x, f(x)=x$.
2. (a) (12) Use the method of undetermined coefficients to find a particular solution of the differential equation

$$
y^{\prime \prime}-y^{\prime}=2 e^{t}-1-t
$$

(b) (6) Determine the general solution of the above equation
3. (a) (12) Given that $y_{1}=e^{-x}$ is a solution of the differential equation

$$
x y^{\prime \prime}+(x-1) y^{\prime}-y=0, \quad x>0
$$

use the method of reduction of order to find the second linerly independent solution y_{2}.
(b) (6) Determine the homogeneous ODE whose general solution is

$$
y=c_{1} e^{t}+c_{2} t e^{t}+e^{-t}\left(c_{3} \cos 2 t+c_{4} \sin 2 t\right)
$$

4. (16) Use the method of variation of parameter to find a particular solution of the differential equation

$$
2 y^{\prime \prime}+4 y^{\prime}+2 y=\frac{1}{t} e^{-t}, t>0
$$

5. (16) Determine the form of particular solution of the following ODE, using the method of undetermined coefficients. Do NOT evaluate the constants.

$$
y^{(4)}+2 y^{(3)}+2 y^{\prime \prime}=4 e^{t}-2 e^{-t} \cos (t)+t e^{-t}
$$

6. (16) Solve the initial value problem

$$
y^{(3)}-y^{\prime \prime}-y^{\prime}+y=0, \quad y(0)=2, y^{\prime}(0)=-1, y^{\prime \prime}(0)=0
$$

Problem l (a)

$$
\begin{aligned}
& y_{1}=1 t-11, y_{2}=2(t-1) \\
& c_{1} y_{1}+c_{2} y_{2}=0
\end{aligned}
$$

$\left(c_{1}, c_{2}\right)=(0,0)$ is the only solution if $y_{1} \& y_{2}$ are Imearly independent

$$
\begin{array}{rl}
c_{1}|t-1|+c_{2} \cdot 2 \cdot(t-1)=0 & t>1 \\
c_{1}(t-1)+c_{2} \cdot 2(t-1)=0 & c_{1}+2 c_{2}=0 \\
-c_{1}(t-1)+c_{2} \cdot 2(t-1)=0 & t<1 \\
& -c_{1}+2 c_{2}=0 \\
& \Rightarrow c_{1}=0, c_{2}=0
\end{array}
$$

$\Rightarrow|t-1|$ \& $2(t-1)$ are linearly independent

$$
\begin{gathered}
y_{1}=3 t+1, \quad y_{2}=t+3 \\
c_{1} y_{1}+c_{2} y_{2}=0 \\
c_{1}(3 t+1)+c_{2}(t+3)=0 \\
3 c_{1}+c_{2}=0
\end{gathered}
$$

$$
c_{1}+3 c_{2}=0 \quad c_{1}=0=c_{2} \Rightarrow 3 t+18 t+3 \text { ne }
$$

lineally independent
(b)

$$
\begin{aligned}
& f \dot{g}^{\prime}-f^{\prime} g=x, \quad f(x)=x \\
& x g^{\prime}-g=x \\
& g^{\prime}-\frac{1}{x} g=1 \\
& \mu=e^{\int-\frac{1}{x} d x}=e^{-\ln x}=e^{\ln \frac{1}{x}}=\frac{1}{x} \\
& g=\frac{\int 1+\frac{1}{x} d x+c}{\frac{1}{x}}=\frac{\ln x+c}{\frac{1}{x}}=x \ln x+c \ln x
\end{aligned}
$$

Problem 2 (a)

$$
\begin{aligned}
& y^{\prime \prime}-y^{\prime}=2 e^{t}-1-t \\
& r^{2}-r=0, \quad r(r-1)=0, \quad r=0,1 \quad y_{1}=1, y_{2}=e^{t} \\
& Y=t(A t+B)+t c e^{t} \\
& Y^{\prime}=2 A t+B+c e^{t}+c t e^{t} \\
& Y^{\prime \prime}=2 A+c e^{t}+c e^{t}+c t e^{t}
\end{aligned}
$$

$$
\begin{aligned}
& Y^{\prime \prime}-Y^{\prime}=2 e^{t}-1-t \\
& 2 A+2 c e^{t}+c t e^{t}-\left(2 A+B+c e^{t}+c+e^{t}\right)=2 e^{t}-1-t \\
& 2 A-B-2 A t+c e^{t}=2 e^{t}-1-t \\
& \quad-2 A=-1, A=1 / 2 \\
& 2 A-B=-1, \quad 1-B=-1, B=2, \quad C=2, \quad Y\left(\frac{t}{2}+2\right)+2+e^{t} \\
& \text { b) } \\
& y=c c_{1}+c_{2} e^{t}+t\left(\frac{t}{2}+2\right)+2+e^{t} \quad
\end{aligned}
$$

