Math 222, Fall 2016.
Present your work in an organized fashion. Make sure that your work is algebraically correct and logically sound. Show all your work. No calculator, notes, or books.

Take-home Quiz 11/11/2016 M222-001, Due in class on 11/14/2016

1. Find the inverse Laplace transform of the given functions.

$$
(a) F(s)=\frac{3}{s^{2}+4}, \quad(b) F(s)=\frac{2 s-3}{s^{2}-4}, \quad(c) F(s)=\frac{1-2 s}{s^{2}+2 s+10} \text {. }
$$

2. Use Laplace transform to find the solution of the IVP:

$$
y^{(4)}-y=0, \quad y(0)=1, \quad y^{\prime}(0)=0, \quad y^{\prime \prime}(0)=-2, \quad y^{\prime \prime \prime}(0)=0 .
$$

3. Use Laplace transform to find the solution of the IVP:

$$
y^{\prime \prime}+4 y^{\prime}=\left\{\begin{array}{l}
t, \quad 0 \leq t<1, \\
0, \\
1 \leq t<\infty ;
\end{array} \quad y(0)=0, \quad y^{\prime}(0)=0\right.
$$

P. 01

QUIZ $11 / 1112016$ Math 222 Fall 2016

1. (a) $F(s)=\frac{3}{s^{2}+4}$,

$$
F(s)=\frac{3}{2} \cdot \frac{2}{s^{2}+2^{2}}, \mathcal{L}^{-1}[F]=\frac{3}{2} \mathcal{L}^{-1}\left[\frac{2}{s^{2}+2^{2}}\right]=\frac{3}{2} \cdot \sin 2 t \text { from \#5 }
$$

$$
\begin{gathered}
\text { in table } \\
6.2 .1
\end{gathered}
$$

(b)

$$
\begin{aligned}
& F(s)= \frac{2 s-3}{s^{2}-4}=\frac{2 s-3}{(s+2)(s-2)}=\frac{A}{s+2}+\frac{B}{s-2} \\
& A(s-2)+B(s+2)=2 s-3, \\
& s=2, \quad 4 B=1, \quad B=\frac{1}{4} \\
& S=-2, \quad-4 A=-7, \quad A=\frac{7}{4} \\
& F(s)=\frac{7}{4} \frac{1}{s+2}+\frac{1}{4} \frac{1}{s-2}, \quad \mathcal{L}^{-1}[F]=\frac{7}{4} \mathcal{L}^{-1}\left[\frac{1}{s+2}\right]+\frac{1}{4} \mathcal{L}^{-1}\left[\frac{1}{s-2}\right] \\
&=\frac{7}{4} e^{-2 t}+\frac{1}{4} e^{2 t}
\end{aligned}
$$

(c)

$$
\begin{aligned}
F(s) & =\frac{1-2 s}{s^{2}+2 s+10}=\frac{1-2 s}{(s+1)^{2}+3^{2}}=\frac{-2(s+1)+3}{(s+1)^{2}+3^{2}} \\
\begin{array}{|l}
\mathcal{L}^{-1}[F]
\end{array} & =\mathcal{L}^{-1}\left[\frac{-2(s+1)+3}{(s+1)^{2}+3^{2}}\right]= \pm^{-1}\left[\frac{-2(s+1)}{(s+1)^{2}+3^{2}}+\frac{3}{(s+1)^{2}+3^{2}}\right] \\
& =-2 \cdot e^{-t} \cdot \cos 3 t+e^{-t} \sin 3 t
\end{aligned}
$$

2.

$$
\begin{aligned}
& y^{(4)}-y=0, \quad y(0)=1, \quad y^{\prime}(0)=0, y^{\prime \prime}(0)=-2, \quad y^{3}(0)=0 \\
& \mathscr{L}\left[y^{(4)}-y\right]=0 \\
& s^{4} Y-s^{3} y(0)-s^{2} y^{\prime}(0)-s y^{\prime}(0)-y^{3}(0)-Y=0 \\
& \left(s^{4}-1\right) Y=s^{3}-2 s, \quad Y=\frac{s\left(s^{2}-2\right)}{s^{4}-1}=\frac{s\left(s^{2}-1-1\right)}{\left(s^{3}+1\right)\left(s^{(}-1\right)}=\frac{s\left(s^{2}-1\right)-s}{\left(s^{2}+1\right)\left(s^{2}-1\right)} \\
& Y=\frac{s}{s^{2}+1}-\frac{s}{\left(s^{2}+1\right)\left(s^{2}-1\right)}=\frac{s}{s^{2}+1}-\left(\frac{A s+B}{s^{+}+1}+\frac{c s+D}{s^{2}-1}\right) \\
& (A s+B)\left(s^{2}-1\right)+(c s+D)\left(s^{2}+1\right)=s
\end{aligned}
$$

$$
s^{3}: \quad A+C=0, \quad S^{2}: \quad B+D=0, \quad s^{\prime}:-A+C=1, \quad s^{0}:-B+D=0
$$

P. 02

$$
\begin{gathered}
\quad B=D=0, \quad A=-\frac{1}{2}, C=\frac{1}{2} \\
Y=\frac{s}{s^{2}+1}+\frac{1 / 2 s}{s^{2}+1}-\frac{1 / 2 s}{s^{2}-1} \\
=\frac{\frac{3}{2} s}{s^{2}+1}-\frac{\frac{1}{2} s}{s^{2}-1}=\frac{3}{2} \frac{s}{s^{2}+1}-\frac{1}{2}\left(\frac{\frac{1}{2}}{s+1}+\frac{\frac{1}{2}}{s-1}\right) \\
y(t)=\mathcal{L}^{-1}[Y]=\frac{3}{2} \cdot \cos t-\frac{1}{4} \cdot\left(e^{-1}\right) \cdot \frac{1}{4} e^{t} \\
y(t)=\frac{3}{2} \cos t-\frac{1}{2} \cdot \cosh t
\end{gathered}
$$

3. $\quad y^{\prime \prime}+4 y^{\prime}=\left\{\begin{array}{ll}t & 0 \leqslant t<1 \\ 0 & 1 \leqslant t<\infty\end{array} \quad y(0)=0, y^{\prime}(0)=0\right.$

$$
\mathcal{L}\left[y^{\prime \prime}+4 y^{\prime}\right]=\int_{0}^{\infty} e^{-s t}\left\{\begin{array}{l}
t \\
0
\end{array} d t=\int_{0}^{1} e^{-s t} \cdot t d t+0\right.
$$

$$
s^{2} Y+4 s Y=\left.\frac{e^{-s t}}{-s} \cdot t\right|_{0} ^{1}-\int_{0}^{1} \frac{e^{-s t}}{-s} d t
$$

$$
=\frac{e^{-s}}{-s}-\left.\frac{1}{s^{2}} e^{-s t}\right|_{0} ^{0}=\frac{e^{-s}}{-s}-\frac{1}{s^{2}}\left(e^{-s}-1\right)
$$

$$
\left(s^{2}+4 s\right) Y=\frac{1}{s^{2}}-\frac{1}{s^{2}} e^{-s}-\frac{e^{-s}}{s}
$$

$$
Y=\frac{1}{s(s+4)} \cdot\left(\frac{1}{s^{2}}-\frac{1}{s^{2}} e^{-s}-\frac{e^{-s}}{s}\right)
$$

$$
=\frac{1}{s^{3}(s+4)}-\frac{1}{s^{3}(s+4)} \cdot e^{-s}-\frac{e^{-s}}{s^{2}(s+4)}
$$

$$
\begin{aligned}
& \frac{1}{s^{3}(s+4)}=\frac{A s^{2}+B s+C}{s^{3}}+\frac{D}{s+4} \\
& \left(A s^{2}+B s+C\right)(s+4)+D s^{3}=1 \\
& s^{3}: A+D=0 \pi D=-\frac{1}{64} \\
& s^{2}: 4 A+B=05 A=\frac{1}{64} \\
& s^{1}: 4 B+C=05 B=-\frac{1}{16} \\
& s^{0}: 4 C=15 C=\frac{1}{4}
\end{aligned}
$$

P. 03

$$
\begin{aligned}
& \frac{1}{s^{2}(s+4)}=\frac{A s+B}{s^{2}}+\frac{C}{s+4} \\
& (A s+B)(s+4)+c s^{2}=1 \\
& s^{2}: \quad A+C=0 \quad 5 \quad C=\frac{1}{16} \\
& s^{\prime}: \quad 4 A+B=0 \quad A=-\frac{1}{16} \\
& s^{0}: \quad 4 B=1 \quad B=\frac{1}{4} \\
& Y=\frac{\frac{1}{64} s^{2}-\frac{1}{16} s+\frac{1}{4}}{s^{3}}+\frac{-\frac{1}{64}}{s+4}-\frac{e^{-s}}{s^{3}(s+4)}-\left(\frac{-\frac{1}{6} s+\frac{1}{4}}{s^{2}}+\frac{\frac{1}{6}}{s+4}\right) e^{-s} \\
& \mathcal{L}^{-1}\left[\frac{1}{s^{3}(s+4)}\right]=\mathcal{L}^{-1}\left[\frac{1}{64} \frac{1}{s}-\frac{1}{16} \frac{1}{s^{2}}+\frac{1}{4} \frac{1}{s}\right]+\mathcal{L}^{-1}\left[\frac{-\frac{1}{64}}{s+4}\right] \\
& =\frac{1}{64}-\frac{1}{16} t+\frac{1}{8} t^{2}-\frac{1}{64} e^{-4 t} \equiv h(t) \\
& \mathcal{L}^{-1}\left[\frac{1}{s^{2}(s+4)}\right]=\mathcal{L}^{-1}\left[\frac{-\frac{1}{16} s+\frac{1}{4}}{s^{2}}+\frac{1}{\frac{1}{6}} s^{s+4}\right]=-\frac{1}{16}+\frac{1}{4} t+\frac{1}{16} e^{-4 t} \equiv g(t) \\
& y=\mathcal{L}^{-1}[Y]=\quad h(t)-u_{1}(t) h(t-1)-u_{1}(t) g(t-1)
\end{aligned}
$$