Problem 3
(a)

$$
\begin{aligned}
& y_{2}=v y_{1}, y_{2}^{\prime}=v y_{1}+v y_{1}^{\prime}, y_{2}^{\prime \prime}=v^{\prime \prime} y_{1}+2 v^{\prime} y_{1}^{\prime}+v y_{1}^{\prime \prime} \\
& x \cdot\left(v^{\prime \prime} y_{1}+2 v^{\prime} y_{1}^{\prime}+v y_{1}^{\prime \prime}\right)+(x-1) \cdot\left(v^{\prime} y_{1}+v y_{1}\right)-v y_{1}=0 \\
& \left(x y_{1}\right) v^{\prime \prime}+\left(2 x y_{1}^{\prime}+(x-1) y_{1}\right) v^{\prime}=0 \\
& y_{1}=e^{-x} \\
& \left.x e^{-x} \cdot v^{\prime \prime}+\left(-2 x e^{-x}+(x-1)\right) e^{-x}\right) v^{\prime}=0 \\
& x v^{\prime \prime}+(-x-1) v^{\prime}=0 \\
& v^{\prime \prime}=\frac{x+1}{x-}=1+\frac{1}{x} \\
& \ln v^{\prime}=x+\ln x, v^{\prime}=x \cdot e^{x} \\
& v=\int x e^{x} d x=x e^{x}-e^{x} \\
& y_{2}=v e^{-x}=x-1
\end{aligned}
$$

(b) $y=c_{1} e^{t}+c_{2}+e^{t}+e^{t} \cdot\left(c_{3} \cos 2 t+c_{4} \sin 2 t\right)$

$$
\begin{aligned}
& (r+1)(r+1)\left[(r+1)^{2}+4\right]=0 \\
& \left(r^{2}+2 r+1\right)\left(r^{2}+2 r+5\right)=0 \\
& r^{4}+2 r^{3}+r^{2}+2 r^{3}+4 r^{2}+2 r+5 r^{2}+10 r+5=0 \\
& r^{4}+4 r^{3}+10 r^{2}+12 r+5=0 \\
& y^{(4)}+4 y^{33}+10 y^{(2)}+12 y^{\prime}+5 y=0
\end{aligned}
$$

Problem 4:

$$
\begin{aligned}
& 2 y^{\prime \prime}+4 y^{\prime}+2 y=\frac{1}{t} e^{-t}, \quad t>0 \\
& y^{\prime \prime}+2 y^{\prime}+y=\frac{1}{2 t} e^{t} \\
& r^{2}+2 r+1=0, \quad r=\frac{-2 \pm \sqrt{2^{2}-4}}{2}=-1,-1 \\
& y_{1}=e^{-t}, y_{2}=t e^{-t}, W=\left|\begin{array}{l}
e^{-t} t e^{-t} \\
-e^{-t} \\
e^{-t}-t e^{-t}
\end{array}\right|=e^{-2 t} \\
& Y=\left(\int \frac{-t e^{-t} \cdot \frac{1}{2 t} e^{-t}}{e^{2 t}} d t\right) e^{-t}+\left(\int \frac{e^{-t} \cdot \frac{1}{2 t} e^{-t}}{e^{-2 t}}\right) t e^{-t} \\
& =-\frac{1}{2} \int \frac{t}{t} d t \cdot e^{-t}+\frac{1}{2} \int \frac{1}{t} d t \cdot t e^{-t} \\
& Y=-\frac{t}{2} e^{-t}+\frac{1}{2} t \ln t e^{-t}
\end{aligned}
$$

Problem5:

$$
\begin{aligned}
& y^{(4)}+2 y^{(3)}+2 y^{4}=4 e^{t}-2 e^{-t} \cos t+t e^{-t} \\
& r^{4}+2 r^{3}+2 r^{2}=0 \\
& r^{2}\left(r^{2}+2 r+2\right)=0 \\
& r^{2}\left((r+1)^{2}+1\right)=0 \\
& r^{2}=0, r=0,0 \\
& (r+1)^{2}+1=0,(r+1)^{2}=-1, \quad r= + \pm i \\
& y_{1}=1 \\
& y_{2}=t \\
& y_{3}=e^{-t} \cos t \\
& y_{4}=e^{-t} \sin t \\
& Y=A e^{t}++B e^{-t} \cos t+t e^{-t} \cdot \sin t+(D t+E) e^{-t} \\
& Y=A e^{t}+t \cdot\left(B e^{-t} \cos t+\left(e^{-t} \sin t\right)+(D+t) e^{-t}\right.
\end{aligned}
$$

Problem 6

$$
\begin{aligned}
& y^{(3)}-y^{\prime \prime}-y^{\prime}+y=0, \quad y(0)=2, y^{\prime}(0)=-1, \quad y^{\prime \prime}(0)=0 \\
& r^{3}-r^{2}-r+1=0 \\
& r^{2}(r-1)-r+1=0 \\
& \left(r^{2}-1\right)(r-1)=0 \\
& (r+1)(r-1)(r-1)=0 \\
& r=-1_{1} 1_{1} 1 \\
& y=c_{1} e^{-t}+c_{2} e^{t}+c_{3} t e^{t} \quad y(0)=2=c_{1}+c_{2} \\
& y^{\prime}=-c_{1} e^{-t}+c_{2} e^{t}+c_{3} e^{t}+c_{3} t e^{t} \quad y_{(0)}=-1=-c_{1}+c_{2}+c_{3} \\
& y^{\prime \prime}=c_{1} e^{-t}+c_{2} e^{t}+c_{3} e^{t}+c_{3} e^{t}+c_{3} t e^{t}-y_{(0)}^{\prime \prime}=c_{1}+c_{2}+c_{3}=0 \\
& c_{1}+c_{2}=2 \quad r \quad c_{1}+c_{2}+c_{3}=-1 \\
& c_{1}+c_{2}+2 c_{3}=0 \\
& 2+2 c_{3}=0, c_{3}=-1 \\
& -c_{1}+c_{2}=0 \\
& c_{1}+c_{2}=2
\end{aligned} \quad c_{2}=1, c_{1}=1 .
$$

